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Abstract. One of the challenges in the Software Development Life Cy-
cle (SDLC) is to ensure that the requirements that drive the development
of a software system are correct. However, establishing unambiguous and
error-free requirements is not a trivial problem. As part of the require-
ments phase of the SDLC, a conceptual model can be created which de-
scribes the objects, relationships and operations that are of importance
to business. Such a conceptual model is often expressed as a UML class
diagram. Recent research concerned with the formal validation of such
UML class diagrams has focused on transforming UML class diagrams
to various formalisms such as description logics. Description logics are
desirable since they have reasoning support which can be used to show
that a UML class diagram is consistent/inconsistent. Yet, even when a
UML class diagram is consistent, it still does not address the problem
of ensuring that a UML class diagram represents business requirements
accurately. To validate such diagrams business analysts use a technique
called scenario testing. In this paper we present an approach for the
formal validation of UML class diagrams based on scenario testing. We
additionally provide preliminary feedback on the experiences gained from
using our scenario testing approach on a real-world software project.

1 Introduction

One of the most difficult challenges of the Software Development Life Cycle
(SDLC) is to ensure that the business requirements are correct [1]. The later
errors are detected during the SDLC, the more costly they are to correct [2]. In
this paper we illustrate how the formalization of scenario testing can be used to
create UML class diagrams that accurately represent the business requirements.

The definition of a scenario test is based on the definitions of a use case
and a scenario. A use case is a set of actions performed by a software system
to produce an observable result. Typically, a use case consists of a number of
scenarios [3][4][5]. According to Gomaa “[a] scenario is one specific path through
a use case”. The main scenario of a use case describes the most common path
through a use case and alternative scenarios describe the less-frequent paths
through a use case [4]. A test based on a scenario is called a scenario test.

Depending on the complexity of the requirements, testing even a single sce-
nario or group of scenarios can still be error prone. Being able to apply for-
mal reasoning procedures to a conceptual model provides the benefit of having
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both consistencies and inconsistencies illuminated. As mentioned, UML class di-
agrams are often used to represent the conceptual model, and a formal means
to describe such models is therefore desirable. Indeed, several means exist for
describing UML class diagrams formally. In this paper we focus our attention
on formal ontologies based on OWL 2. OWL 2 has a model theoretic semantics
that corresponds to the description logic (DL) SROIQ(D) [6].

Description logics (DLs) are decidable and complete fragments of first-order
logic that are specifically designed for the conceptual representation of an appli-
cation domain in terms of classes and relationships between classes [7, 8]. A DL
knowledge base generally consists of the TBox and the ABox. A TBox is used
to define concepts and relationships between concepts and an ABox is used to
assert knowledge regarding the domain of interest, i.e. that an individual is a
member of a concept [9]. Cali, et al. [7] and Berardi, et al. [8] laid the foundation
for describing UML class diagrams in DLs. Cali, et al. described UML class dia-
grams in the DL DLR [7]. Berardi, et al. extended this work by describing UML
class diagrams in the DLs DLRifd and ALCQI [8]. Recent research described
UML class diagrams in OWL 2 [10].

Research to date has shown how to transcribe UML class diagrams into
formal ontologies, which enables modelers to check their models for consistency
[7, 8, 10]. Yet, even when a UML class diagram is consistent, it may not represent
the business requirements accurately. Our contribution is to present a scenario
testing approach using formal ontologies to validate that a UML class diagram
represents the business requirements accurately. Our scenario testing approach
is valuable because it adds formal reasoning procedures to the well-established
industry practice of scenario testing [3, 4].

In addition to considering UML class diagrams, our scenario testing approach
specifically includes UML object diagrams for representing different scenarios.
The UML specification is not overly prescriptive and allows objects to be present
in UML class diagrams and class definitions to be present in UML object dia-
grams [11]. In this paper we make the assumption that UML class diagrams
only contain classes while UML object diagrams only contain objects. With this
assumption in place, we note that, loosely speaking (due to the UML specifica-
tion not being restrictive), a TBox corresponds with a UML class diagram and
an ABox corresponds with a UML object diagram. Prior research on reasoning
on UML class diagrams using DLs has focused on reasoning on UML class di-
agrams (resp. TBoxes) alone whilst our approach includes reasoning on UML
object diagrams (resp. ABoxes) [7, 8, 10].

In this paper we do not provide detail introductions on UML class diagrams
[3, 12, 11], DLs [9], OWL 2 or the transformation of UML class diagrams to
OWL 2 [13], but instead refer the reader to the references mentioned. Later
in the paper we will make use of the ontology tool Protégé [14] which we also
assume the reader is familiar with.

We provide an example of a subdomain from the hospitality industry in
Sect. 2. In Sect. 3 we explain our scenario testing approach, which we illustrate
via the example provided in Sect. 2. We give an evaluation of scenario testing



in Sect. 4, with a discussion of the benefits and challenges of scenario testing,
and present feedback on a case study wherein we subjected a real-world software
project in the hospitality industry to scenario testing. In Sect. 5 we review re-
lated research and clarify the gap addressed by our research. Finally, we give a
summary of our findings, and make suggestions for further research, in Sect. 6.

2 Example Business Domain

The example business domain we describe here is a much simplified version of
the real-world software project that has been done for a South African hotel
group where scenario testing has been employed to detect and rectify errors
during the requirements phase of the SDLC. In the hospitality industry the
business requirements around calculating the rate that needs to be charged when
a reservation is made, generally referred to as a room rate, can be extremely
complex. Before a room rate can be calculated, the different configurations that
are used to determine these rates have to be specified. In this example, we will
focus on the model representing rate configurations. In the following we give a
brief description of the relevant concepts and business constraints.

The basic rate that is applicable to a room can be determined in three differ-
ent ways. Firstly a flat rate can be charged across all rooms in the hotel. Secondly
the rate can be charged based on the number of guests who form part of the
booking. In the hospitality industry this is often referred to as PAX. Lastly the
rate can be determined based on the kind of room that is booked, i.e. single
room or suite.

The basic rate that applies to a room can be adjusted based on additional
criteria that apply to a room. For instance a different rate will apply when two
rooms are booked that are connected by an interleading door. When a reserva-
tion is made through a partner network (commonly referred to as a channel) a
discounted rate may apply. Similarly when a guest makes a block booking, say
of more than 10 rooms per night, a different rate may apply. In order to keep
our example simple, we will assume that basic rate charges are always adjusted.

Additional business rules are that PAX charges can only be adjusted by
channel criterion, while a room type charge can be adjusted by block booking
or channel criteria. Hotel charges can be adjusted by any criteria. Failure to
adhere to these business rules will give rise to opportunities for fraud. In Fig.
1 we present the UML class diagram that was initially created to represent the
rate configuration business requirements.

3 Scenario Testing Approach

In this section we provide an overview of the scenario testing approach we
propose (3.1) and we explain the different techniques in which scenario tests
can be applied using formal ontologies (3.2). We show how scenario testing can
be applied to the example in Sect. 2 to refine the model (3.3) and we provide
example OWL 2 translations (3.4).
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Fig. 1. Initial model of rate configuration

3.1 Overview of Approach

The steps a modeler will take in applying scenario testing are the following:

1. Based on the requirements gathered, the modeler will create a UML class
diagram similar to the diagram depicted in Fig. 1.

2. The UML class diagram can be translated to OWL 2 and checked for con-
sistency using Protégé. If any inconsistencies are found, the modeler must
go back to step 1 and correct the model. If no inconsistencies are found, we
know that the model is consistent and we continue to step 3.

3. We still need to determine whether the model represents the business re-
quirements correctly and hence we apply the scenario testing techniques we
introduce in Sect. 3.2. If a scenario test shows that the business requirements
are not met, the model needs to be corrected and we therefore go back to
step 1.

4. Step 3 is repeated until there are no further scenario tests to apply. This
completes the scenario testing process.

Existing research has focused on checking the UML class diagram (resp. in
DLs the TBox) for consistency. Scenario testing using formal ontologies extends
existing research by checking consistency of UML object diagrams (resp. ABox
in DLs) for the UML class diagram that has been created in step 1.

3.2 Scenario Testing Techniques

We define three techniques for doing scenario testing: consistent scenario tests,
inconsistent scenario tests and classification scenario tests. Each scenario test
corresponds with an UML object diagram (resp. ABox in DLs).

Consistent Scenario Tests A scenario that is allowed in a particular business
context can be tested for consistency.

Inconsistent Scenario Tests Certain scenarios may not be allowed in a given
business context and therefore we want to test that these scenarios are indeed
inconsistent. Inconsistent scenarios are useful to ensure that the business
rules are defined sufficiently to disallow such scenarios.



Classification Scenario Tests When different classes in a UML class diagram
share the same attributes and associations, it could indicate the presence of
redundancies or ambiguities. These concerns can be investigated by applying
classification to object instances with the appropriate associated features.

3.3 An Example of applying Scenario Testing

It is trivial to confirm that the model in Fig. 1 is indeed consistent. Even so, the
model allows business scenarios that should be disallowed. To make the scenarios
of the business requirements explicit, we have compiled them in Table 1. Each
row in the table represent a possible rate configuration with the last column in
the table indicating whether the rate configuration should be allowed or not.

Based on these scenarios we have redesigned the rate configuration model
in Fig. 2 to accurately represent the rates business requirements. The refined
model follows intuitively from the scenarios in Table 1 as can be seen for ex-
ample from the class InterleadingHotelRateConfig which corresponds with
the allowed rate configuration of row 1. Similarly all allowed rate configurations
are made explicit in the model by adding classes that represent the specific rate
configurations.

Table 1. Allowed/disallowed rate configuration scenarios

No Criteria Type Charge Type Allowed or
Disallowed

Interleading Channel Block booking Hotel PAX Room type Scenario

1 X X Allowed
2 X X Allowed
3 X X Allowed
4 X X Disallowed
5 X X Allowed
6 X X Disallowed
7 X X Disallowed
8 X X Allowed
9 X X Allowed

3.4 Example OWL 2 Translation

Translating the UML class diagram into OWL 2 is based on the work done by
Berardi et. al. [8] and Zedlitz et. al. [10]. The only UML class diagram feature
that we are using in Fig. 2 which is not addressed by either Berardi et. al. or
Zedlitz et. al. is attribute redefinition. For a detailed discussion on the exact
semantics we refer the reader to the paper by Bildhauer [12]. It is important to
note that according to the UML specification an attribute can be represented by
an association [11], a fact which is indeed confirmed by the UML class diagram
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Fig. 2. A model that represents the business requirements of rate configuration accu-
rately

ObjectProperty: hotelChargeType

SubPropertyOf: chargeType

Domain: BlockBookingHotelRateConfig or ChannelHotelRateConfig

or InterleadingHotelRateConfig

Range: HotelChargeType

Fig. 3. The OWL 2 translation of the hotelChargeType attribute



translation to DLs [7, 8, 10]. For illustration purposes, we provide the OWL 2
translation of hotelChargeType in Fig. 3.Scenarios are defined as assertions on individuals. As an example we consider
the disallowed scenario where a rate configuration is defined as consisting of an
InterleadingCriterionType and PAXChargeType in Fig. 4.

Individual: interleading

Types: InterleadingCriterionType

Individual: pax

Types: PAXChargeType

Individual: interleadingPAXRateConfig

Types: RateConfig

Facts: interleadingCriterionType interleading, paxChargeType pax

Fig. 4. The OWL 2 translation of the hotelChargeType attribute

The main concern we have with the model in Fig. 1 is that it will not prevent
disallowed scenarios. Fig. 5 shows the result of running the reasoner on the refined
model after setting up the disallowed scenario of Fig. 4.

Fig. 5. Protégé explanations for disallowed scenario of Fig. 4

4 Evaluation

Here we discuss the benefits and limitations of scenario testing (4.1) as well as
the benefits the use of formal ontologies brings to scenario testing (4.2). We had
the opportunity to use scenario testing on a project in the hospitality industry
on which we provide feedback (4.3).

4.1 Benefits and Limitations of Scenario Testing

Using scenarios to test the consistency/inconsistency and completeness of a
domain of the business has a number of advantages.

Capturing requirements via scenarios, and validating the captured require-
ments through scenario testing, are practices that are well-established within the
software industry [3]. Applying formal reasoning procedures to scenario testing
reduces the margin of error while being closely aligned with how practitioners
work. This, in turn, reduces the learning curve of adopting our approach.

Limiting the checking of UML class diagrams to a scenario test, or group
of scenario tests, allows for a better understanding of the nature of inconsisten-
cies: Explaining why a specific scenario test fails is more readily understood by
stakeholders than explaining mathematical logic concepts such as consistency.



A limitation of a scenario testing is that the resulting model will only be as
good as the scenarios that have been considered. If, for example due to time
constraints, only a subset of scenarios are considered, the possibility exists that
some disallowed scenarios, redundancies or ambiguities may not be discovered.

4.2 Benefits of using Formal Ontologies for Scenario Testing

There are a number of benefits gained from the use of formal ontologies for
scenario testing. Firstly, scenario testing relies on traditional testing approaches
which have no formal reasoning support. Thus, traditional testing approaches can
at most identify problems, but they cannot show their absence. Formal ontologies
are equipped with formal reasoning procedures, which can prove consistency.

Secondly, based on the reasoning procedures used, it is possible to provide
proofs of why a scenario test is consistent or inconsistent. The availability of
such proofs enables modelers to know that their models are consistent for the
correct reasons rather than merely knowing that their model is consistent.

Thirdly, logical entailment can be used to gain deeper insight into the implicit
consequences of the model. As an example, when a scenario that should be
allowed is inconsistent, logical entailment can shed light on the cause of the
inconsistency. In the absence of logical entailment, stakeholders can only guess
at the reasons for the inconsistency.

Fourthly, due to the mathematical basis of formal ontologies, they do not
suffer from the ambiguities that plague the UML specification [5]. Indeed, the
formal ontology translation of UML class diagrams can be used to make the
intended meaning of a UML class diagram explicit.

Fifthly, formal ontologies make it possible to validate the business specifi-
cation before the business specification is implemented in software. Discovering
and remedying defects during the requirements phase is more cost-effective than
during any subsequent phase [2].

Lastly, in our discussion we represented business rules in a UML class diagram
which we translated to OWL 2 on which we applied our scenario tests. The value
of UML is that it provides a graphical representation that is easier to comprehend
than a textual description. However, it is completely viable to apply scenario
tests directly on an ontology without using UML at all.

4.3 Adoption and Preliminary Feedback

We have been able to apply our scenario testing approach on a real world software
project in the hospitality industry. A business analyst (BA) was given instruction
in translating UML class diagrams to Protégé. The BA and client started with
an initial UML class diagram which was translated into OWL 2. Using Protégé
they set up a number of scenario tests which quickly showed that the initial
UML class diagram did not represent the required business rules adequately.
Interestingly, at this point they abandoned the UML class diagram in favour
of Protégé. Occasionally they drew portions of the UML class diagram to help



guide their thinking. In this manner they incrementally created the conceptual
model and validated it with a number of scenario tests. Once they completed the
conceptual model in Protégé, the BA translated the classes and relationships to
a UML class diagram.

At the time of writing the resulting conceptual model consisted of 62 classes
which have been validated by 100 scenario tests. The scenario tests consisted of
43 valid, 47 invalid and 10 classification scenario tests. The BA used the resulting
UML class diagram to explain the business logic to the development team. Both
developers and testers frequently referred to this UML class diagram throughout
the development process.

This experience alerted us to opportunities for improvement. Firstly, the
availability of tools to convert between UML and OWL 2 will reduce the effort
of translation. Zedlitz, et al. [10] have suggested such a tool, but it will need to be
extended to fit the needs of scenario testing. Secondly, scenario testing has been
instrumental in providing a clear understanding of the business requirement on
this project, which benefited both developers and testers. However, the model
relied on multiple inheritance which cannot be represented directly in many
programming languages [5] and it is not clear how to translate notions like
{disjoint, complete} into code. Guidelines in this regard will be valuable.

5 Related Research

Various approaches exist for validating UML class diagrams based on generated
instances [15–17]. Cabot, et al. [16] encodes UML class diagrams as constraint
satisfaction problems (CSP) and then generates instances of the model using
their UMLtoCSP tool which passes the instances to a constraint solver for ver-
ification. UMLtoCSP generates a UML object diagram of the object instances
that satisfies the UML class diagram. Soeken, et al. [17] follow a similar approach
using C++ code to generate instances and a SAT solver to do validation. For
both approaches decidability is achieved by definition of a finite solution space
and therefore both approaches are decidable, but incomplete. That is, results
are only conclusive when a solution is found. When a solution is not found, a
solution may still exist in some other finite solution space [16, 17].

Braga, et al.[15] applies scenario testing to OntoUML conceptual models
which are translated into Alloy, a logic based language. OntoUML is a UML
profile which extends the UML class diagram metamodel with Unified Founda-
tion Ontology (UFO) elements. UFO defines the ontological foundations for the
most fundamental concepts in structural conceptual modeling [15]. Alloy is de-
fined as “a structural modeling language based on first-order logic, for expressing
complex structural constraints and behavior” [18]. In the approach of Braga, et
al. the Alloy analyzer is used to automatically generate instances and counterex-
amples of the model which are presented to the modeler [15]. The Alloy logic is
based on first-order logic (and in particular relational calculus) which gives rise
to undecidability. Tractability is achieved by specifying a scope, which means a
counterexample may possibly be found given a larger scope [18].



Our approach is different in the following ways. Firstly, since OWL 2 is based
on the DL SROIQ(D), reasoning on OWL 2 is decidable and complete [19].
Thus, theoretically it is possible to get an answer on whether a knowledge base
is consistent, but due to tractability concerns there is a practical limit to the size
of the knowledge base on which reasoning is feasible [6]. Secondly, we rely on the
presence of a domain expert for guiding the definition of scenario tests. None
of the approaches cater for the explicit definition of scenario tests [15–17] and
hence, there is no way to ensure that scenario tests with high business impact
are indeed considered. Furthermore, even when a model is consistent, it may
not represent the business requirement accurately. The explicit specification of
scenario tests can help alert the modeler to this occurrence.

6 Conclusion

In this paper we showed that our formal verification approach based on scenario
testing can be used to support and supplement the development of accurate
requirements represented in UML class diagrams. The benefit of this is that
some ambiguous and incomplete requirements could be detected before system
development commences.

Initial feedback based on a real-world software product looks promising; but
some challenges remain. Guidelines are needed on how to accurately translate
the conceptual model into code. Furthermore, the availability of tools, for doing
translations between UML class diagrams and OWL 2, will greatly improve the
user experience.

The fact that scenario testing is based on object instances rather than classes
alone, presents new opportunities for representing UML class diagram features
in formal ontologies. In related research we are investigating translating identity
constraints on UML class diagrams using Easy Keys [20] for use in scenario
testing. It will be interesting to explore what other UML class diagram features
can benefit similarly.
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