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Abstract

In this paper we introduce the idea of combining arti�cial compressibility (AC) with quasi-Newton (QN) methods
to solve strongly coupled, fully/quasi-enclosed �uid-structure interaction (FSI) problems. Partitioned, incompressible,
FSI based on Dirichlet-Neumann domain decomposition solution schemes cannot be applied to problems where the �uid
domain is fully enclosed. A simple example often provided in literature is that of a balloon with a prescribed in�ow
velocity. In this context, arti�cial compressibility (AC) is a useful method by which the incompressibility constraint
can be relaxed by including a source term within the �uid continuity equation. The attractiveness of AC stems from
the fact that this source term can readily be added to almost any �uid �eld solver, including most commercial solvers.
Once included, both the modi�ed �uid solver and structural solver can be treated as �black-box� �eld operators. AC
is however limited to the class of problems it can e�ectively be applied to. For example, AC is an e�cient solution
strategy for the simulation of blood �ow through arteries, but performs poorly when applied to the simulation of blood
�ow through an opening heart valve. The focus of this paper is thus to extend the application of AC by including an
additional Newton system accounting for the missing interface sensitivities. We do so through the use of a multi-vector
update quasi-Newton (MVQN) method, where the required system Jacobians are approximated rather than explicitly
computed. In so doing, we continue to facilitate the notion that the AC modi�ed �uid �eld solver and solid �eld solver
can be treated as �black-box� solvers. We aim to demonstrate the improved performance of the combination of AC+QN
when compared to AC applied in isolation.

Keywords: Fluid-structure interactions, partitioned solver, arti�cial compressibility, quasi-Newton methods, implicit
coupling

1. Introduction

Fluid Structure Interaction (FSI) remains an active re-
search �eld in engineering and life science. Speci�cally,
incompressible-�ow FSI problems are the focus of many
publications. For these types of problems, partitioned-
solution schemes remain popular as they allow for the re-
use of existing �uid and solid solvers. Coupling schemes
that allow for the use of �black-box� solvers further increase
the range of valid solver choices. While these schemes
aren't always competitive in comparison with monolithic
solvers [11], several coupling schemes have been proposed
that can e�ciently solve strongly-coupled-incompressible
FSI problems [4, 12, 14, 15, 17, 19, 20, 22, 26].

The majority of partitioned schemes are based on
Dirichlet-Neumann (DN) domain decomposition. DN
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schemes are classi�ed by the �uid domain interface inher-
iting a displacement/velocity interface condition where in-
terface tractions (Neumann conditions) are imposed along
the solid domain interface. One particular limitation of
DN based algorithms arise when considering fully enclosed,
incompressible �uid domains, coined by Küttler et al. [21]
as the �incompressibility dilemma�. An incompressible
�uid domain with a prescribed inlet �ow and fully en-
closed by a Dirichlet type interface manifests itself as an
ill-posed problem. Common examples of the incompress-
ibility dilemma include balloon in�ation type problems.
Numerical di�culties however are also present when con-
sidering quasi-enclosed problems, for example �ow through
a collapsible tube or the simulation of opening and closing
heart valves.

Several potential solutions to the incompressibility
dilemma have been proposed. Küttler et al. [21] suggest
reformulating the solid equations as a volume constraint
problem. Robin-Robin (or Robin-Neumann) boundary
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conditions have been mentioned (though not as of yet
demonstrated) as a plausible solution [3]. Degroote et al.
[13], and Råback et al. [23] have proposed modifying the
continuity equation to include an arti�cial compressibility
term. While these methods are certainly reasonable solu-
tions, they require modi�cations to the source code. To
the best of the authors' knowledge, reversing the direction
of information transfer (i.e. Neumann-Dirichlet boundary
conditions) remains as the only viable means by which
black-box partitioned solutions schemes can allow for fully
enclosed incompressible FSI problems. However, for sti�
structures, the sensitivity of interface forces w.r.t. dis-
placements (and vice versa) become too large for standard
black-box coupling schemes [21].

Arti�cial compressibility (AC) is however an interest-
ing option in the context of black-box solvers. The source
code modi�cations for the implementation of AC is min-
imal, and requires the addition of a scalar source term
to the continuity equation. Most commercial solvers, in-
cluding for example Fluent [1], allow for the addition of
source terms via user de�ned functions, negating the need
to have direct access to the source code. Similarly, if the
source code were available, the AC term can often be in-
cluded without the need for the user becoming involved
with the internal solver speci�c solution procedures. AC as
a method therefore still resides within the �spirit� of black-
box coupling, where almost all stand alone �uid solvers
remain available for use.

When considered as a method in the context of FSI,
arti�cial compressibility (AC/FSI) does have some limita-
tions. The additional source term can be based on a lin-
earized approximation of the solid domain's volume change
in response to a change in pressure [10, 13, 18]. AC/FSI
is therefore well suited to problems where this relation-
ship bears relevance to the nature of the FSI problem, see
for example [18], where AC/FSI was applied to solve for
blood �ow through a bifurcating arterial section. There
are however many problems where this relationship is en-
tirely unsuitable. One such example, as mentioned in [10],
is the simulation of �ow around a �exible beam. A small
localized pressure perturbation at the beam tip will result
in the entire length of the beam deforming (as opposed to a
small localized tip displacement as would be suggested by
the linearized pressure-volume approximation). Further-
more, while the proposed pressure-volume approximation
(which we will describe in greater detail in the sections
to follow) often results in the near optimal computation
of an appropriate coe�cient choice, it is based on a lin-
earized approximation. As such, AC as a method, is often
incapable of accurately accounting for many of the non-
linearities present within an FSI system, especially when
there are large inertial forces present in the structural do-
main sub-problem.

In this paper we propose the possibility of combining
AC with quasi-Newton (QN) methods. The AC/FSI modi-
�cation would allow for problems with fully/quasi-enclosed
domains to be solved. The additional quasi-Newton sen-

sitivities would then further stabilize the method. It does
so by continuing to treat the solid domain solver as a
complete black-box, requiring only interface displacement
information as a function of imposed interface tractions.
Similarly, it treats the AC modi�ed �uid equations as a
black-box.

We will speci�cally focus on the implementation of a
new multi-vector update quasi-Newton method (MVQN)
introduced in [6]. The MVQN method was speci�cally de-
signed for transient strongly coupled partitioned FSI prob-
lems (though the method is likely applicable to a much
broader class of problems). While the primary purpose
of the paper is the introduction of AC/FSI + QN meth-
ods, it serves the additional purpose of proof of robustness
with regards to the newly proposed MVQN approximation
method.

We will demonstrate the performance of the proposed
coupling scheme via numerical experiments, for both fully
enclosed balloon in�ation type problems and a well known
benchmark problem of �ow induced oscillations of a �exi-
ble beam. We will demonstrate that the proposed combi-
nation of AC/FSI+QN methods not only improves on the
performance of AC but can at times yield near-quadratic
convergence rates. The paper will initially introduce
AC/FSI, including the interface test load method to ap-
proximate the AC coe�cients. The new MVQN Jacobian
updating method will then be outlined as well as the appli-
cation of QN methods to AC/FSI. The paper will �nally
conclude with performance evaluations via numerical ex-
amples.

2. Coupled Partitioned FSI Problem

FSI is described by a set of highly non-linear coupled
equations involving both a �uid and solid domain, ΩF

and ΩS respectively. The two domains share a common,
non overlapping interface ΓFSI. In an abstract formulation,
each of the respective �eld solvers may be viewed as an in-
terface operator. The solid solver is therefore an interface
operator S mapping a given interface force vector fF,n+1

Γ

to interface displacements

dS,n+1
Γ = S

(
fF,n+1

Γ

)
(1)

where dS,n+1
Γ is the interface displacement vector at time

step n + 1. Similarly, the �uid �eld solver is represented
by a mapping operator F such that

fF,n+1
Γ = F AC

(
dS,n+1

Γ

)
. (2)

The �uid �eld operator F denotes both the solution step
of the �uid �eld variables as well as the mesh movement of
the �uid domain nodal coordinates. The subscript AC
is included here to indicate that the �uid operator in-
cludes the additional arti�cial compressibility source term.
In this paper we limit our discussion to partitioned FSI
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based on �uid equations that are described within an Ar-
bitrary Lagrangian-Eulerian (ALE) framework, described
in greater detail in the section to follow.

For the FSI problem, it is essential that both the kine-
matic and dynamic continuity be satis�ed at all times
along the interface. Satisfying kinematic continuity en-
sures mass conservation where dynamic continuity leads to
the conservation of linear momentum. In order to guaran-
tee energy conservation, in a partitioned setting, it there-
fore becomes important to iterate on the two domain so-
lutions (1) and (2) to within a speci�ed convergence tol-
erance. In the case of no-slip boundary conditions on the
moving interface, kinematic continuity states that the �uid
�ow velocity at the interface uΓ equals the boundary dis-
placement/velocity

uΓ =
∂dΓ

∂t
(3)

and dynamic continuity states that the interface stress
states σ are equal at the interface,

σSΓ · n = σFΓ · n (4)

where n is the respective interface normals and the super-
scripts indicate the solid (S) or �uid (F ) domains.

2.1. Arti�cial Compressibility (AC)

Arti�cial compressibility in the context of �uid struc-
ture interactions (AC/FSI) was originally introduced by
Riemslagh et al. [24] in a 1D FSI framework as a means
by which to stabilize the coupling between incompress-
ible �uids and elastic walls. The method has since been
applied to more complex problems [13, 18, 23]. AC/FSI
can be viewed as a variation of the original AC algorithm
�rst proposed in [7] as a means to couple the momentum
and continuity equations and in turn stabilize incompress-
ible Navier-Stokes equations. With regards to AC/FSI,
a pressure time derivative is inserted into the continuity
equation, where this additional term is based on a physi-
cal approximation of the pressure-volume response of the
structure. Not only does this additional term have a sta-
bilizing e�ect on the non-linear FSI equations, but it also
serves as a means by which to resolve the incompressibility
dilemma.

In order to introduce the AC modi�cations, let us �rst
de�ne our �uid equations which form the basis of our �uid
interface operator F . The incompressible Navier-Stokes
equations, in an Arbitrary Lagrangian-Eulerian (ALE)
framework that accounts for the moving �uid domain, is
given by

∂u

∂t
+ (u− um) · ∇u− ν∆u+∇p = f (5)

∇ · u = 0. (6)

Here u is the �uid velocity, um the ALE-coordinate sys-
tem velocity at a given reference position, p the kinematic

pressure, ν the kinematic viscosity and f accounts for the
body forces.

The basic idea of arti�cial compressibility applied to
FSI, is to modify the continuity equation (6) by inserting
a pressure time derivative such that

β

(
∂p

∂t

)
+∇ · u = 0 (7)

where β is the arti�cial compressibility coe�cient. Fol-
lowing the work of Råback et al. [23], (7) is equivalent to
allowing the �uid density to vary with pressure such that
dρ/ρ = βdp. Inserting the pressure density relation into the
compressible �ow continuity equation ∂ρ/∂t+∇·u = 0, and
neglecting the spatial derivative of ρ yields a continuity
equation of the form given in (7).

Equation (7) does not require additional pseudo-
iterations to solve as suggested by [21]. Instead the so-
lution can be viewed as an iteration trick, where the time
derivative of pressure is approximated in a given iteration
via

β
(
pn+1
k − pn+1

k−1

)
∆t

+∇ · un+1
k = 0, (8)

where subscript k represents the current FSI coupling it-
eration in time step n + 1 and ∆t is the simulation time
step size. Therefore, while the incompressible continu-
ity equation (6) is initially violated, at convergence for
time step n + 1, the AC compressibility term disappears
as pn+1

k → pn+1
k−1 , thereby satisfying the original continuity

equation.
The AC/FSI method relies heavily on an optimal choice

of β. Assuming the structure is de�ned by a linear set of
equations, it would be possible to de�ne a linear relation-
ship between the �uid domain volume change ∆V related
to a corresponding interface pressure change ∆p such that

∆V

V
= β∆p. (9)

Using the relation (9), it is then possible to construct an
analytical expression for β (see for example [23] for �ow
through a �exible tube). Analytical expressions are how-
ever limited to simple geometries. To allow for the AC/FSI
method to be generally applicable to more complex geome-
tries, both Järvinen et al. [18] and Degroote et al. [13]
have suggested using an interface test load method.

Given two di�erent pressures p1 and p0 applied along
the wetted interface ΓFSI, two distinct volumes V1 and V0

would be obtained. β may then be approximated by a
�nite di�erence approximation

β =
1

V0

(V1 − V0)

(p1 − p0)
. (10)

While the approximation (10) suggests application of
AC throughout the entire enclosed domain, AC can equally
be applied along the interface only. Interface-arti�cial-
compressibility (IAC), following the work of Degroote et
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al. [13] limits AC to the elements adjacent to the in-
terface. While AC throughout the domain signi�cantly
simpli�es the numerical properties of the Navier-Stokes
equations, IAC has been demonstrated to produce slightly
superior FSI convergence behavior [5]. In fact, it is pos-
sible to draw some parallel similarities between IAC/FSI
and Robin boundary conditions, where the �uid equations
along the interface are augmented with an approximation
of the solid domain sensitivities [10]. For the purposes of
this paper we will exclusively use IAC.

The IAC approximation of β requires the projected
volume change of the interface elements. For small defor-
mations, a numerically convenient way in which to approx-
imate β based on this projected volume change is

β =
∆L

h

1

∆p
(11)

where ∆L = ∆dΓ ·nΓ, the perpendicular change in inter-
face displacement. h is the equivalent �uid element height
which can be computed as any given element's interface
volume to area ratio in 3D (or area to length ratio in 2D)

hi =
Vi
AΓ,i

, for i = 1, 2, ..., NΓ.

It is possible that β may be computed as a constant (or
averaged value). We however treat β as a non-uniform �eld
allowing for better approximations for solid domains that
have either varying structural properties or geometrically
varying volume-pressure relationships.

It should be noted that the choices for p1 and p0 have
little e�ect on the computed approximation of β. In order
to allow for a fair comparison of AC, the coe�cient β is
recomputed at the start of each time step. If the normal
interface displacements are appropriately transfered to the
�uid interface, then (11) can be computed using two struc-
tural solver calls only, as opposed to two full FSI iterations.
Furthermore, while not demonstrated in the results to fol-
low, when AC/FSI is combined with QN methods, there is
very little di�erence in performance of AC/FSI+QN if β
is adaptively updated each time step or computed once-o�
at the start of the simulation (and remains static for the
duration of the simulation).

As a �nal note, shear stresses are ignored within the
IAC approximation, but not in the actual simulation. This
can be done without overly a�ecting the stabilizing e�ect
of AC because pressure forces along the interface, for most
FSI problems, dominate (shear forces typically account
in the order of 1 percent of the total interface forces).
AC/FSI is therefore unsuited to problems that are shear
driven.

2.2. IAC/FSI + quasi-Newton

IAC is a useful way in which the �uid equations can be
modi�ed to allow for the solution of fully/quasi-enclosed
problems. The method is however largely only applicable
to problems where the pressure-volume relationship bears

relevance to the nature of the coupled problem. Further-
more, while the test load method provides a means by
which to compute the optimal (or near optimal) value for
the AC coe�cient, AC/FSI includes only a linearized ap-
proximation of the structural system behavior. Interrogat-
ing equations (7) and (11) it may be noted that AC/FSI
and the test load method does not for example account
for the structural inertial terms. Therefore, the ability to
compute what is demonstrably the near optimal AC coef-
�cient, does not guarantee that AC/FSI will not produce
sub-optimal convergence behavior for certain problems.

In this section we propose augmenting the IAC/FSI
method through the use of quasi-Newton (QN) methods.
The IAC terms included into the �uid equations are an ap-
proximation of the solid domain's sensitivities w.r.t. �uid
interface pressures. IAC in isolation however ignores the
additional �uid sensitivities w.r.t. the domain displace-
ments. The aim therefore of the additional QN terms is
to include these sensitivities. We will show that not only
will this reduce the sensitivity to the computed values of
β, but will also provide improved convergence behavior of
IAC/FSI, thus potentially allowing IAC to be applied to
a much larger range of problems.

In order to describe the QNmethod, let use �rst rewrite
our �uid system mapping operator (2) as a root �nding
problem, such that

rF = FAC (d (f))− f = 0, (12)

where the functional dependency of displacements on forces
is now indicated by d (f). We can now de�ne a Newton
system such that

[
∂F
∂d

∂d
∂f − I

∂F
∂d

]{
∆f
∆d

}
= [−F (d (f)) + f ] , (13)

which re-arranged results in a block-Newton equation to
solve for the �uid force update

[
∂F

∂d

∂d

∂f
− I

]
∆f = − (F (d (f))− f)− ∂F

∂d
∆d. (14)

An update for the interface tractions is then found by

fn+1
k+1 = fn+1

k + ∆f . (15)

The updated interface tractions fn+1
k+1 is then transferred

to the solid interface solver, which is now based on the
additional sensitivities of the �uid solver.

It is important to note here, because of the QN update
step, that the starting pressure for the modi�ed AC equa-
tions be updated as well. Recall from equation (8) that
the modi�ed �uid continuity equation is now
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β
(
pn+1
k − pn+1

k−1

)
∆t

+∇ · un+1
k = 0. (16)

At the start of the next FSI coupling iterate in time step
n + 1, pn+1

k−1 will have been modi�ed because of the QN

update (15). pn+1
k−1 should therefore also be modi�ed based

on the pressure component of ∆f such that

pn+1
k−1,new = pn+1

k−1 + ∆f · nΓ. (17)

Without this pressure correction a Newton-like method in
conjunction with AC/FSI cannot work.

In order to solve the block-Newton system described by
equation (14), we now wish to construct approximations
of the �uid and solid system Jacobians JF = ∂F

∂d = ∂f
∂d

and JS = ∂S
∂f = ∂d

∂f . In this paper we will make use of

the multi-vector update quasi-Newton (MVQN) method
introduced in [6]. The MVQN method has demonstrated
itself to be both robust and e�cient for a large class of
partitioned transient FSI problems.

In order to facilitate the discussion, let us assume that
we have completed k FSI coupling iterations within time
step n + 1. We have therefore performed k �uid solver
calls, where k interface displacements were transferred to
the �uid solver which subsequently provided k correspond-
ing interface tractions. Using the displacement and trac-
tion observations, we can now construct two di�erencing
observations matrices

∆Dn+1
F = [dF,k−1 − dF,k,dF,k−2 − dF,k, ...,dF,1 − dF,k]

(18)

∆F n+1
F =

[
fF,k−1 − fF,k,fF,k−2 − fF,k, ...,fF,1 − fF,k

]
,

(19)
where the subscript F denotes information with regards to
the �uid �eld solver. To simplify notation, the superscript
n+ 1 was dropped from each of the respective observation
vectors.

The MVQN method is based on an iterative updating
scheme, whereby all the information/observations from the
current time step is exactly matched, while information
from previous time steps is matched in a minimum norm
sense. Starting with an initial Jacobian from the previous
time step Jn, we iteratively update the Jacobian based on
an update rule of the form

Jn+1
F,k+1 = J̃

n+1

F,k+1 + JnF , (20)

where J̃
n+1

F,k+1 denotes the Jacobian update approximation.

We can then construct a secant equation for J̃
n+1

F,k+1

J̃
n+1

F,k+1∆F n+1
F = ∆Dn+1

F − JnF∆F n+1
F , (21)

where solving for the minimum of
∣∣∣∣∣∣J̃n+1

F,k+1

∣∣∣∣∣∣ subject to the

constraint of (21), we obtain the Jacobian update rule

Jn+1
F,k+1 = JnF +

(
∆Dn+1

F − JnF∆F n+1
F

)
((

∆F n+1
F

)T
∆F n+1

F

)−1 (
∆F n+1

F

)T
. (22)

||J || refers to the norm on the vector space of matrix J .
It is important to note that the matrix inversion ()−1 in
equation (22) is of size [k × k] (the number of coupling
iterations within the given time step). While the matrix
system is su�ciently small to warrant being solved us-
ing matrix inversion, it is advised that the linear system((

∆F n+1
F

)T
∆F n+1

F

)−1 (
∆F n+1

F

)T
rather be solved via

factorization, to limit the e�ects of ill-conditioning should
any be present.)

The displacement vectors in (18) would typically be
the displacements received as output from the solid �eld
solver transferred to the �uid interface. However, because
of arti�cial compressibility, there is in fact now an ad-
ditional �perceived� displacement �eld in addition to the
true boundary displacement. This additional displacement
�eld can be included to the �uid displacement vectors such
that

dF,k = dF,k + uAC , (23)

where uAC incorporates the normal displacement accounted
for by AC. The uAC term may be approximated by

un+1
AC,k,i =

(
βi

(
pn+1
F,k,i − p

n+1
F,k−1,i

)
hi

)
· nΓ,k,i

for i = 1, 2, ..., NΓ, (24)

where NΓ is the number of elements along the inter-
face. The additional uAC includes the β dependency
into the �uid system quasi-Newton approximation. The
term in essence accounts for the fact that FAC is not
only dependent on displacement, F (d), but is also func-
tionally dependent on the modi�ed starting pressure, i.e.
FAC

(
dS,k,pF,k−1

)
. However, since JF is already only

based on an approximation, uAC can be safely ignored
and will only minimally a�ect the overall convergence be-
havior. In the numerical examples we will illustrate the
e�ect of including the additional AC displacement �eld,
referred to as option A, where option B will refer to the
omission of the uAC term.

In a similar fashion, JS is approximated by construct-
ing two observation matrices of the interface tractions and
displacements related to the solid �eld solver

∆F n+1
S =[

fS,k − fS,k+1,fS,k−2 − fS,k+1, ...,fS,1 − fS,k+1

]
(25)
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∆Dn+1
S =

[dS,k − dS,k+1,dS,k−2 − dS,k+1, ...,dS,1 − dS,k+1] . (26)

The solid Jacobian JS is then similarly approximated via
the update

Jn+1
S,k+1 = JnS +

(
∆F n+1

S − JnS∆Dn+1
S

)
((

∆Dn+1
S

)T
∆Dn+1

S

)−1 (
∆Dn+1

S

)T
. (27)

Because the MVQN method requires that at least two
coupling iterations have been performed in order to con-
struct a Jacobian approximation, for the �rst iteration of
the �rst time step a �xed point iteration with only AC
present is employed. The Jacobian update rules (22) and
(27) further requires the availability of Jn. Since we do
not have an available starting Jacobian, we set J0

F = [0]
and J0

S = [0] for the �rst iteration in time step 1. For
the �rst iteration of subsequent time steps the approxi-
mate Jacobian from the preceding time step is used but
the update formulae are only applied from iteration count
2 onwards. A summary of the IAC/FSI+MVQN algorithm
is provided as pseudo code in Appendix A.

The MVQN updating method is ideally suited to ap-
proximate Jacobians for transient problems. In the ab-
sence of exact information, any closely related informa-
tion is often bene�cial. The MVQN method allows for the
approximations to be constructed using all the informa-
tion from all the completed time steps (including all itera-
tions within each of these time steps). If any information
from the current time step falls along the same direction
as information from a preceding time step, the older in-
formation is naturally replaced. This in turn removes the
possibility of constructing approximations based on con-
tradictory information. Furthermore, unlike other similar
quasi-Newton methods, the MVQN method will always
be able to exactly match all observations from the cur-
rent time step. Information from previous time steps are
matched in a minimum-norm sense only and is as a conse-
quence naturally less emphasized. The method therefore
has a certain inherent consistency with Newton's method
w.r.t. to the current time step (the point about which the
equations are linearized). For a comparison of the MVQN
method to more established quasi-Newton methods includ-
ing Broyden's method and the IBQN-LS reduced order
modeling method applied to partitioned FSI problems see
[6].

As a side note, several publications pertaining to DN
partitioned schemes base the system Jacobians on the dis-
placement residual equation (see for example [20]). A sim-
ilar notion here would be to solve for the residual equations
of the �uid �eld forces such that

[
∂r

∂f

]
k

∆f = −rk, (28)

where rk = fk − fk−1, and
[
∂r
∂f

]
k
is the Jacobian for

the current coupling iteration. The Jacobian for the resid-
ual equations can then be approximated using the MVQN
method or other similar QN methods. The linearized sys-
tem described by (28) can be advantageous from a nu-
merical e�ciency perspective. The inverse of the system
Jacobian can be directly approximated thereby removing
the need for a linear system solve. From our experience
however, this is not a feasible alternative when consider-
ing the modi�ed AC �uid equations. Because of the AC
terms, the �uid interface forces are now directly linked to
displacement. The relation between two successive inter-
face tractions (on the basis of directions and magnitudes
alone) are therefore insu�cient to describe the system be-
havior.

To better explain this, let us consider the �uid equa-
tions without AC. Given a particular displacement dn+1

Γ,k ,
with the exclusion of the AC term, will always produce
the same fn+1

Γ,k . On the other hand, with the inclusion of

the AC term, a given displacement dn+1
Γ,k may now yield

di�erent interface forces depending on the interface force
guess from the previous iteration. Hence the necessity to
include the system sensitivities of forces w.r.t. displace-
ments and displacements w.r.t. to forces, as described by
the block-Newton equation (14).

3. Test Problems

In this section we analyze arti�cial compressibility as
well as the combination with quasi-Newton methods, via
numerical examples. OpenFOAM [2], an open source �-
nite volume solver, is used for the �uid domain solution,
while Calculix [16], an open source �nite element method
(FEM) solver, was used for the solid domain. The primary
focus of the paper is on a comparison and analysis of the
computational e�ciencies and convergence behavior of the
various coupling strategies. Issues surrounding solution
accuracies and temporal convergence receives only rudi-
mentary attention as both AC/FSI and QN methods have
independently been veri�ed in several publications. The
�uid solver, including the additional AC terms, is based
on a modi�ed pimpleDyMFoam solver (available in Open-
FOAM). The time integration schemes employed is a �rst
order backward-Eular scheme for the �uid domain, and a
generalized alpha scheme for the solid domain. It is there-
fore to be expected that the overall temporal convergence
behavior of the FSI solution scheme be limited by the �uid
solver.

Both mesh movement and interface information trans-
fer is performed using radial basis function interpolation.
Mesh movement is performed such that the entire �uid do-
main is included thereby removing the necessity for remesh-
ing [8]. Interface information transfer is performed using a
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Figure 1: 2D Flexible beam problem description .

consistent formulation, thus allowing for a constant stress
state to be exactly transferred (i.e. satisfy a patch test)
[9].

The convergence criterion employed for the test prob-
lems is of the form

||dΓ,k+1 − dΓ,k||√
m

≤ ε, (29)

where m is the number of DOFs along the interface and is
included to remove the dependency of the solution resid-
ual to the interface mesh size, and ε is a suitably chosen
constant.

3.1. 2D Flexible Beam

The �rst problem we analyze is �ow around a �xed
cylinder, with an attached �exible beam. The problem
was �rst proposed by Turek et al. [25] with fairly substan-
tial numerical veri�cations. The �exible beam problem,
as already mentioned in [10], represents an example of a
class of problems for which AC/FSI is not well suited to
solve. We therefore hope to demonstrate that the inclu-
sion of the additional QN terms are su�ciently accurate
to provide e�cient coupling behavior.

The problem layout and material descriptions is pro-
vided in Figure 1. In this paper we only analyze the tran-
sient FSI problem referred to as FSI2 in [25]. FSI2 con-
sists of a 0.02m thick, 0.35m long �exible beam attached
to a �xed circular cylinder with a 0.1m diameter. The
�uid domain has a parabolic in�ow with mean velocity of
Ū = 1.0m

s
. The properties of the problem is such that the

�exible beam oscillates as a result of vortex development
following the �xed cylinder. The center of the cylinder
is by design constructed to be non-symmetric to remove
dependence on numerical errors for the onset of any oscil-
lations. The inlet �ow velocity for the transient FSI2 is
slowly ramped up for t < 0.5s via (1− cos (πt/2)) /2. The
top, bottom, �xed cylinder and �exible beam walls are de-
�ned as non-slip boundaries, where a reference pressure of
0 is prescribed at the domain outlet.

The �uid domain is discretized using 1725 linear ele-
ments, where the solid domain is de�ned with a geomet-
rically non-linear, plane strain formulation with 72 full-
integration, quadratic elements. We make use of the com-
paratively coarse discretization to allow for the use of com-
paratively large time step sizes. The problem is solved
here for four di�erent time step sizes of ∆t = 0.01s, ∆t =
0.005s, ∆t = 0.0025s and ∆t = 0.001s. A convergence

(a)

(b)

Figure 2: (a) Beam tip displacement of point A for the
�exible beam problem shown for di�erent time steps, along
with (b) a snapshot of the beam deformation with pressure
contours shown here for time step 12.58s.

criterion of ε = 10−8 is used across all time step sizes. A
plot of the beam tip displacement (point A) is shown in
Figure 2, along with a snapshot of the domain deformation
and pressure contours at time step 12.58s.

In Table 1 we compare the number of coupling iter-
ations required by each of the coupling schemes as well
as a summary of the beam tip displacement for all three
time step sizes. Because IAC/FSI is so poorly suited to
solve this class of problems, and the problem is not fully
enclosed thus enabling standard coupling techniques to be
used, we additionally compare the coupling performance of
using quasi-Newton methods only. For a more detailed de-
scription of the MVQN and it's application to partitioned
FSI see [6].

From the results, it is immediately evident that
IAC/FSI in isolation is severely limited. For the two
coarse time step sizes, the scheme fails to converge entirely.
For ∆t = 0.0025s, the relative change in displacement
between two time steps is su�ciently small to allow for
IAC/FSI to provide convergent results, albeit with a very
large number of required iterations. The performance of
the IAC/FSI+MVQN coupling scheme compares very well
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Figure 3: Fully enclosed balloon in�ation test problem
setup.

with the coupling behavior of using only MVQN. There-
fore, despite the fact that the AC terms included within
the continuity equation, and the additional test load ap-
proximation is in no way suited to solve for a �exible beam
type problem, the combination of techniques does allow for
a comparatively e�cient coupling methodology.

3.2. Balloon In�ation

We analyze here a balloon in�ation test problem �rst
introduced by Küttler et al. [21]. The problem consists of
a fully enclosed �uid domain with an inlet �ow velocity.
The aim of the test problem is to �rstly outline the fea-
sibility, associated performance and the limitations of the
IAC method. We then demonstrate, by comparison, the
potential merits of IAC in conjunction with quasi-Newton
methods.

The in�ation test problem is outlined in Figure 3. The
problem consists of a 3m×3m internal volume, enclosed by
a 0.2m thick shell. A parabolic in�ow velocity is applied at
the inlet, which is slowly ramped for t < 1s from Umax in =
0 to 1m/s via the sinusoidal curve (sin (π (t+ 3/2)) + 1) /2
to avoid spurious pressure oscillations which may occur
given a large initial inlet �ux. The �uid density and kine-
matic viscosity used for the numerical experiment is ρf =

1.1kg/m
3
and ν = 0.146m2/s. The structural domain is

described by a geometrically non-linear formulation and is
solved using 59 quadratic full integration elements, where
the �uid domain is solved using 1100 linear elements. The
simulation is solved for a time step size of ∆t = 0.05s.

In order to demonstrate the various associated proper-
ties of IAC, we use two di�erent choices of material prop-
erties. The �rst test concerns itself with a comparatively
high elastic modulus with a high solid to �uid density ratio.
For the second test, likened to the complexity of biome-
chanics problems, the solid density is reduced to the same
as the �uid density. The two sets of solid material proper-
ties are provided in Figure 3.

(a)

(b)

Figure 4: Balloon in�ation results for solid test 1 showing
(a) ux contour plot at 10 seconds and (b) pressure level at
point A.

A snapshot of the velocity for Test 1 is shown in Fig-
ure 4, along with a plot of pressure at point A. It should
be noted, that while reducing the density in Test 2 compli-
cates the problem from a coupling perspective, the pres-
sure at point A remains identical to that of Test 1. The
internal pressure state is a function of the structural stress
state, which for the balloon in�ation problem is a function
of the elastic properties. The boundary �ux error made in
each of the time steps is shown in Figure 5 (for a conver-
gence tolerance of ε < 10−7). The relative boundary �ux
error can be related directly to the volume error made in
each time step, as the �ux along the enclosed interface
(de�ned by the deformation of the solid interface), should
equal the total �ux entering the domain (based here on
a prescribed inlet velocity). It is not possible to formu-
late an analytical solution to the problem, primarily due
to the transient nature and the higher order wall motions
that occur as a result of the rapidly increasing internal
pressure. The relative �ux error in each time step does
however con�rm that continuity remains satis�ed (within
the limit of convergence tolerance). The maximum �ux
error is 1.83× 10−7 with a cumulative error of 2.73× 10−6

(which can of course be further improved should the con-
vergence tolerance, time step or discretization be re�ned).

Performance plots of the investigated methods are
shown in Figure 6 along with a summary of both the num-
ber of iterations and relative CPU time shown in Table 2.
The IAC/FSI method allows for the solution of a fully
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Table 1: Comparison of the minimum, maximum and mean number of iterations required for a convergence tolerance
of ε = 10−8 for the �exible beam benchmark problem. (-) indicates non-convergence and the beam tip displacement at
point A (uy) is provided in the form of mean±amplitude[frequency] and compared to the reference results of Turek et
al. [25].

# Iterations MVQN Only IAC/FSI IAC/FSI + MVQN uy
[
10−3

]
Min 3 � 3

∆t = 0.01s Max 5 � 5 1.44± 68.3 [1.9]
Mean 3.28 � 3.63
Min 3 � 3

∆t = 0.005s Max 5 � 5 1.40± 74.9 [1.9]
Mean 3.18 � 3.46
Min 3 3 3

∆t = 0.0025s Max 5 129 5 1.31± 77.8 [1.9]
Mean 3.27 50.58 3.48
Min 3 3 3

∆t = 0.001s Max 5 14 6 1.20± 79.2 [1.9]
Mean 3.32 6.98 3.60

Reference [25] 1.23± 80.6 [2.0]

Figure 5: Boundary �ux error made in each of the time
steps for the balloon in�ation test problem. The cumula-
tive error across the entire simulation is 2.73× 10−6 with
a maximum error of 1.83× 10−7.

enclosed, incompressible FSI problem. The performance
is however approximately improved by a factor 2 through
the inclusion of the additional QN terms. For test 2, the
unit �uid-solid density ratio, along with the sti� structure
results in a problem which initially provides serious di�-
culty for IAC in isolation. This can primarily be attributed
to the material properties resulting in a coupled prob-
lem with very high interface gradients, and an inability
of IAC/FSI to properly account for all the non-linearities
present within the coupled FSI problem. The addition of
the extra QN sensitivities are however su�ciently accurate
to overcome this limitation.

It is important to understand that the convergence
rates shown in Figure 6 are only representative of the typi-
cal convergence behavior for each of the methods. At time
step 150, option A (IAC/FSI+MVQN) is capable of pro-
ducing near quadratic convergence. However, this will not
be the case for all time steps. It does nevertheless pro-

vide an indication of how good the MVQN Jacobian ap-
proximations can be. Additionally, the comparitive results
between Test 1 and Test 2 illustrate that the additional
uAC term has little in�uence on the coupling behavior of
IAC/FSI+MVQN. For Test 1 we observe a minor bene�t
if it is included but not so for Test 2.

Lastly, in Figure 7 we perform an exhaustive search
over 3 di�erent time steps illustrating the e�ect β has on
the performance of IAC/FSI. The intent of the search is
to illustrate that there is a very narrow bandwidth for ac-
ceptable AC coe�cients. In all the times analyzed here,
the test load method does provide the optimal/near op-
timal solution to β. Despite this, AC/FSI in isolation
does su�er from sub-optimal convergence rates. The in-
clusion of the additional QN terms not only removes this
narrow-bandwidth w.r.t. the computed values of β, but
also reduces the overall number of coupling iterations.

3.3. Damped Structural Instability Fully Enclosed Test Prob-
lem

The last problem we analyze is a more interesting fully
enclosed domain problem than the one analyzed in Sec-
tion 3.2. The problem's geometry is based on the test
problem introduced in [21] and is depicted here in Figure 8.
The problem consists of a curved �uid domain which is in
turn fully enclosed by thin structural membranes of di�er-
ing sti�nesses. The �uid domain is loaded with a gravita-
tional body force of gy = −1m

s2
and asymmetrical parabolic

in�ows is prescribed, with the right in�ow being slightly
higher. The velocities are slowly ramped up for t < 1.0s
via the sinusoidal curve, (sin (π (t+ 3/2)) + 1) /2. The re-
spective short edges of the structural domains are �xed.
The structure is described by a geometrically non-linear
FEM formulation and is modeled with 100 quadratic, full
integration elements where the �uid domain is modeled
using 3600 linear FV elements. The time steps utilized for
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Table 2: Comparison of the number of iterations and relative computational time for the balloon in�ation test problem.

Test 1 Test 2

Mean Min Max CPU Mean Min Max CPU

IAC/FSI 7.44 3 9 2.07 10.65 6 21 2.45

IAC/FSI+MVQN: Option A 3.98 3 5 1.00 5.07 4 8 1.04

IAC/FSI+MVQN: Option B 4.53 3 6 1.14 4.85 4 8 1.00

(a)

(b)

Figure 6: Performance plots illustrating the number of coupling iterations required for each of the time steps and the
typical convergence behavior for each of the methods (shown for time step 150) for the balloon in�ation test problem

for (a) Test 1 (E = 7 × 105kN/m
2
, ρs = 1000kg/m

3
, ρf = 1.1kg/m

3
) and (b) Test 2 (E = 7 × 105kN/m

2
, ρs =

1.1kg/m
3
, ρf = 1.1kg/m

3
).
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Figure 7: E�ect of β on the number of coupling iterations,
shown for three di�erent time steps. On the left are the
results for test 1 with test 2 results on the right. β for the
exhaustive search is computed as a constant �eld value.
Notice the �ne bandwidth of acceptable values of β for
the IAC/FSI implementation and the smoothing e�ect of
the additional QN terms.

Figure 8: Problem description for the structural instability
fully enclosed domain problem.

the simulation is ∆t = 0.005s with convergence criterion
of ε = 1× 10−7.

The primary idea behind the problem is that as �uid is
introduced into the domain, the top (less sti�) structure
initially deforms to accommodate the additional �uid �ow.
As some critical pressure is reached, the bottom structure
eventually collapses. Just like in [21] we solve the problem
ignoring the potential cavitation e�ects which may arise in
a problem of this nature, and are again primarily interested
in the comparative convergence behavior of the coupling
procedures analyzed here.

In Figure 9 we show the velocities along with the do-
main deformations at various time steps. The correspond-
ing reference pressure at point A is shown in Figure 10.
The results, despite the minor di�erences in problem setup,
correspond qualitatively well to those presented in [21]. As
the �uid domain reaches some critical pressure, the bot-

Figure 10: Plot of the pressure level at point A, for the
curved domain fully enclosed problem.

Figure 11: Total �ux error made within each of the time
steps for the curved domain fully enclosed problem.

tom structure slowly collapses; with the collapse occurring
on the side with a higher in�ow velocity. The collapse
leads to an initial decrease in internal pressure followed by
a period of highly oscillating pressure as the structure and
fully enclosed domain undergo rapid deformations. Again,
to demonstrate that continuity is satis�ed at convergence
within each time step we illustrate the �ux error made in
each time step in Figure 11.

The damped structural instability problem represents
an interesting challenge for the arti�cial compressibility
method. Firstly, we have varying structural sti�nesses
which highlight the need for a non-constant AC coe�cient
along the interface. At the same time, the problem, as
with the balloon in�ation problem, poses a di�culty to
the AC method due the inherent duality in the problem.
Firstly, as the structural domain undergoes large defor-
mations, the internal solid stresses increase, resulting in
an increased resistance to any further deformation. This
is again in contradiction to the increasing inertial forces
due to the high structural densities and relatively high ve-
locities (especially once the snap through of the bottom
structure occurs). The problem is further complicated by
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t=0.5s t=1.0s t=1.5s t=2.0s

t=2.5s t=2.9s t=3.0s t=3.1s

Figure 9: Velocity �elds with structural displacements shown at di�erent time steps for the curved domain fully enclosed
test problem.

Table 3: Comparison of the number of iterations and rel-
ative computational time for the damped structural insta-
bility problem.

Mean Min Max CPU

IAC/FSI 12.21 3 17 2.84

IAC/FSI+MVQN: Option A 4.21 3 5 1.00

IAC/FSI+MVQN: Option B 4.23 3 6 1.00

the �uid body force.
In Table 3 we summarize the comparative performance

of IAC/FSI and IAC/FSI+MVQN. While IAC/FSI in iso-
lation is entirely capable of solving the problem, the perfor-
mance is improved through the additional quasi-Newton
approximations. Figure 12 shows the total number of
coupling iterations for each of the time steps as well as
the representative convergence behavior (shown here for
time step 150). Moreover, as demonstrated previously, the
penalty in omitting the additional arti�cial compressibility
displacement uAC is near negligible.

4. Conclusion

In this paper we outlined the augmentation of AC/FSI
through the inclusion of quasi-Newton methods. We demon-
strated how the inclusion of the AC term enabled the solu-
tion of fully-enclosed, incompressible, FSI problems. De-
spite the test load method providing a reasonable means
by which to approximate the AC coe�cients, the coupling
performance of AC/FSI was demonstrated, to at times
provide sub-optimal convergence for the test problems in-
vestigated in this paper. The additional QN terms in turn
provides a means by which to better account for the variety

of non-linearities present in the system, and consequently
results in an improved convergence behaviour. One of the
main attractions of the AC/FSI method is its ability to
treat the solid solver and the modi�ed �uid �eld solver
as black-box operators, which is retained for the proposed
AC/FSI+QN coupling scheme. The multi-vector update
quasi-Newton (MVQN) method was further demonstrated
to be a suitable choice for approximating the required sys-
tem sensitivities.
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Figure 12: Comparative performance plots for the curved domain, fully enclosed test problem showing the number of
coupling iterations within each time step and the typical convergence behavior (shown here for time step 150).

Appendix A: IAC/FSI + MVQN Algorithm

Algorithm 1 IAC/FSI+MVQN algorithm.

1: t := 0; n := 0

2: fF,0
1 := FAC

(
d0

0

)
; fS,0

1 := fF,0
1 ; dS,0

1 := S
(
fS,0

1

)
3: r0

1 := dS,0
1 − d0

0; J
0
F := [0]; J0

S := [0]

4: while t < tend do:

5: k := 0

6: while
∣∣∣∣rn+1

k+1

∣∣∣∣ > ε do:

7: approximate c using (10) or (11)

8: fF,n+1
k+1 := FAC

(
dF,n+1
k

)
9: if (k > 0) then:

10: compute Jn+1
F using (22)

11: end if

12: if (k > 1 or n > 0) then:

13: solve for ∆f : equation (14)

i.e. (JFJS − I) ∆f = −
(
fF,n+1
k+1 − fS,n+1

k

)
−

JF

(
dF,n+1
k − dS,n+1

k

)
14: pF,n+1

k := pF,n+1
k + ∆f · nΓ

15: fS,n+1
k+1 := fS,n+1

k + ∆f

16: else:

17: fS,n+1
k+1 := fF,n+1

k+1

18: end if

19: dS,n+1
k+1 := S

(
fS,n+1

k+1

)
20: if (k > 0) then:

21: compute Jn+1
S using (27)

22: end if

23: dF,n+1
k+1 := dS,n+1

k+1

24: k = k + 1

25: end while

26: t := t+ ∆t; n := n+ 1

27: end while
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