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We investigated the overlap relation of the free space Laguerre Gaussian modes to the corresponding
linearly polarized modes of a step index fiber. To maximize the overlap for an efficient coupling of the free
space modes into a fiber, the scale dependent overlap was theoretically and experimentally determined.
The presented studies paves the way for further improvement of free space to fiber optical connections.
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1. INTRODUCTION

Multi-mode fibers (MMF) are widely used in a plethora of ap-
plications such as optical sensors [1], fiber lasers [2] and optical
communication [3]. Beside the possibility of all-fiber devices
the connection between the fiber and its supported modes with
the free space modes is important to control the optical proper-
ties of the emerging beam or the excited field distributions at
the fiber input. The simplest connection is given by fibers with
an parabolic refractive index profile, typical of graded-index
fibers, whose modes can be described by Laguerre Gaussian
functions and are also solutions of the free space wave equation
[4]. However, in all other cases the fiber modes do not match
the free space solutions, resulting in no stable propagation of
the emerging beams in free space. Also, in general free space
modes are not suitable to excite selective pure fiber modes and
additional beam shaping techniques are required, such as the
use of computer generated holograms [5]. The main disadvan-
tages of such beam shaping techniques are the low efficiency
and resulting high transformation losses. For the common type
of step-index fibers, which show the same cylindrical symmetry
as in free space, it is possible to approximate the fiber modes by
suitable free space modes [6].
In this paper, we investigate the approximation of step-index
fiber modes by free space modes theoretically as well as exper-
imentally to evaluate the quality and the limitation of this ap-
proach. We determine the overlap relation between both mode
sets as a function of the scale parameter for the free space as well
as the fiber parameter, V. For the theoretical investigations we

develop an analytical solution for this overlap problem, which
allows us to study a wide parameter range. Additionally we
investigate experimentally the overlap relation by applying the
correlation filter method [7] and verify the analytical solution.
Our results will be of interest to studies where fiber to free space
links are necessary.

2. FUNDAMENTALS

At the transition from free space to fiber, and vice versa, one
always has mode coupling between the free space modes on
the one side and the fiber modes on the other. To achieve a
maximized coupling efficiency and a low crosstalk between
modes of different order, the scaling of the free-space beam has
to be adapted to the fiber.
For the case of a weakly guiding step index fiber the fiber modes
are given by the linearly polarized (LP) mode set. For that the
field distribution Flp(r, ϕ) is given by the solution of the scalar
Helmholtz-equation. Considering a cylindrically symmetric
fiber with core radius a, the solution is given by [4]

LPlp(r, ϕ) = Nlp

{
Jl(

νlpr
a )/Jl(νlp) for r<a

Kl(
µlpr

a )/Kl(µlp) for r≥ a
× eilϕ, (1)

where Nlp is a normalization constant, Jl denotes the lth order
Bessel-function of the first kind and Kl denotes the lth order
modified Bessel-function of the second kind, with νlp and µlp
the normalized propagation constants of the core and cladding,
respectively. The exact expression for the normalization constant
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is derived in the appendix. For the description of the LP modes
additional the fiber parameter V, which is defined as

V2 = ν2 + µ2 =
(

2π
λ a
)2

(n2
core − n2

cladding) (2)

is necessary to define the amount of modes and their propaga-
tion constants.
Since the step index fiber has cylindrical symmetry the adapted
free space mode set is given by the Laguerre-Gaussian (LG)
modes, which are the solutions of the paraxial Helmholtz-
equation in a cylindrically symmetric coordinate system. For
that the solution at the waist position is given by

LGpl(r, ϕ) = Mpl

(
2r2

w2
0

) |l|
2 L|l|p

(
2r2

w2
0

)
e
− r2

w2
0 eilϕ, (3)

where L|l|p are the associated Laguerre polynomials and Mpl =

1
w0

(
2p!

π(l+p)!

) 1
2 is a normalization factor.

Comparing the modes described by Eq. (1) and Eq. (3), we notice
that they show the same azimuthal dependence and a character-
ization of the radial order by the amount of root points in the
intensity distribution. Hence corresponding modes can be found
by choosing the same azimuthal order and the field functions
with the same amount of roots in radial direction.
Since both mode sets differ in the actual shape of the radial func-
tion and adaption of the scale parameters is needed for the best
possible matching of both mode sets. The matching of the scale
can be evaluated by the overlap relation

ηn =
∫∫

LGn(r, ϕ)LP∗n (r, ϕ)dA, (4)

where ηn defines the amount of power which is coupled from
on mode into the over at the transition between both mode sets.
It can reach values between one when the fields are perfectly
matched and zero for orthogonal fields. The amount of power
1− ηn which is not coupled into the desired mode goes in other
non-orthogonal, reflecting or radiating modes to satisfy energy
conservation.

3. ANALYTICAL ANALYSIS

In order to optimize the mode overlap we derive an analytical
express for the overlap relation as a function of the mode param-
eters. First we separate the problem into a core and a cladding
part, corresponding to the solution of the fiber modes Eq. 1. The
eilϕ term insures that the LP and LG modes must have the same
azimuthal index l. Hence to solve the overlap relation the radial
part of Eq. 4 becomes the important one.
For deriving the solution for the core region we used that the
Bessel function of the first kind can be written as a infinite sum

Jl(x) =
∞

∑
m=0

(−1)m

m!Γ(m + l + 1)

( x
2

)2m+l
(5)

with Γ the gamma function, whereas the Laguerre polynomial
can be written as it’s generating function

L|l|p (x) =
1
p!

(
d

dξ

)p 1
(1− ξ)|l|+1

exp
(
−xξ

1− ξ

)∣∣∣∣
ξ=0

. (6)

Using Eq. 5 and 6 for the description of the mode function Eq. 1
and Eq. 3 respectively the overlap of both modes set within the

core is given by

ηcore
lp =

N
Jl(ν)

M
p!

(√
2
)l ( d

dξ

)p 1
(1− ξ)|l|+1

(7)

×
∞

∑
m=0

{
(−1)m

m!Γ(m+l+1)

( νw
2a

)2m+l ( 1−ξ
1+ξ

)m+l+1

×
[
Γ(m + l + 1)− Γ(m + l + 1, a2

w2
1+ξ
1−ξ )

]}∣∣∣
ξ=0

, ∗

with Γ(a, z) the incomplete gamma function, N and M the nor-
malization constant of the LP and LG mode respectively, a the
fiber core radius and w the Gaussian radius.
For the cladding region a also a analytical representation for the
overlap integral can be found by a similar approach. For that we
make use of following relation between modified Bessel func-
tions of the second kind Kl and the modified Bessel functions of
first kind Il

Kl(x) = lim
n→l

π

2 sin(nπ)
[I−n(x)− In(x)] , (8)

whereas the In can be written as an infinite sum

In(x) =
∞

∑
m=0

1
m!Γ(m + n + 1)

( x
2

)2m+n
. (9)

Using Eq. (8) and (9) to describe the field distribution of the
fiber modes in the cladding region together with the previously
used representation of the LG modes given by Eq. (3) and (6) the
overlap of the cladding part becomes

ηcl
lp = lim

n→l

π

2 sin(nπ)

N
Kn(µ)

M
p!

(√
2
)n ( d

dξ

)p
(10)

× 1
(1− ξ)|l|+1

∞

∑
m=0

{
−1
m!

(µw
2a

)2m−l
(

1− ξ

1 + ξ

)m+1

Γ
(

m + n + 1, a2

w2
1+ξ
1−ξ

)
Γ(m + n + 1)

(µw
2a

)2n
(

1− ξ

1 + ξ

)n

Γ
(

m + 1, a2

w2
1+ξ
1−ξ

)
Γ(m− n + 1)


∣∣∣∣∣∣
ξ=0

.

The complete overlap relation of core and cladding is than given
by the sum of Eq. (7) and (10).

4. CORRELATION FILTER ANALYSIS

For a direct measurement of overlap relation between the LP
and the corresponding LG modes the correlation filter method
(CFM) was used. This performs all optically the integral relation
given by Eq. 4 and allows the experimental investigation of the
overlap between LP and LG modes [7].
The experimental setup used for the measuring of the scale de-
pending overlap relation is shown in Fig. ??. A plane wave has
illuminated a phase only spatial light modulator (SLM). Apply-
ing the phase only coding technique proposed by Arrizòn et al.
[? ] enables the shaping of arbitrarily scaled LG modes. The
generated LG modes were then imaged by a telescopic 4f setup
onto the CF, which had the field distribution of the LP modes im-
plemented as the transmission function. After an optical Fourier
transformation with a lens in 2f configuration the correlation
signal was accessible at the CCD sensor, which was proportional
to the overlap relation between both modes.
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CFPW SLM

Fig. 1. The experimental setup for the measurement of the
overlap relation between LP and LG modes, where the LG
modes are generated with the SLM and decomposed by the
CFM. PW - plane wave; SLM - spatial light modulator; L1−3 -
lenses; CCD - camera

Since the encoding condition of the generated fields requires
the normalization to unit amplitude the energy conservation is
violated by scaling the LG mode size. To ensure the comparabil-
ity of the results, a correction parameter for each encoded field
was introduced, given by the maximal amplitude αmax of the
orthonormal field distribution. An appropriated power scaling
and a correction of the measured intensities Imes was achievable
by subsequently applying of the correction coefficient for to a
normalized intensity Inorm = Imessα2

max [5]. As the last step the
measured and corrected overlap values has to be normalized to
one, which is given by the overlap between the LP mode and
itself. For that the LP mode encoded in the correlation filter was
generated with the SLM and the measured overlap relation was
used to normalized the relations obtained for the different scaled
LG modes.
This procedure for the generation of dynamic scaled LG modes
and the evaluation of the overlap regarding a fixed scaled set
of LP modes enabled the measurement of the scale depending
overlap relation between both mode sets.

5. RESULTS

We applied the correlation filter method onto a LP mode set with
a underlying V parameter of 4.72 resulting in the appearance of
six guided modes. In Fig. 2 resulting scale depending overlap
are depicted together with the theoretically curve calculated
by our analytical solution. It can be seen that for all LP modes
of the investigated example the corresponding LG modes are
good approximation for a ratio between beam with and core
radius of 0.75. In this example the overlap relations are about
0.99 for the LP01, LP11 and, LP21 modes and about 0.98 for the
LP02 mode. Comparing the scale depending overlap relations of
the four fiber modes show explicit differences between them.
Noticeable are the difference in the decrease of the overlap
for not ideal scaled LG modes, whereas for the fundamental
mode LP01 the overlap falls relatively slow, while the higher
order modes show a obvious stronger decline. Additional
the optimal ratio between beam width and core radius, for
a maximized overlap, changes slightly for the investigated
modes from 0.70 for the LP21, see Fig. 2 (d), up to 0.81 for the
fundamental mode LP01, see Fig. 2 (a). Also is the maximal
reachable overlap for the higher order radial LP02 mode, see
Fig. 2 (b), with about 0.98 slightly lower compared to the other
modes. Since the comparison between the measurement results
and the theoretical curved achieved by the analytical solution
showed a very high compliance and proof the reliability of our
method, we used the theoretical values to study further the
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Fig. 2. Comparission between theoretical and experimental
determined overlap relation

influences of the mode order or the V parameter on the overlap
relation.

As seen in Fig. 2 the overlap relation change in shape, max-
imum position and maximum value for different modes. This
means that there is always an optimal match, based on the funda-
mental Gaussian beam size, for the corresponding LG mode set.
Applying our analytical model we have determined the scale
depending overlap for different higher order mode for a fiber
with V = 50 to demonstrate some effects. As shown in Fig. 3
for higher order radial modes with azimuthal index l = 0 and
higher order azimuthal mode with radial index p = 1, the posi-
tion of the best fitting beam size shifts to smaller Gaussian beam
widths with increasing mode order. This behavior becomes intu-
itive since the beam width of LG modes of higher order follows
w = w0

√
2p + l + 1, with w0 the Gaussian width. On the other

side the LP modes are well confined within the core resulting in
a decrease of the needed Gaussian width to match the scale of
the corresponding modes. A second effect which can be seen is
that the scale region with high overlap shrinks with increasing
mode order and a good adaption of the scale parameters become
more crucial. Especially for modes of higher radial order the
maximal achievable overlap between both mode sets decrease
with increasing mode order indicating the limits of the applied
approximation. Hence the approximation of LP modes of the
step index fiber by LG modes can not extend for arbitrary higher
order modes and has to be considered in possible application
with respect to the acceptable coupling losses introduced by this
mismatch. Nevertheless this results demonstrate the ability to
approximate lower order LP modes efficiently by LG modes.
Additionally we investigated the influence of the underlying
V-parameter on the quality of our suggested approximation.
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Fig. 3. Size depending overlap relation for modes with increas-
ing radial and azimuthal order. The trend of the best fitting
beams size is highlighted by the green line
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Fig. 4. The V parameter dependence of the overlap relation
between LP corresponding LG modes. (a) The best relation be-
tween Gaussian beam width and core radius for a maximized
overlap and (b) the maximal achievable overlap in depen-
dence of V

For that we have calculated the best fitting beam size and the
maximal achievable overlap for different modes as a function
of the V parameter as shown in Fig. 4. In Fig. 4 (a) the change
of the best fitting beam size is depicted. It can be seen that for
low V values, in case of LP01, or V values close to the cutoff
of a mode the size relation becomes larger one indicating the
bad confinement of the mode inside the core. For increasing
V values the relation starts rapidly to decrease. A second ef-
fect occurs for week confined LP modes in fact that the overlap
relation becomes relatively low and increases with increasing
distance from the cut off up to some maximal value. Afterwards
the highest achievable overlap starts to decrease, whereby the it
drops faster for with increasing mode order.
Finally we have also compared the intensity profiles for the best
fitting LG modes with the corresponding LP modes. Four ex-
amples for a fiber with a V parameter of 4.72 can be seen in
Fig. 5, where the different mode profiles are normalized to unit
intensity for better comparability. It can be clearly seen that
the conformity decrease with increasing mode order. Figure 5
(a) illustrating the fundamental modes LP01 and LG00 respec-
tively are nearly matched regarding their radial behavior wheres
the distinctions become more significant for the higher order
modes. For modes of higher azimuthal order like the LP11 and
LG01 mode respectively, depicted in Fig. 5 (b), the maximums
of ring like intensity pattern are slightly displaced. Also for
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Fig. 5. Comparison of the intensity profiles between the LP
modes and the corresponding LG modes for the maximized
overlap.

higher order radial modes structural differences occur like the
displacement of the roots and the side lobe maxima, see Fig. 5 (c).
This distinctions become more relevant with increasing mode
order as shown in Fig. 5 (d) for the higher order radial as well as
azimuthal modes LP12 and LG21 respectively, where especially
the side lobes show pregnant deviations resulting in a lower
achievable overlap relation.

6. CONCLUSION

We have shown that the LP modes of a step-index fiber can
be approximated by an scale adapted set of LG free space
modes. The have proof the validity of this approximation
experimentally for a example fiber with a V parameter of
4.72. Further we used a analytical solution of the overlap
problem to investigate the limits of the approach for a wide
spectrum of LP modes and V parameters. We have found that
the approximation can used within certain limits. In order to
provide high overlap the LP modes have to be far from there
cutoff condition and of low radial order. Additionally the best
fitting beam size change for each corresponding mode pair. For
the few mode case like the example fiber, this dependence is
week and a good approximation of all modes can be found
for appropriated adapted LG mode set. In the case of highly
multi mode fibers the used LG mode set has to be optimized
individually for each corresponding mode pair or at least for
different groups of them.

7. ACKNOWLEDGMENT

The authors thank Darryl Naidoo for technical assistance and
Sigmund Schröter for fabrication of the correlation filter.

8. APPENDIX

In order to evaluate the overlap relation between the LG and LP
modes we need also a analytical expression for the normaliza-
tion constant Nlp in Eq. (1). For that we use the normalization
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condition
1 =

∫∫
LPlp(r, ϕ)LP∗lp(r, ϕ)dA (11)

and gives

N2
lp =

1
2π


∫ a

0

[
Jl(

νlpr
a )
]2

rdr

|Jl(νlp)|2
+

∫ ∞
a

[
Kl(

µlpr
a )
]2

rdr

|Kl(µlp)|2


−1

(12)

The integrals are evaluated to be

2π
∫ a

0

[
Jl(

νr
a )
]2 rdr =

πa2

νlp

[
νJl(ν)

2 − 2l Jl(ν)Jl+1(ν) (13)

+νJl+1(ν)
2
]

and

2π
∫ ∞

a

[
Kl(

µr
a )
]2 rdr = lim

n→l

π2a2

4µ2 sin(nπ)2

{
πµ2 I1−n(µ

2) (14)

+ 2πµI1−n(µ) [−µIn−1(µ) + nIn(µ)]

− πµI−n(µ)
2 + π [2nµIn−1(µ)In(µ)

−(4n2 + µ2)In(µ)
2 + µ2 I1+n(µ)

2
]

+ 2µI−n(µ) [2nK1−n(µ) sin(nπ)

+πµIn(µ)]} .

with In(x) being the modified Bessel function of the first kind.
Inserting Eq. (13) and Eq. (14) into Eq. (12) yields the analytical
expression for the normalization constant for the solution of the
overlap relation for the core and cladding region Eq. (7) and
Eq. (10), respectively.
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