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Abstract. Optical coherence tomography (OCT) is a high-resolution imaging technology capable of capturing a
three-dimensional (3-D) representation of fingertip skin. The papillary junction—a junction layer of skin contain-
ing the same topographical features as the surface fingerprint—is contained within this representation. The top
edge of the papillary junction contains the topographical information pertinent to the internal fingerprint.
Extracting the internal fingerprint from OCT fingertip scans has been shown to be possible. Currently, acquiring
the internal fingerprint involves manually defining the region containing it. This manner of definition is inefficient.
Perfect knowledge of the location of the papillary junction is hypothesized as achievable. This research details
and tests a k-means clustering approach for papillary junction detection. All tested metrics are of a standard
comparable to the measured human error. The technique presented in this research is highly successful in
detection of the location of the papillary junction. Furthermore, high-quality internal fingerprints are acquired

using the coordinates obtained. © 2015 SPIE and IS&T [DOI: 10.1117/1.JEI.24.2.023027]
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1 Introduction

Digital privacy and security are constant concerns that need
to be addressed by inventive and improved biometric solu-
tions for access control. Improving on the established and
widely accepted biometric of fingerprints is a means to
this end. Fingerprints have the advantages of universality,
high distinctiveness, and good false rejection and acceptance
rates. However, conventional acquisition of fingerprints
results in a two-dimensional (2-D) image of the surface
fingerprint.! The security and reliability of this type of rep-
resentation are known to be lacking.'> Essential progress
thereupon should result in the mitigation of any associated
limitations.! These limitations are as follows:

1. Distortion: owing to the elasticity of the skin and
varying pressure during the acquisition process, sur-
face fingerprints are subject to distortion.

2. Damage: any surface skin damage affects fingerprint
quality and thus reduces matching capability. The
fingerprint is exposed to varying degrees of wear and
tear. For instance, individuals employed in heavy duty
industries are often without usable fingerprints.

3. Security: owing to the 2-D representation of a surface
fingerprint scan, fingerprint spoofing is an uncompli-
cated task and requires a few inexpensive household
items only.>*

The acquisition and use of an internal fingerprint can mit-
igate these disadvantages. Between the epidermis and dermis
is an intermediary layer of skin known as the papillary junc-
tion. This junction grows with ridges and valleys to increase

*Address all correspondence to: Luke Nicholas Darlow, E-mail: LDarlow @csir
.co.za
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the surface area contact between the epidermis and dermis.
These ridges and valleys propagate to the surface, resulting
in what is known as the surface fingerprint.’ The emergence
of this structure in the papillary junction gives rise to an inter-
nal fingerprint. The direct correlation between the surface
and the papillary junction results in identical topographical
features (ridges and valleys). Thus, the papillary junction and
surface fingerprint have the same structure.

The internal fingerprint is robust against distortion, dam-
age, and spoofing.® The imaging of subsurface skin layers is
accomplished with a technology known as optical coherence
tomography (OCT).”!°

Proof-of-concept extraction of the internal fingerprint
from OCT scans was accomplished by Bossen et al.,® while
da Costa et al.!! strengthened this hypothesis and also evalu-
ated fingerprint deformation using OCT. However, the pres-
ence of speckle noise in OCT scans'”> makes the process of
extracting the internal fingerprint challenging and also
reduces the quality of the fingerprint itself.

Existing techniques for internal fingerprint acquisition
from OCT scans often involve simple curvature normaliza-
tion processes prior to en face slice averaging over a man-
ually defined region.”®!® The process of averaging over this
region makes an unnecessary assumption: vital fingerprint
information (i.e., ridge and valley undulation) is contained
within this region. In cases where this assumption holds
true, the manually defined region containing the internal
fingerprint information is excessive, and thus contains
peripheral information that serves to obscure the clarity, con-
trast, and quality of the internal fingerprint.

The problem addressed in this research is the task of com-
prehensively and accurately defining the region within which
the internal fingerprint resides. Since the undulations of the
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top-edge of the papillary junction best describe the internal
fingerprint, detection thereof is paramount. Papillary junction
detection is accomplished through the use of k-means cluster-
ing, speckle noise reduction, and contrast enhancement.

Features are defined to describe local maxima within
one-dimensional (1-D) en face depth profiles (also known
as A-lines) of an OCT scan. Various clustering algorithms
were assessed prior to choosing k-means clustering for its
simplicity, robustness, and relevance to the data. The result
of clustering is a single cluster that describes the location of
the center of the papillary junction throughout the OCT
scan volume. This is then used to extract smaller image
regions in which the papillary junction top-edge can be
found. These regions are enhanced and binarized prior to
edge detection—a process where the papillary junction
top-edge is found.

This paper is structured as follows. Relevant literature is
reviewed in Sec. 2. The method used to detect the papillary
junction is outlined in Sec. 3. The experimental setup for
testing the performance of the proposed approach is detailed
in Sec. 4, while the corresponding results are presented in
Sec. 5. Conclusions are drawn and future work is suggested
in Sec. 6.

2 Related Work

OCT is a tool for the three-dimensional (3-D) imaging of
light scattering media such as biological tissue. The drive
behind the consistent improvement of OCT technology is
undoubtedly medicine. Huang et al.'* introduced OCT as
an emerging technology and highlighted its application in
medicine. Although an advantage over other medical imag-
ing technology is the relative hardware simplicity and lower
cost of OCT, broad use OCT technology remains relatively
expensive. However, its use is diversifying. Other applica-
tions of OCT include biometrics, forensics, and document
security,® 1015

Liu and Chen’ captured the internal fingerprint using
OCT and showed its direct relationship with the surface
fingerprint. They made use of Doppler OCT for liveness
detection. A live finger has blood flowing through it and
can be detected in this fashion. Bossen et al.® showed the
feasibility of OCT as a technology for extracting the internal
fingerprint. They gave examples of extracted internal finger-
prints and tested them against a constructed database.
When compared with OCT fingerprints with similar charac-
teristics, within the database, a false rejection rate of 5%
was achieved. This was attributed to the small surface area
scanned. However, the OCT fingerprints were not tested
against corresponding surface fingerprints and quantitative
correlation was not established. They identified the need
for improved papillary junction segmentation. Zam et al.’
also extracted internal fingerprints from OCT scans and
showed that the capillary pattern yields another biometric
and a possible liveness indicator.

An en face OCT system was developed by Nasiri-Avanaki
et al.'® This system was able to image the fingertip with
dynamic focus, extracting a single en face slice to represent
the internal fingerprint. This allowed for direct and fast
acquisition. Harms et al.' also made use of en face OCT
technology for fast internal fingerprint acquisition.
However, the acquired internal fingerprint is not found at
a fixed depth and is not uniformly straight, resulting in detail
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loss. This technique is efficient in terms of acquisition, but
negates an important feature of OCT scans: the 3-D repre-
sentation of fingertip skin. Acquiring a 2-D fingerprint rep-
resentation from a 3-D scan allows for the development and
use of liveness detection. Therefore, the research undertaken
here endeavors to solve the issue of internal fingerprint zone
detection in 3-D OCT fingertip scans.

OCT has also been used for liveness detection and arti-
ficial fingerprint detection. Liu and Buma'’ showed that
spectral domain OCT clearly maps eccrine glands in a finger-
tip. This mapping provided another level'® of fingerprint bio-
metrics, as well as a means of safe-guarding against spoof
attacks. They also provided evidence that the internal finger-
print is present in the papillary junction, but never attempted
to locate the associated region accurately.

Cheng and Larin'® postulated that 3-D visualizations of
fingertip skin OCT scans can be used for artificial fingerprint
detection and proposed an artificial fingerprint recognition
system. They assumed that fake fingerprints exhibit purely
homogeneous depth-resolved 1-D signal characteristics,
and real fingertip skin exhibits highly inhomogeneous, yet
repetitive, signal characteristics. Autocorrelation analysis
was then used to identify fake fingerprints.

A later study was conducted by Meissner et al.”” to dem-
onstrate the capability of OCT in liveness detection. Spoof
detection was twofold: (1) qualitative identification of an
additional layer and (2) identification of sweat glands.
This study showed the superior capability of OCT-based
liveness detection when compared with conventional finger-
print liveness detection. Manual liveness estimation on OCT
fingertip scans outperformed their automated approach.

Dubey et al.'> demonstrated the usefulness of OCT in
detecting latent fingerprints on poorly reflecting samples.
Conventional latent fingerprint acquisition usually involves
a physical or chemical process that may damage or alter the
fingerprint. OCT is a touchless technology and does not
incur the same damage or change. Sano et al.”! used OCT
to assess fingertip skin light scattering characteristics.
This information served in the development of a new finger-
print acquisition device that is robust against surface artifacts
such as wrinkles and scars.

The internal fingerprints acquired in previous research
were not tested or optimized in terms of fingerprint quality.
Although it is widely known that the characteristic undula-
tion of the papillary junction describes the ridge and valley
structure of the internal fingerprint, accurate detection of this
undulation was never undertaken. Instead, OCT images were
averaged over a predetermined, manually chosen region, or a
single slice was chosen that coincided well with the papillary
junction. These approaches captured the papillary junction
undulation to a degree sufficient for internal fingerprint
representation, but failed to define the region in which per-
tinent fingerprint information resides. This is inefficient. The
research presented here provides an improved and accurate
means of extracting an internal fingerprint by detection of
the papillary junction. The approach taken is detailed in the
next section.

1 20

3 Methodology

This section explains the methodology behind papillary
junction detection. A system overview diagram, exemplify-
ing the processes involved, is given in Fig. 1. The stratum
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Fig. 1 A system-wide flowchart representation of the processes involved in papillary junction detection.
(a) Optical coherence tomography (OCT) image; (b) example of stratum corneum detection—blue dots are
the detected stratum corneum points, green crosses are outliers, and red plus' are the adjusted outliers;
(c) clustering result example—differing color-shape combinations represent different clusters and the
lines show the region extracted for fine-tuning; (d) processed cluster coordinates—blue dots are the
points on this OCT image that are within the cluster determined to best describe the papillary junction,
red encircles outliers, and green shows corrected outliers; (e) fine-tuned coordinates with denoted region
of interest—the red dots show the end result of papillary junction detection; (f) highlighted region of inter-

estin (e).

corneum contour (i.e., surface layer of the skin) is detected as
the uppermost brightest contour. Using this location, features
are then extracted for k-means clustering. Following cluster-
ing, the correct cluster is determined and processed. A region
containing the top-edge of the papillary junction is then
extracted and enhanced, prior to edge detection, for fine-
tuning.

Section 3.1 details the process of stratum corneum detec-
tion. Section 3.2 provides details on the use of k-means
clustering, while Sec. 3.3 identifies the problems and corre-
sponding solutions to postprocessing k-means clustering
coordinates. Fine-tuning is discussed in Sec. 3.4. Cluster
analysis was used to determine a rough estimation of the
center of the papillary junction. Column-wise intensity
local maxima were used as data points. The manner in
which this was accomplished is outlined in Sec. 3.2.
Image enhancement was used to fine-tune this estimation
to coordinates detailing the top-edge of the papillary
junction.

3.1 Stratum Corneum Detection

In order to extract useful features for clustering from
OCT scans, the location of the stratum corneum must be
known with a high degree of certainty for the following
reasons:

1. Clustering requires data points to have descriptive vec-
tors on which its performance hinges.
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2. An intuitive defining feature of any OCT fingertip
scan is that of skin layer reflectivity [see Figs. 2(a)
and 3].

3. The surface layer, or stratum corneum, is highly reflec-
tive and easily detectable.

4. The location of the stratum corneum can be found and
used for feature extraction. Algorithm 1 details how
the detection of the stratum corneum is accomplished.

Owing to the dimensional continuity of the stratum cor-
neum in corresponding B-scan images (i.e., cross-sectional
image slices) in a volume, its location in the previous
image is used to determine its current location. The location
of the stratum corneum is used to describe an important fea-
ture for k-means clustering.

3.2 k-Means Clustering

The process of classification is intuitive for human beings.”
For a machine, data classification falls into two categories:
supervised and unsupervised. The main difference between
the two is human intervention. In supervised approaches,
classes are established before classification begins, whereas
in unsupervised approaches, classes are derived as natural
groupings within the data itself.

Clustering is the unsupervised task where data are seg-
mented into a predefined number of clusters. Data within
a cluster have greater similarity to other data inside the
same cluster than to data outside the respective cluster.
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Fig.2 Anexample of skin layers and the analysis of a single A-line (column) in a B-scan image: (a) exam-

ple of a series of B-scans used to construct an OCT volume, with resolution constraints; and (b) the
column-wise approach detailed in Fig. 3. Note: dimensions of (a) and (b) are the same.

Although there is no universal definition of a cluster, it can
be described in terms of internal homogeneity and external
difference.”

Choosing which clustering algorithm to use is complex
and is dependent on the problem space, with data type
and cluster model as factors defining this choice. Xu and
Wunsch > showed how the selection of a clustering algo-
rithm is complex. Estivill-Castro®* attempted to explain the
large number of available clustering algorithms, arguing that
the lack of a decisive idea of “cluster” is to blame.

Initial experimentation was carried out to compare k-
means,” k-medoids,”® fuzzy c-means,”’ and expectation-
maximization with Gaussian mixture models® (EM)
clustering. None of these techniques showed any signifi-
cant performance gain. Therefore, the k-means clustering
algorithm was chosen for this research because of its sim-
plicity, robustness, and data relevance. It is known to yield
good results when datasets are distinct, yet determined
clusters cannot overlap.23 However, in the case of the
data used in this research, distinct clusters are advanta-
geous. Although k has to be predefined for k-means clus-
tering, this limitation does not have an effect on the
research carried out here, as a range of k values are tested.
Further disadvantages of k-means clustering are that it is
unable to deal with outliers and cluster sizes are assumed
to be roughly equal. However, the advantages sufficiently
outweigh the relevant disadvantages. Further investigation
will be done to determine whether k-means is indeed the
optimal clustering algorithm, but that is beyond the scope
of this work.

The effectiveness of an unsupervised learning technique
is confined by the input data and their descriptive features.
The choice of k can vary (as shown in Sec. 5). Input data
points and features were chosen using domain knowledge
and logic and through experimentation.

In terms of the data points themselves, an analysis of A-
lines was made. An A-line corresponds to a single column
in a B-scan. In this way, a column-wise perspective was
taken: A-line intensity changes can be seen to yield pat-
terns in the data. Figure 3 exemplifies the analysis per-
formed and shows the correspondence of intensity local
maxima to interesting regions in a B-scan. The signals
are individually smoothed before the strongest local

Journal of Electronic Imaging

023027-4

A-line analysis
250

ﬂ m—  Original values

200 e Smoothed values

Stratum corneum

Papillary junction

150 \ .
2 4 Ni# e 1. Example data point
2 © 2. Closest local minimum to
K ( data point
E N
100 ° 3. Point at which peak gradient

is measured

50

0 100 200 300 400 500
Row index

Fig. 3 An example of data used for feature extraction. This is a single
A-line profile of an B-scan, as exemplified in Fig. 2.

maxima are extracted as data points. Since each B-scan
in the volume contains 512 A-lines, and there are 512
B-scans in the volume, the number of 1-D signals analyzed
per volume is 262,144.

Features describing the chosen data points are defined as
follows:

1. Relative distance to the stratum corneum. The pixel-
distance from each local intensity extremum (see point
marked as 1 in Fig. 3) to the stratum corneum previ-
ously found (refer to Algorithm 1) is computed and
normalized. Normalization occurs on a B-scan basis
as the distance between the stratum corneum and pap-
illary junction may not be consistent over an entire fin-
gertip, but is relatively consistent in a single B-scan.
Each normalization constant is defined as the approxi-
mate pixel distance between the stratum corneum and
the papillary junction over a single B-scan. This is
estimated as the median of all measured distances
between the two largest column-wise extrema, and is
used to normalize each data-point’s distance to the
stratum corneum.

Mar/Apr 2015 « Vol. 24(2)

Downloaded From: http://electronicimaging.spiedigitallibrary.org/ on 04/10/2015 Ter ms of Use: http://spiedl.or g/terms



Darlow, Connan, and Akhoury: Internal fingerprint zone detection in optical coherence. ..

Algorithm 1 Stratum corneum location.

Input: OCT_volume
Output: Stratum corneum coordinates
forscan_i < 0 to length(OCT_volume)do
B_scan < OCT_volume(scan_i)
fori — 0 to length(B_scan) do
A_line < B_scan(i)
smoothed_A_line « 1-Dsmooth(A_line)
local_maxima < extrema(smoothed_A_line)
ifi==0then
considered_extrema « brightest(local_maxima)
stratum_c{scan_I|[i] < uppermost(considered_extrema)
End
Else

dist_to_prev_stratum « stratum_c{scan_i—1][1] -
local_maxima

index_of_closest « index_of(min(dist_to_prev_stratum))
stratum_c[scan_il[i] < local_maxima[index_of_closest]
End

End

End

2. Peak width. The peak width is defined to be twice the
distance to the closest local minimum. Figure 3 exem-
plifies the closest local minimum and peak width as
the points marked as 2 and 4, respectively. The width
of the papillary junction is greater than the width of the
stratum corneum. As these are the most prominent
local extrema, this feature distinguishes them.

3. Peak standard deviation. The standard deviation is
determined from the region defined by the considered
data point (for example, see the point marked as 1 in
Fig. 3) and the peak width. Since speckle noise is sig-
nal-dependent, the standard deviation will be different
in regions with signal (such as the papillary junction)
compared with regions without signal.

4. Peak gradient. The gradient is measured half way
between the considered local maximum and next
upper local minimum. The point at which the gradient
is measured is the point marked as 3 in Fig. 3. This
feature gives a measure of the strength of the increase
of the considered data point—a unique trait for perti-
nent local extrema.
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5. Relative intensity. The height of the peak is the pixel
intensity. This intensity is first normalized using an
approach similar to that of the relative distance: on
a B-scan basis using the median of all estimated pap-
illary junction peaks (i.e., the second brightest peaks in
each A-line). Since the structure of skin results in the
papillary junction usually being the second strongest
peak (after the stratum corneum), this feature is also
unique.

There is a depth-dependent “roll-off” problem inherent in
the OCT system used for this research. What this means is
that the OCT scanner has different sensitivities at different
depths. The result of this depth-dependency when imaging
a curved surface such as a fingertip is differing intensity pro-
files for regions of the fingertip that are further away from
the scanner to those close to the scanner. Figure 2(a) shows
this—the left regions of these images (where the fingertip
skin is spatially lower) have relatively lower pixel intensities.
Another artifact present in the OCT scans is the geometric
curvature of the fingertip.

One way of dealing with the pixel intensity depth-depend-
ency and fingertip curvature is to make use of a glass slide in
the scanning process. However, this mitigates the touchless
capability of OCT and introduces fingerprint distortion. A
simple solution is found in the form of specific feature
normalization. Relative distance and relative intensity are
features normalized to mitigate this issue. Although the
determined depth of the papillary junction will still be sub-
ject to “roll-off,” the effect thereof can be spatially normal-
ized. However, that is not the focus of this research.

The ideal output after clustering is a single cluster corre-
sponding to the center of the papillary junction. This cluster
would have exactly one data point per column, all of which
must be correct. This is not assured to be the case, necessi-
tating the need for cluster postprocessing.

3.3 Cluster Postprocessing

The first step in postprocessing clusters is determining which
cluster best describes the location of the papillary junction.
To do so, the approximate stratum corneum to papillary junc-
tion distance, estimated when extracting features, is used
along with knowledge of the stratum corneum location.
It is only necessary to use a single B-scan to determine
the correct cluster because there are enough data points in
one B-scan to make this estimation. Furthermore, a B-scan
exhibiting a clear stratum corneum and papillary junction can
be used. The accuracy of an estimation for all other B-scans
will be very similar or worse.

Even after the correct cluster is determined, numerous
inconsistencies with this cluster may be present. The follow-
ing anomalies, along with respective solutions, occur:

¢ Problem: multiple data points from the same A-line
may be clustered together.
Solution: consider only the uppermost (i.e., clos-
est to the surface) data point. If this proves to be
wrong, it will be detected as an outlier.

¢ Problem: an A-line may contain no data points in
the chosen cluster and, therefore, no coordinate.
Solution: extrapolate coordinates based on sur-
rounding cluster points.
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¢ Problem: some data points in the chosen cluster may
not correspond to the papillary junction.
Solution: identify and process these points as
outliers, extrapolating correct coordinate based on
surrounding correct cluster points.

The papillary junction coordinates, acquired after
processing cluster output, correspond to the center of the
papillary junction. The precision of these coordinates was
measured relative to ground-truth coordinates in Sec. 5.
Although these coordinates may be a good estimate of the
papillary junction location, the richest fingerprint data are
found in the papillary junction top-edge. The papillary junc-
tion center coordinates must, therefore, be adjusted. This
adjustment will now be discussed.

3.4 Fine-Tuning

The fine-tuning process is designed to accurately determine
the location of the papillary junction top-edge. This edge
contains information most pertinent to the internal finger-
print. An image containing the edge is extracted from each
B-scan and enhanced prior to edge detection. These steps are
detailed below.

The region containing the papillary junction top-edge can
be extracted using the papillary junction center coordinates.
For each A-line, this region starts at the cluster-determined
papillary junction center coordinate (that defines the pixel-
wise depth) and ends 25 pixels toward the stratum corneum.
The result is an image (of 25 X 512 pixels) extracted from
each B-scan. An example of this region and the correspond-
ing extracted image can be seen in Fig. 4. Detection of the
line defining the top-edge is made difficult by the presence of
speckle noise.

Speckle noise is multiplicative and signal degrading.
Darlow et al.”’ reviewed six state-of-the-art speckle reduc-
tion techniques pertinent to OCT fingertip scans. The opti-
mized blockwise nonlocal means (OBNLM) algorithm was
found to be the best performing approach in terms of signal-
to-noise ratio improvement, error minimization, and struc-
tural similarity improvement (SSIM).

Coupé et al.*® proposed an adaptation of the nonlocal
(NL)-means filter’! to combat speckle in magnetic resonance
images. An adaptive general speckle model was used to
reformulate the original NL-means approach. The original
result was a powerful speckle reducing filter. However, it
was computationally expensive. The OBNLM?*? filter was

Fig. 4 An example of the region containing the papillary junction top-
edge. This extracted image is given on the right, and used as input for
fine-tuning.
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developed as an optimization. Since the speckle model is
similar to that of OCT images, this speckle reduction tech-
nique was used.

Although a product of speckle noise reduction is contrast
and clarity improvement, this improvement is limited by the
inherent contrast of OCT scans. Pixel intensity in an OCT
scan is defined by the reflectivity of the imaged region.
The stratum corneum and papillary junction have relatively
higher pixel intensities compared with the dermis and epider-
mis. Since the goal of this research is to locate the papillary
junction, contrast enhancement was used to highlight this
region.

Contrast enhancement can be seen as an operation where
the concerned pixel intensity range is appropriately
stretched.**** Because the region of interest is the papillary
junction and the pixel intensities within this region are incon-
sistent, a local contrast enhancement approach is preferred.

The approach used in this research is local intensity
normalization. A windowed region is considered in which
the local intensities are stretched to fit a defined range.
Following local normalization, unsharp masking was used
to further clarify the papillary junction top-edge. Unsharp
masking is a filter that amplifies the high-frequency compo-
nents of an image. This is accomplished through comparison
of a blurred version of the image to the original. In this way,
unsharp masking is able to enhance edges.

Once these image regions are enhanced and binarized, the
top-edge is detected. For each extracted region, the upper-
most white pixels are determined to represent this edge.

Examples and results of this process can be found in
Sec. 5. Experimental procedures to assess the effectiveness
of papillary junction detection are discussed in the following
section.

4 Experimental Setup

Figure 5 shows the layout of the OCT system (OCS1300SS,
Thorlabs) used to acquire an OCT scan for this research. The
central wavelength is 1325 nm. The spectral bandwidth is
100 nm. It has an axial scan rate of 16 kHz, a coherence
length of 6.0 mm, and an average output power of 10.0 mW.

Figure 2 shows an example of the layout of a single OCT
scan. A scan results in 512 individual image slices (called B-
scans, in the direction of the Y-axis), with a lateral resolution
of 512 pixels (X-axis), and a depth resolved resolution of
512 pixels (Z-axis). Each individual column in a B-scan

Reference mirror

SLS

BS

PD DSP —»D
Lo —]

P ——

Fig. 5 The OCT system used. SLS: swept laser source; BS: beam
splitter; S: sample; PD: standard photodiode detector; DSP: digital
signal processor. Reproduced with permission, courtesy of Darlow
et al.®
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(i.e., an A-line) represents a depth of 3 mm. The area scanned
is 10 x 10 mm? (X- and Y- directions, respectively). This
results in a resolution of 19.53 ym per pixel in the X- and
Y-directions, and a resolution of 5.86 um per pixel in the
Z-direction.

No glass plate was used to stabalize during scanning.
Instead, the scan was carried out repetitively until such
a time as a suitably stable iteration was established. Any
changes induced by heartbeat and blood-flow do not induce
changes on a scale that affects the papillary junction shape,
and thus the internal fingerprint.

Papillary junction ground truth was established for each
B-scan. The ground truth was manually established using the
GNU Image Manipulation Program found in Ref. 35.

The papillary junction top-edge coordinates were proc-
essed for each image. Thirteen human volunteers were
asked to provide ground-truth estimates for five B-scans.
These data were used to establish an estimate of “human
error” associated with ground-truth estimation.

Papillary junction coordinates found automatically (P)
were tested against corresponding ground-truth coordinates
(G). Mean squared error [MSE, Eq. (1)], the Hausdorff***’
distance metric [H, Eq. (2)], SSIM*** [Eq. (4)], and RMS-
contrast*’ [Eq. (5)] were used.

Both the MSE and H are known to give a good indication
of the error between two datasets. MSE is defined as

1 N
N (s (1)

1:1

MSE(s, 1)

where s and ¢ are the compared signals, N is the total num-
ber of data points, and i refers to the data point being
compared.

MSE is the average squared error, indicative of the
deviation of two datasets. MSE works well on a finer
scale as it efficiently shows fluctuation between datasets.
The Hausdorff distance is defined as

H(X,Y) =max[h(X,Y),h(Y,X)], (2)
where
h(X.Y) = maxmin |l —yll, )

where x and y are the points in X and Y, respectively.

H defines the degree of mismatch between two subspa-
ces; that is, it indicates the maximum of the shortest distance
between any point in one subset and any point in the other.

Although these metrics are able to give a good indication
of the error between two subsets, they suffer from case-
specific dependence. The ranges of MSE and H are not nor-
malized and can deviate from what is expected. For instance,
coordinates with a global offset may yield bad values of
MSE and H. On the other hand, smoothed coordinates
(from 2-D Gaussian blurring) may yield good values of
MSE and H. However, globally offset coordinates have bet-
ter structural value.

To accommodate the lack of suitable metrics for image
comparison, Wang and Bovik® developed a case indepen-
dent universal quality index. The SSIM metric was later
developed by Wang et al.* by making use of the assumptions
that the human visual system is able to detect SSIM, and that
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local pixels hold spatially structural information. SSIM is
defined as

(zﬂu/’tv + Sl )(zauv + SZ)
(i + 13+ S))(on + 07+ 8,)

SSIM(u, v) = 4)

where SSIM is calculated in a local, windowed fashion. u
and v define the measured windows. y,, is the mean of u, and
u, is the mean of v. The variances of u and v are ¢2 and o2,
respectively. ¢, is the covariance of u# and ». S| and S, are
the stabilization variables.

Considering the context of fingerprints, another useful
measure would be one of the contrasts. RMS-contrast is
an accepted means of measuring the contrast of images.
Therefore, it is suited to measuring the contrast of 2-D coor-
dinates. It is defined as

{‘

1 W=
RMS_contrast(Im) = 7 — mean(Im)}?,

Ll:()j

I}
o

(%)
where Im is a 2-D array, W and L are the dimensions, Im; ;

are the i’th and j’th elements, while mean(Im) is the average
of Im.

Table 1 Image enhancement parameters.

Enhancement technique Parameters

OBNLM Stage one Search area size = 12
Patch size =2
Smoothing = 2
Stage two Search area size = 6

Patch size =1

Smoothing = 1

Stage three  gearch area size = 6

Patch size =1

Smoothing = 1

Local normalization Amplitude = 9

Radius = 20

Neighborhood smoothness = 40

Average smoothness = 40

Unsharp masking Radius = 50

Amount = 1.5

Threshold = 15%
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The MATLAB® k-means clustering algorithm was used
in this research. Predefining k (number of clusters) is an
unsolved problem. Therefore, a wide range of k was tested.

The parameters for the image enhancement involved in
fine-tuning are provided in Table 1. OBNLM was applied
in three stages although stage three is a repetition of stage
two. The application of OBNLM in this manner further clari-
fies the papillary junction top-edge.

Comparisons with ground-truth values were made at two
stages: after cluster coordinates were processed, and after
fine-tuning (i.e., against P). This allowed for a quantitative
measure of the performance increase due to fine-tuning.

To test the performance of k-means clustering as applied
to this problem, the number of clusters (k) and the number
of data points (n) per A-line were varied. The aforemen-
tioned metrics were processed for k from 2 to 50, and
for n from 2 to 33. The limitation on n is due to the fact
that there are a limited number of local extrema per A-
line in a B-scan.

Qualitative results of k-means clustering were used
to give an indication of the process involved and its
performance. With regard to the comparison made after
the clustering step, the ground-truth papillary top-edge
was offset by the mean difference between the top and bot-
tom edges.

(@)

As for P, these coordinates were directly compared with
G. Qualitative results were also used for assessment. Since
the fine-tuning process involves many parameters regarding
image enhancement, an optimization was not attempted.

A final assessment technique was considered the output
fingerprint. This fingerprint was obtained by converting
G and P into grayscale fingerprint images, followed by vari-
ous contrast enhancement techniques. The details are not
discussed as this deviates from the focus of this research.
After processing a fingerprint from both P and G, minutiae
detection was performed using the open source fingerprint
recognition toolkit, Source AFIS.*!

5 Results and Discussion

The accuracy of the results depends on the accuracy of
ground-truth estimation. This manual estimation was done
as accurately as possible, but cannot be assumed to be
perfect. Therefore, some deviation between G and P is
attributable to this. In order to quantify this human-error,
13 volunteers supplied ground-truth coordinates for five
B-scans.

Each volunteer’s ground-truth estimations were compared
to all other estimations. A mean MSE of 15.6 = 6.0, a mean
H of 157.3 +£22.0, and an RMS-contrast of 103.1 0.4
were obtained. SSIM is not given in this case as five

80

Fig. 6 MSE results: k versus n. Lower mean-squared-error (MSE) values are shown in blue, higher
values in red, with intermediate values in the color ranges in between. (a) shows MSE results after clus-

tering, while (b) shows MSE results after fine-tuning.

Fig. 7 SSIM results: k versus n. Lower structural similarity improvement (SSIM) values are shown in
blue, higher values in red, with intermediate values in the color ranges in between. (a) shows SSIM
results after clustering, while (b) shows SSIM results after fine-tuning.
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ground-truth estimations does not yield a meaningful SSIM
result. All human-error measured was comparable with
results automatically obtained.

Figures 6 through 9 show the results through the tested
ranges of k and n. In each of these figures, (a) shows results
after the clustering step, while (b) shows the results after
fine-tuning. When creating these graphs, differing upper
and lower limits were set to exemplify the region of interest.

Lower MSE and H values, higher RMS-contrast values,
and high SSIM values are seen in the region corresponding to
a roughly even ratio of k:n. This behavior is attributable to
the fact that each data point in an A-line can be unique to that
signal and thus falls within a unique cluster. All four metrics
correlate consistently: there is a region of stable high perfor-
mance. This fact allowed for definition of a manually chosen
region of interest (see Fig. 10).

The error metrics measured (MSE and H) strongly show
a saddle point in which good performance is achieved. All
values of n and k encompassing this region were tested. The
results for SSIM also exhibit behavior akin to this. RMS-
contrast results indicate similar stable-region behavior, but
show an increase with combinations of high k£ and low n.

280
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Fig. 10 The experimentally chosen region of interest. The region in
which stable performance can be found is in the center (red), while
poor performance is found with n and kK combinations corresponding
to the outer (blue) regions.
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Fig. 8 Hresults: k versus n. Lower H values are shown in blue, higher values in red, with intermediate
values in the color ranges in between. (a) shows H results after clustering, while (b) shows H results after

fine-tuning.
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Fig. 9 RMS-contrast results: k versus n. Lower RMS-contrast values are shown in blue, higher values in
red, with intermediate values in the color ranges between. (a) shows RMS-contrast results after cluster-
ing, while (b) shows RMS-contrast results after fine-tuning.
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Table 2 Quantitative results after clustering. ROl denotes the deter-
mined region of interest. RMS-C is the RMS-contrast. Human results
are included for comparison.

Result after clustering

Metric Entire region ROI Best Human
MSE 1337.6 £5521.9 50.7 +£18.2 27.3 15.6 £6.0
H 697.0 £976.2 2404 +34.0 186.7 157.3+£22.0
SSIM 88.5+6.7% 92.4+22%  94.7% —
RMS-C 100.0 £13.7 97.6 £0.6 141.7 103.1

Table 3 Quantitative results after fine-tuning. ROI denotes the deter-
mined region of interest. RMS-C is the RMS-contrast. Human results
are included for comparison.

Result after fine-tuning

Metric Entire region ROI Best Human
MSE 1266.1 +5263.7 38.4+16.8 23.6 15.6 £6.0
H 684.6 £966.2 218.2+53.6 1425 157.3+£22.0
SSIM 87.4+9.0% 922+33%  94.5% —
RMS-C 101.1 £13.8 98.4+04 1433 103.1

This is due to the high contrast error resulting from cluster
coordinate processing.

What should be noted is the relationship between
Figs. 6(a) and 6(b). The region of lower MSE values is larger
and more stable after fine-tuning. This shows the effective-
ness of the fine-tuning step. These evident improvements
after fine-tuning are present in all measurements. The result
is a widening and improved stability of the clearly evident
stable region.

Tables 2 and 3 give the average results for all metrics over
the entire tested region and the region of interest after clus-
tering and fine-tuning, respectively. Human performance is

included. The error related metrics (MSE and H) have very
large standard deviations over the entire tested region. This is
because their respective ranges are unbounded and poten-
tially large. In this case, large average error results take
into account combinations of k and n that are unsuitable.
For this reason, results over the determined region of interest
are given. The standard deviation of all metrics measured
decreases after fine-tuning.

With an average MSE of 50.7 + 18.2 and a minimum
MSE of 27.3 (when k =4 and n = 2) after the clustering
step, the success of clustering for detection of the center
of papillary junction is confirmed. Fine-tuning decreased
the average MSE to 38.4 & 16.8 and the minimum MSE
to 23.6 (when k = 33 and n = 13). Similar improvements
for H can be seen—with minimum H values of 186.7 and
142.5 after clustering and fine-tuning, respectively.

Since the structural layout of coordinates found after clus-
tering is very similar to P, SSIM results are very similar.
Maximum SSIMs are 94.7% and 94.5% after clustering
and fine-tuning, respectively. The structural relationships
of ridges and valleys correspond well between G and P.

After the clustering step, the maximum RMS-contrast in
the stable region was 141.7, while the average RMS-contrast
in the stable region was 97.6 &= 0.6. The maximum RMS-con-
trast after fine-tuning was 143.3, while the stable-region aver-
age was 98.4 + 0.4. In the context of internal fingerprints,
RMS-contrast gives a quantitative assessment of ridge and
valley definition. The RMS-contrast for the ground-truth
coordinates is 97.7—generally less than that of P.

Figure 11 gives accompanying qualitative results for clus-
tering. Each cluster is denoted by a unique marker type and
color combination. What is noteworthy here is that the 1:1
ratio of k:n gives better results, justifying the saddle regions
appearing in the measured metrics’ results.

Figure 12 exemplifies the process involved in fine-tuning.
The contribution of OBNLM speckle noise reduction is
highly evident here in both the preservation of edges and
the smoothing of homogeneous areas. The application of
speckle reduction in three phases increases the signal clarity,
as is evident in the progression depicted in Figs. 12(b)-12(d).
Local contrast enhancement and unsharp masking are shown
in Figs. 12(e) and 12(f), respectively. This enhancement
process dramatically improved the clarity and contrast of
the papillary junction top-edge.

The contribution of this research is noteworthy: the pap-
illary junction top-edge is difficult for a human to detect, but
the results obtained (both quantitative and qualitative) show

Fig. 11 Qualitative results of k-means clustering for varying combinations of n and k: for (a), n=2
and k = 2; for (b), n=30 and k =2; for (c) n=2 and k = 30; and for (d) n =30 and k = 30. Each
color-shape combination represents a different cluster.
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Fig. 12 Fine-tuning process. From the top down: (a) papillary junction top-edge; (b) stage one optimized
blockwise nonlocal means (OBNLM) speckle noise reduction; (c) stage two OBNLM speckle noise
reduction; (d) stage three OBNLM speckle noise reduction; (e) intensity local normalization; (f) unsharp
masking; and (g) thresholding. The flattening process is discussed in Sec. 3.4, and exemplified in
Fig. 4.

(d) (e) ®)

Fig. 13 Visual overview of entire process: (a) locating stratum corneum; (b) chosen cluster data; (c) find-
ing outliers (green circles show outliers); (d) coordinates found by processing clusters; (e) adjusted
coordinates after fine-tuning and (f) a comparison of coordinates [the top smooth (green) points are
ground truth, the top deviating (blue) points are fine-tuned coordinates, and the bottom deviating
(red) points are cluster coordinates].
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()

Fig. 14 Comparison of coordinates: (a) shows coordinates for one B-
scan; (b) is the region of interest defined in (a). (c) and (d) also show
the region of interest defined in (a), exemplifying P and G, respec-
tively. The top deviating (green) line represents P; the bottom deviat-
ing (blue) is the clustering coordinates results; the top smooth (red) is
G; and the bottom smooth (yellow) line is the adjusted G (for compari-
son with the clustering coordinates).

(d)

35 50

Fig. 16 Timing results cluster processing.

this process to be successful through the approach developed
in this research.

An encompassing visual explanation of the entire process
present in this research can be seen in Fig. 13. Figure 14
shows all coordinates found and used for a single B-scan.
A comparison of Figs. 14(c) and 14(d) shows the consistency
present between P and G. The evident deviation is slight and
can often be attributed to human error (in G).

Figure 15 shows the fingerprint processed from G and P.
These fingerprints constitute an area of 10 x 10 mm?. The
process involved in extracting a fingerprint is exemplified
along with processed fingerprints and corresponding minu-
tia. The minutia detected are very similar between finger-
prints obtained using G and P, with few falsely detected
minutia found in each case.

Fig. 15 Fingerprint extraction from coordinates. The top row shows ground-truth coordinates, while the
bottom row shows determined coordinates. From left to right: (a) and (d) are coordinates converted into
an image; (b) and (e) exemplify the process involved; (c) and (f) show the detected minutiae from proc-

essed coordinates.
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Figure 16 gives the timing results for cluster processing.
The minimum time taken is 0.36 s. Large values of n (result-
ing in exponentially more data) and k yield unsatisfactory
times, upward of several minutes. However, these combina-
tions have no advantages. Timing results for the fine-tuning
step are not included as this process is independent of k
and n.

Considering the extensive testing of n and k parameter
combinations undertaken here, a quantitative standard for
the choice thereof can be given. This is based on two
observations:

1. The saddle point for a high performance is large and is
defined by a roughly equal ratio of n and & (see Figs. 6
through 9);

2. Processing time increases as both n and k increase
(see Fig. 16).

Equal ratios and lower values of n and k are suitable. A
noteworthy constraint on this choice is that lower values of n
and k are less stable. This is characterized by the shape of
the identified region of stability: there is a “tapering” toward
the lowest possible values. Owing to this, a balance between
stability of performance and performance efficiency is
reached when both n and & are roughly equal and sufficiently
buffered from their corresponding lowest possible values,
ie, 4<(k=n)<10.

6 Conclusion and Future Work

This research addressed the problem of automatic papillary
junction detection in OCT fingertip scans using machine
learning and image enhancement algorithms. Accurate
knowledge of the location of the papillary junction can be
used as an asset for the extraction of an internal fingerprint.
This is a significant deviation from previous research,
where a manually determined region is used for internal
fingerprint acquisition. Using coordinates obtained through
this research, an internal fingerprint of high quality (in terms
of minutiae detected) was acquired.

K-means clustering was used to find the approximate
location of the center of the papillary junction. A comparison
was made against a ground-truth estimation, yielding a mini-
mum MSE of 27.3 (with k = 4 and n = 2). The approximate
location, determined by clustering, was improved by the use
of edge detection on enhanced extracted image regions,
yielding a minimum MSE of 23.6.

In combination with this low MSE, a maximum SSIM of
94.5%, a minimum H of 147.5, and an average RMS-con-
trast of 98.4 were achieved after fine-tuning. These results
indicate low error, high SSIM, and improved contrast
when compared with ground-truth coordinates.

The human error associated with ground-truth estimation
was quantified. The best results obtained automatically were
within ranges comparable with human error. Therefore, the
papillary junction detection approach presented in this
research performs relatively well when compared to humans.

All metrics measured corresponded well. There was a
region, roughly defined by combinations of equal n and
k, where MSE, H, SSIM, and RMS-contrast yielded stable
results. Furthermore, a quantitative standard for the choice of
k and n combinations was derived.

Various qualitative results were given to exemplify the
entire process; details on the fine-tuning and clustering
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process; and resultant processed fingerprints. The qualitative
results correlated well with the quantitative assessment.

All results obtained strongly showed the success of clus-
tering and image enhancement procedures as tools for pap-
illary junction detection.

Future work entails optimizing the computational aspects
of the methods involved. The acquisition of a high quality
internal fingerprint will be detailed in a future work.

The results obtained were found by processing a 3-D
OCT scan. Owing to the nature of the papillary junction
detection algorithm, the only assumption made is that the
1-D depth profiles analyzed are consistent with skin struc-
ture. This consistency remains regardless of the OCT scan
dimensions. This will be shown in future work.

An advantageous future work is to explore different clus-
tering techniques. However, it would be unlikely that any
minor accuracy gain would be significant. This is because
the fine-tuning step mitigates any minor changes due to clus-
ter result deviations.
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