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INTRODUCTION 
 

The Bushveld Complex (BC) (Fig. 1, end of paper) 

was emplaced at ca. 2.06 Ga in the northern part of the 

Kaapvaal Craton, South Africa and is one of the largest 

mafic layered igneous intrusions in the world. It covers 

an area of ~66,000 km
2
 within the craton (e.g., 

Walraven, 1997; Eglington and Armstrong, 2004; 

Webb et al., 2004). It has an abundance of platiniferous 

group metals, as well as large reserves of chromium, 

titanium, vanadium, nickel and gold (e.g., Cawthorn et 

al., 2006). It intruded into the intracratonic sedimentary 

sequences of the Transvaal Supergroup and is 

stratigraphically divided into the Rooiberg Group 

(RG), the Rashoop Granophyre Suite (RGS), the 

Lebowa Granite Suite (LGS) and the Rustenburg 

Layered Suite (RLS; e.g., South African Committee for 

Stratigraphy, 1980; Hatton and Schweitzer, 1995; 

Cawthorn and Webb, 2001; Cawthorn et al., 2006).  

 

The mafic components of the RLS crop out in five 

geographically distinct areas: the Eastern Limb, the 

Western Limb, the Far Western Limb and the two 

Northern limbs (Figure 1a; e.g., Webb et al., 2004). A 

sixth limb, the Southeastern or Bethal Limb (Cawthorn 

and Webb, 2001), is buried under Karoo sediments. 

The BC is disrupted in several places by alkaline 

intrusions (Fig. 1a).  Much of the subsurface structure 

of the BC above 10 km depth is reasonably well 

understood, but the deep structure of the BC and how it 

was emplaced remains a subject of ongoing research. 

The BC was originally thought to be a laccolith (e.g., 

Mellor, 1906) or lopolith (e.g., Molengraaff, 1902). 

However, gravity modeling by Cousins (1959) showed 

that the Bouguer gravity low in the geographic centre 

of the BC is inconsistent with these models. The 

“dipping-sheet” model of Meyer and De Beer (1987) 

exhibited detached limbs that extended to 15 km depth, 

with no compensation at the Moho (Fig. 2a).  

 

Later geological and geophysical studies (Cawthorn et 

al., 1998; Cawthorn and Webb, 2001; Webb et al., 

2004) proposed the existence of continuous mafic 

layering at depth across the centre of the BC, 

connecting the various limbs (Fig. 2b). In this model, 

hereinafter called the “continuous-sheet” model, a 

downwarped Moho isostatically compensates for the 

continuous mafic layering in the upper crust, consistent 

with seismic constraints provided by receiver function 

studies (Nguuri et al., 2001; Nair et al., 2006; 

Kgaswane et al., 2009). The study by Nguuri et al. 

(2001) suggests Vs4.0 km/s within the upper 10 km 

of the crust for one location near the centre of the BC. 

The recent findings by Webb et al. (2010) of mafic 
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xenoliths in the Palmietgat kimberlite pipe (Fig. 1a) 

further supports the hypothesis of continuous mafic 

layering in the centre of the BC. The purpose of this 

study is to use new seismic velocity models of the crust 

containing the BC to evaluate the geometric models.  

 

METHODOLOGY 
 

Rayleigh wave group velocity maps in the period of 2–

15 sec (~2–15 km depth) were tomographically derived 

by measuring Rayleigh wave group velocities produced 

by 197 mining-related and regional seismic events (see 

Fig. 1b) recorded by 45 broadband seismic stations. 

Mining-related earthquakes account for 81% of the 

total number of earthquakes used for the 

measurements, the majority originating within the gold 

mining districts of the Witwatersrand Basin. The 

locations of the 45 broadband seismic stations with 

respect to the outcrop pattern of the BC are shown in 

Fig. 2c: 43 stations belong to the Southern African 

Seismic Experiment (SASE) network (Carlson et al., 

1996), and the remaining stations to the Global Seismic 

Network (GSN) and South African National 

Seismograph Network (SANSN). The measurement of 

the Rayleigh wave group velocities was done using a 

multiple filter technique (e.g., Dziewonski et al., 1969; 

Keilis-Borok, 1989; Claerbout, 1992; Levshin et al., 

1992) incorporated in a code written by Ammon 

(2001). Kgaswane et al. (2012) reviews these methods. 

 

The receiver functions and surface wave dispersion 

measurements for each recording station were jointly 

inverted to yield 1-D Vs models of the structure 

beneath each station. Julià et al. (2000, 2003) reviews 

this method. Quality receiver functions were obtained 

for 16 stations that fall within the area of best 

resolution (Kgaswane et al., 2012). The receiver 

functions were processed using a frequency of 1.25 Hz 

(Gaussian bandwidth of 2.5 s) and were computed for 

each teleseismic event with a maximum number of 200 

iterations using the iterative deconvolution code based 

on the method by Ligorría and Ammon (1999). These 

high-frequency receiver functions were finally stacked 

according to backazimuth and ray-parameter. Rayleigh 

wave group velocities obtained in the 2-15 sec period 

were combined with the group velocities for 20-60 sec 

from Pasyanos and Nyblade (2007) to create a 

composite dispersion curve for each station. The 

composite dispersion curves were smoothed with a 3-

point running average prior to using them in the joint 

inversions with the receiver functions. Kgaswane et al. 

(2009, 2012) describe the processing of both datasets 

and the application of the joint inversion technique. 

 

RESULTS 

 

The quasi–3D Vs model (from depths of 2–15 km) 

computed from Rayleigh wave group velocity 

tomography is shown in Fig. 3 (end of paper). Apart

 
from an occasional indication of high Vs bodies at 4–

6 km depth associated with the northern limb of the 

BC, the model fails to image the mafic limbs (~Vs≥3.7 

km/s) at shallow depths as the spatial resolution (125 x 

125 km
2
) is too large. 

 

However, the joint inversion results (see Fig. 4, end of 

paper) clearly show the presence of high Vs layers 

(≥3.7 km/s) at certain localities across the BC, as well 

 

Figure 2. Gravity models of (a) Meyer and De Beer 

(1987), and (b) Webb et al. (2004), reproduced from 

Webb et al. (2004). (c) Locations of the broadband 

stations within and surrounding the BC: SASE (solid 

circles), GSN (solid square) and SANSN (solid 

triangle). The gravity model profile is shown by the 

solid line EF. The area marked BS is the Molopo 

Farms Complex and represents one of the Bushveld 

satellites. The gray-shaded regions show the 

Kaapvaal Craton. Terrain and political boundaries are 

shown by dashed black and gray lines, respectively. 
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as a 45 km deep Moho discontinuity in the centre of 

the BC (i.e., around station SA47) (see Fig. 1b). The 

joint inversion results were used to derive a density 

model using an empirical Vs–density relationship 

(Christensen and Stanley, 2003). Minor adjustments of 

the thicknesses of the upper crustal layers in the 

density model produce a model consistent with the 

gravity model by Webb et al. (2004) (see Kgaswane et 

al., 2012). Therefore, the seismic results obtained in 

this study are broadly consistent with the “continuous-

sheet” model of Webb et al. (2004). However, a 

synthetic experiment on receiver functions for station 

SA47 indicated that the composition of the upper 

crustal layer in the centre of the BC is quite variable, in 

variance with both the Webb et al. (2004) density 

model and this study. 

 

CONCLUSIONS 
 

The Vs model derived from Rayleigh wave group 

velocity tomography has insufficient resolution to 

definitively image the BC. However, the 1-D Vs 

models obtained by jointly inverting high-frequency 

receiver functions (f≤1.25 Hz) and Rayleigh wave 

group velocities (2–60 sec period) for 16 broadband 

seismic stations spanning the BC indicate:  

1. The crust beneath the centre of the BC is ~45 km 

thick, about 5–8 km thicker than the cratonic 

regions adjacent to the BC. 

2. Vs≥4.0 km/s is found over a substantial portion of 

the lower crust (≥30 km depth) beneath the BC, 

indicative of a highly mafic lower crust. 

3. There could be mafic lithologies in the upper crust 

with Vs≥3.7 km/s. 

 These results support a “continuous-sheet” model for 

the BC (e.g., Webb et al., 2004) as opposed to a 

“dipping-sheet” model (e.g., Meyer and de Beer, 

1987). However, detailed modelling of receiver 

functions within the centre of the complex indicates 

that the mafic layering maybe locally disrupted by 

thermal diapirism triggered by the emplacement of the 

BC at ~2060 Ma (Uken and Watkeys, 1997) and/or 

metamorphism associated with a ~2040 Ma intraplate 

event (e.g., Alexandre et al., 2006, 2007)  
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Figure 1 (a). Map of the Bushveld Complex 

showing simplified geology and its six limbs – the 

Eastern, Western, Far Western, Southeastern and the 

two Northern limbs (map modified from the 1:250,000 

geology map of South Africa). The numbers 1, 2, 3, 4 

and 5 show the position of some of the domes, and the 

numbers 6, 7, 8, 9 and 10 show the location of alkaline 

intrusions. The location of 16 broadband seismic 

stations for which Vs models are reported are shown. 

They are the permanent stations, LBTB and SLR and the 

temporary stations with prefix “SA”. (b). Map of 

southern Africa showing the locations of earthquakes 

(open circles) used in this study.  The solid black 

Figure 3 (a–g). Horizontal slices through the shear 

wave velocity model shown for depths of 2, 4, 6, 8, 10, 

12 and 15 km. The dashed lines on the maps i.e., A–A
’
, 

B–B
’
, C–C

’
 are the selected profiles for the vertical 

cross-sections. The vertical cross-sections also do not 

reflect a clear correlation of the layering with the surface 

mafic exposures. 
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Figure 4. Vs profiles from joint inversion results showing Moho depths and details of the velocity structure in 

the upper and lower parts of the crust. The letters on top of each profile correspond to the backazimuths at which 

the receiver functions were stacked (see Kgaswane et al., 2012). The dashed ellipses enclose an area of the upper 

crust from 0 to 10 km depth. Crustal thicknesses are indicated with horizontal lines and numbers in km. Lower 

crustal layers with Vs≥4.0 km/s are shaded, and reference lines at 3.5 km/s (gray solid), 4.0 km/s (black solid), 

4.3 km/s (dotted) and 4.5 km/s (dashed) are shown on each profile. 


