Effect of Ageing Treatment on the Microstructure and Hardness of the Ti6Al4V Alloy

MASETE Stephen1,2,a *, MUTOMBO Kalenda1,2,b SIYASIYA Charles2,c and STUMPF Waldo2,d

¹Materials Science and Manufacturing, Council for Scientific and Industrial Research (CSIR), Pretoria, South Africa ²Department of Materials Science and Metallurgical Engineering, University of Pretoria, Pretoria, South Africa ^aSMasete@csir.co.za, bKMutombo@csir.co.za, cCharles.Siyasiya@up.ac.za, <u>dWaldo.Stumpf@up.ac.za</u>

Abstract

The effects of ageing temperature, time and cooling medium on the microstructure and hardness of a solution treated Ti6Al4V alloy were investigated. The furnace cooling after ageing for 0.5 hours gave a homogenous structure with higher hardness values than the solution treated and water quenched Ti6Al4V alloy. Increasing the ageing time to 2 hours reduced the alloy hardness. Ageing at temperatures between 500 and 700₀C, followed by furnace cooling, led to homogenously distributed α - and β -phases within a fully martensitic matrix leading to improved hardness. A heterogeneous structure with a high variation in microhardness was revealed when ageing at 800 and 900₀C.