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Abstract. Bessel beams have been extensively studied, but to date have been
created over a finite region inside the laboratory. Recently Bessel-like beams
with longitudinally dependent cone angles have been introduced allowing for a
potentially infinite quasi non-diffracting propagation region. Here we show that
such beams can self-heal. Moreover, in contrast to Bessel beams where the self-
healing distance is constant, here the self-healing distance is dependent on where
the obstruction is placed in the field, with the distance increasing as the Bessel-like
beam propagates farther. We outline the theoretical concept for this self-healing
and confirm it experimentally.
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1. Introduction

Self-healing is a property that is usually associated
with Bessel beams (BBs) [1-6], and describes the
ability of the field to reform in amplitude after some
distance beyond an obstruction. It is usually explained
through a simple concept of rays: since the Bessel
beam,

u(r) o< J(kOr), (1)

where u(r) is the field of the Bessel beam, J is a
Bessel function and k& = 27/ is the wave number of
the incident light, may be seen as the interference of
waves travelling on a cone of angle, 6, some waves may
bypass the obstruction and hence interfere to create
the original beam again [7].

Experimentally such self-healing was first demon-
strated with zero-order BBs [8,9], and later with BBs
carrying orbital angular momentum [10]. More re-
cently the concept of self-healing has been extended to
other classes of optical fields, such as Airy beams [11],
scaled propagation invariant beams [12] and rotating
fields [13,14], as well as to the angular domain [15]
and beyond classical light to quantum states [7]. Self-
healing of BBs has been a useful tool in a variety of
applications ranging from communication [16], atmo-
spheric studies [17, 18] microscopy [19-21] and optical
trapping and tweezing [22-25]. Despite its many ex-
perimental demonstrations, it remains a topical field
theoretically [26,27].

A new class of BB was recently introduced where
the intensity profile of the beam remains shape-
invariant during propagation [28,29]. This is in stark
contrast to conventional BBs where the near-field is a
Bessel function but the far field is an annular ring. In
keeping with the literature we refer to such beams as
Bessel-like beams (BLBs), which have a propagation-
invariant Bessel-function intensity profile for a long
propagation distance. These BLBs are engineered such
that their cone angle is not constant but rather a
function of propagation distance, 6(z). Based on this
property we can assume that these beams will have self-
healing properties similarly to Bessel beams but with
a self-healing distance that is dependent on where the
obstruction is placed in the field. Such behaviour has
not been observed previously.

In this paper we study the self-healing properties
of BLBs both theoretically and experimentally. We
find that the self-reconstruction properties are similar
to Bessel beams but that the self-reconstruction
distance depends on the distance between the initial
field (at the SLM plane) and the obstruction. This
property is a result of the longitudinal dependence of
the cone angle. This behaviour is a unique property of

these beams in contrast with Bessel beams, where the
self-reconstruction distance is constant.

2. Theoretical Approach

Consider the case where a BLB is created by a single
phase-only element of the form

o(r) = explik(ar™ + br™)], (2)

where k is the wave number of the incident light,
and a,b,n and m are design parameters. If the clear
aperture of the entrance optic is r7, then the parameter
set that gives rise to a BLB is given by [29]

b= —a (%) . (3)

Note that the phase terms in Eq. 2 can be
viewed as optical aberrations, where the weights a
and b necessarily obey the relationship in Eq. 3 in
order to produce a long-range Bessel-like beam with
reconstruction properties.

Now our BLB at any transverse plane can be
written as the superposition of conical waves where the
angle of arrival of the conical waves, 6(z), is identical
and decreases with distance. The cone angles can be
calculated from the stationary phase approximation to
the diffraction equation, where rays from the source
plane are mapped to new transverse positions at some
distance z away. We provide the cone angles for some
example hologram parameters in Table 1 (see appendix
for details).

Figure 1. A longitudinal cross-section of the intensity
distribution of a BLB illustrating the derivation of the self-
reconstruction distance for BLBs. An obstruction with radius
ro is located at z on the optical axis OC at position AB. Self-
reconstruction occurs in the zone with length z;.

To predict the reconstruction distance we make
use of a simple geometric argument, but which is
consistent with a full diffraction analysis. Consider
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n=1; m=3

n=1; m=2 n=2; m=3
0(z) P 0(2) = 542 (1 +10az £ F(a, 2))

0(z) = &Zﬁ(n +4az £ G(a,2))

F(a,z) =1+ 20az + 4a222

Gla,z) = /()2 + 8ar z + 4a222

Table 1. The cone angle, 6(z), of BLBs for three example cases: n = 1,m = 2 (an axicon-lens doublet), n = 2, m = 3 (an aberrated

lens) and n = 1, m = 3 (an aberrated axicon).

the scenario depicted in Fig. 1 where an obstruction
of radius rq is placed in the path of the BLB at some
distance z from the source. From simple trigonometric
arguments we can see that the shadow distance, z,, is
given by the solution to

__"
0(z+ 2)"

Zpr =

(4)

By way of example, consider the axicon-lens
doublet in Table 1 (n = 1,m = 2) from which we find

arry

0(z) = (5)

az —ryp

Substituting into Eq. 4 and solving for z, we find

To
S e
_ rola(z+z) — 7] (©)
aryr
and thus
_rolaz —ry)
w(7) = a(rr —ro) ™

The same approach is followed for any parameter
combination of the BLB, and example expressions are
provided for various parameters sets in Table 2.

We note from Fig. 2 that the self-reconstruction
distance depends on the distance between the initial
plane and the obstruction. This behaviour is a
unique property of BLBs in contrast to BBs where
the self-reconstruction distance is constant. The
representation of BLBs as the interference of two
diverging conical-like waves helps to explain the nature
of the self-reconstruction property which is similar to
BBs [30]. For BBs the self-reconstruction distance
is constant as a result of the constant cone angle,
in contrast with BLBs where the self-reconstruction
distance increases with distance as a result of the cone
angle decreasing with distance, as shown in Fig. 1.
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Figure 2. Dependence of self-reconstruction distance z, (for
certain values of n and m of the transformation system) on
distance to obstruction z (see Fig. 1) for the following parameters
of initial field and system: w = 2 mm, rg = w/3, r1 = 3w,
a =3 x1073; (black) n = 1;m = 2; (red) n = 2,m = 3; (blue)
n=1m=3.

HeNe 4xBET

IMG

Figure 3. The experimental setup consists of an expanded
HeNe beam reflected off the phase screen displayed on an SLM,
creating a BLB with n = 1,m = 2. An obstruction OBST (either
a bead or thin wire) was positioned at a distance of z from the
phase screen. A 4-f imaging system transfers the object plane
OBJ to the image plane IMG on the camera sensor CAM at
several axial positions z.

3. Experimental results

For experimental verification a Gaussian beam from
a HeNe laser was expanded by a 4x beam-expanding
telescope (BET) to a beam radius w = 1.7 mm and
reflected off a HoloEye PLUTO spatial light modulator
(SLM). A phase screen was generated for a BLB with
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n=1; m=2 n=2; m=3

n=1; m=3

_ ro(az—r1) 4aroz2

72ar022

ZT(Z) = m ZT’(Z) =

rr—4aroz+2arrz+xry \/—S(IJ:ILZ-|—(1-|—2az)2

(+) for a > 0 and (-) for a <0

zr(2) =

20,7‘0.2:':7‘% <:|:1+ 1+4an (azfro))
T

(upper sign) for a > 0
(lower sign) for a < 0

Table 2. The self-reconstruction distance z, for example values of n and m of the transformation system.

n = 1,m = 2 (equivalent to an axicon-lens doublet,
and chosen to allow comparison with previous work,
for example [31]) with @ = 0.05 and r; = 2 mm.
An obstruction was placed at z = 240 mm from the
SLM, and a series of transverse planes at z; from
the obstruction plane were imaged using a 4-f system
onto an image plane coincident with the sensor of a
Spiricon LBA-USB-L130 camera and recorded. The
experimental setup is shown in Fig. 3.

Figure 4. (a) Unobstructed BLB (n = 1,m = 2,w = 1.7 mm,
a = 0.05) at the obstruction plane (z; = 0), (b) BLB at the same
plane but obstructed by a centred 400pm bead, (¢) unobstructed
BLB at z; = 110 mm, and (d) obstructed BLB at z; = 110 mm.

We first verified that reconstruction does indeed
occur. The obstruction used consisted of a bead at the
obstruction plane (z; = 0) and centred on the BLB.
We imaged this plane both without [see Fig. 4(a)] and
with [see Fig. 4(b)] the bead. Notice the dark area at
the centre of the beam in Fig. 4(b). We then moved our
imaging system and camera a distance of z; = 110 mm
away, and imaged the beam at this point. Fig. 4(c)
shows the unobstructed beam at z;y = 110 mm, and
Fig. 4(d) shows the obstructed beam at the same plane.
Notice that the ring structure of the beam has been

completely reconstructed. We notice however that the
intensity of the outer region of the obstructed beam
(Fig. 4(d)) is lower than in the unobstructed beam
(Fig. 4(c)).

In order to study how well other obstruction
configurations would reconstruct we followed the
method of the previous experiment, now using both
a bead with diameter 400pm and a wire with diameter
180pm, in both centred and off-centred positions
relative to the BLB, which was the same as generated
previously, i.e. n =1,m = 2,w = 1.7 mm, a = 0.05
and r; = 2 mm. When in their off-centre positions the
bead and the wire were respectively 839 pm and 526
pm from the centre of the BLB. For each obstruction
configuration the beam was imaged and recorded every
10 mm. Fig. 5 shows beam reconstruction for: (a) off-
centre wire, (b) off-centre bead, (c) centred wire, and
(d) centred bead. In each case the beam is shown at
axial positions z;y = 0 mm, 30 mm, 60 mm and 90 mm
from the obstruction. Full reconstruction is found at
z = 70 mm for the bead, and at z = 27 mm for the
wire.

Our approach to calculating the BLB shadow after
the obstruction is based on the conical wave approach.
By considering the projection of the obstruction in
space which results from the two travelling conical
waves which produce the BLBs [30] we are able to
predict the movement of the shadow region of the
obstructed area with beam propagation. The approach
of projecting the obstruction boundaries rather than
the field itself results in the fast and accurate prediction
of the field after an obstruction. We successfully
predict the reconstruction properties of a BLB after
obstructions in both the central region of beam and
off-centre by calculating the boundaries of the various
projected regions (see Fig. 5). The projection results
in the creation of two zones defined by a single conical
wave, with the boundaries of these zones moving
farther apart at a rate of § = 2z tan[f(z)], where 6(z)
is the cone angle at the obstruction position (see Table
1) and z is the longitudinal position of obstruction.

For each position z; of each experiment the
shadow pattern predicted by the simulation is shown
as an inset. It is clear that the shadow pattern is
characteristic of the shape of obstruction, as well as
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the position of the obstruction in the beam. Fig. 5
reveals good agreement between the theory and the
experimental results.

In our third experiment we investigated the
dependence of reconstruction distance z. on the
distance z of the obstruction from the initial plane at
the SLM. A wire with diameter 0.7 mm was placed off-
centre in the same BLB as generated previously (i.e.
n=1m=2w=17mm, a=0.05and r; = 2 mm),
first (a) at z = 248 mm, and then (b) at z = 748 mm.
A camera captured the beam at a distance z; after the
obstruction.

(b) (d) (f)

Y 400mm 1

200 mm 100 mm

100 mm

Figure 6. The self-reconstruction of the same beam with a wire
obstruction placed off-centre at (a) 248 mm, and (b) 748 mm.
(c) shows that the beam is partially reconstructed 100 mm after
(a), contrasted with (d) which shows very little reconstruction
100 mm after (b). (e) shows complete reconstruction of the
obscured area at 200 mm after (a), but (f) shows that complete
reconstruction is only evident at 400 mm after (b).

Referring to Fig. 6, we observed that in both cases
reconstruction is incomplete after 100 mm, but for (a)
reconstruction is complete at 200 mm, whereas for (b)
reconstruction was only complete after 400 mm.

4. Conclusion

Here we demonstrate the self-healing property of
Bessel-like beams. We outline theoretically and

confirm experimentally that the shadow region is
dependent on where the obstruction is placed in the
field, with the self-healing distance increasing with
distance from the source plane.

Appendix

From the stationary phase approximation we can find
the mapping of rays from the initial plane r; to some
screen plane r; a distance z away, given by

Now consider the case where the central part of the
beam is obscured by an obstruction with half-width rg
which self-reconstructs after distance z,. We need to
solve the following two simultaneous equations for z,.:

T
V4 z
ri

z24 2

anr?_l + bmrf’_l + (9a)

=0

anr?™ 4 bmr Tt 4

(9b)

which describe the propagation of ray AC (see
Fig. 1) from the initial plane r; to (Eq. 9a)
the obstruction plane at z, and to (Eq. 9b) the
reconstruction plane at distance z, beyond z where AC
intersects with the optical axis OC. These equations
can equally be written in terms of the cone angle at
some distance z:

0+ an(r))™ "™ (20)™ " + an[—rF " (—rr 4+ 220)™ !
+ (=rr +220)"7 —an(20)""t = 0. (10)

Once this is solved for 6 (which will be a function
of z) the reconstruction distance can be found from
trigonometric arguments.
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