

Planning Africa Conference 2014

MAKING GREAT PLACES

# **Measuring Access to Primary Health Care:**

Use of a GIS-Based Accessibility Analysis



Hunadi Mokgalaka



# Key topics that will be covered

- Concerns in health care provision
- Addressing provision through service access planning
- What inputs are required?
- Key challenges to application
- Overcoming the challenges
  - City of Johannesburg case
  - Results
  - Findings
- Closing remarks



## **Concerns in Health Care Provision**

- The demand for services will continue to change:
  - Population growth & migration trends.
  - Changing human settlement patterns and demographics.
  - Slow economic growth.
  - Urbanization of poverty.

### Need for:

- Spatial planning that is equitably & realistically based.
- More accessible services closer to where people live.
- Determine service demand to support planning on nature of service and capacity to facilitate service delivery and budget allocation.



# Addressing Provision through Service Access Planning

The basic approach to service access planning: WHO gets WHAT, WHERE and HOW MUCH?

# Objective 1: User focus

Improvement of service accessibility and availability from the perspective of existing and potential customers

Analyse Existing Service
Accessibility and Availability

PROCESS

Explore & adjust facility
locations & sizes in relation to:
• spatial distribution of demand
• threshold targets
• other facilities /clusters/ nodes

Facility size and distribution

# Objective 2: Supplier focus

Attraction of the threshold volume of customers that is needed to cover the overheads and make the service viable



## How does it work?

- Accessibility analysis models the access of residents to facilities - assuming people will go to their nearest facility for service.
- If an analysis is done for a large area, this will show whether provision is:
  - Sufficient and
  - Equitable

..... if both capacity (threshold) and distance parameters are included.



# What inputs are required?

- Data layers used for accessibility analysis:
  - Road network
  - Facility locations with capacity
  - Population distribution
- All three layers interact based on standards to determine what population travel how far to a facility with capacity.
- Indicate potential catchments.
- Map well and poorly served areas.



# **Contribution to Service Delivery**

- Accessibility modelling improved means of measuring facility access and of identifying poorly served areas and backlogs (spatially).
- Serves at a strategic level to:
  - Develop well provisioned cities with well located services.
  - Assist in setting service standards and benchmarks.
  - Improve access to social facilities.
  - Equity in social investment.
  - Minimizing investment in 'white elephants'.
  - Evidence for investment decisions to inform long term plans forward planning.

# **Key Challenges to Application**

 GIS-based accessibility analysis is proving to be a useful tool for service access planning,

#### **BUT**

- Based on untested assumptions in measurement.
- Lack of data inputs in many developing countries.
- This raises the question in how far contemporary GIS accessibility analysis is applicable in South African health planning practice of today?

#### **TWO MAIN CHALLENGES**

- (a) What method is the best in determining health service demand in the absence of accurate databases indicating public versus private health care usage?
- (b) How accurate is a rational choice based model regarding people's actual decisions?

our future through science

# Study Area: City of Johannesburg



# Criteria and processes for public primary health care analyses

| Description         | The facilities selected for the analysis are mainly those that offered public primary     |
|---------------------|-------------------------------------------------------------------------------------------|
| Description         |                                                                                           |
|                     | health care services and acted as first point of contact with the health service delivery |
|                     | system. Attached to the facility data are attribute data indicating the capacity of the   |
|                     | facility.                                                                                 |
| Facilities analysed | 116 primary health care facilities with fixed locations (Clinics and Community            |
|                     | Health Centres)                                                                           |
| Service Demand      | <b>A. Scenario 1</b> = $7 \cdot 124 \cdot 518$ visits per annum                           |
| (Population)        | <b>B. Scenario 2</b> = 7 149 055 visits per annum                                         |
|                     | <b>C. Scenario 3</b> = 7 416 886 visits per annum                                         |
| Supply              | Each facility was separately specified a capacity, i.e. translated into the potential to  |
|                     | accommodate visits (visits to a professional nurse in a facility).                        |
| Travel mode and     | Transport via existing road network, with a distance travel standard:                     |
| access distance     | Facilities must be accessed within <b>5km</b> (National Health Standard)                  |
| Analyses undertaken | i. Model catchment areas of facillities for each scenario based on capacity and           |
|                     | maximum travel distance standard                                                          |
|                     | ii. Compare utilisation data (in the form of headcounts) with the current capacity or     |
|                     | threshold and also with the demand that has been allocated in terms of the                |
|                     | catchment area analysis                                                                   |
|                     | iii. Using the patient register, examine whether the patients used their closest facility |

Travel distance to closest facility





# Facility catchments (Distance & Capacity Constrained) Service Demand Scenarios 1, 2 & 3





## **Findings**

- Clear indication that facilities are very well distributed in the city and that problems are more related to issues of service capacity than to travel distance.
- Different service demand scenarios tested show no significant difference in the spatial extent of catchment areas of facilities.

### Facility utilisation:

- Total headcounts from the city exceed the totals from each of the 3 service demand scenarios.
- Allocated demand from service demand scenario 3 more in line with facility headcounts – positive correlation.

### Rational behaviour - Use of closest facility:

- 1% residing outside the city boundary.
- 44% not residing in catchment areas of the facility they visited.
- Significant flows in the direction of Johannesburg CBD.
- Model under-predicts the use of facilities that are further away.



## **Concluding Remarks**

- Incorporating utilisation data when measuring access, and not simply measuring by the presence of a facility.
- Utilisation may reflect need and it may also reflect contextual and service related factors such as service affordability.

#### Implications for this project:

- Improved algorithm to estimate service demand.
- Development of detailed patient registers Master Patient Register.
- Calculate the probability variance of rational choice vs. actual choice based on a distance measure to further enhance the model's capabilities.
- Availability of spatially linked population employment data so that measures can be constructed by computing the measure separately for different trip purposes; from workplace and place of residence.

# **Acknowledgements**

# It is my pleasure to specifically thank the following people for their contribution in this project:

- 1. Prof. Julian Smit
- 2. Mr. Gerbrand Mans
- 3. Mr. David McKelly
- 4. Mr. François Venter
- 5. Mrs. Cheri Green

## I would also like to thank the following institutions:

- 1. CSIR
- 2. University of Cape Town
- 3. Gauteng Provincial Department of Health
- 4. StatsSA



# Thank You!



hmokgalaka@csir.co.za

Tel: 012 841 4474



our future through science