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Abstract—Detection and tracking are important components of
many computer vision applications including automated surveil-
lance. Object detection should overcome challenges such as
changes in object appearances, illumination, and shadows. In
our system, Gaussian mixture models are used for background
subtraction to detect moving objects. Tracking is challenging
because measurements from the object detection stage are not
labelled and could originate from false targets. Our system uses
multiple hypotheses tracking to solve the measurement origin
problem. Practical long-term object tracking should have re-
identification capabilities to deal with challenges arising from
tracking failure and occlusions. To this end, each tracked object
is assigned a one-class support vector machine (OCSVM), which
learns the appearance model of that object. The OCSVM is
trained online using HSV colour features. As a result, objects
that were occluded or left the scene can be re-identified and
their tracks extended. Standard, publicly available data sets are
used to test the system.

I. INTRODUCTION

Closed circuit cameras are becoming widespread and preva-
lent in cities and towns around the world, indicating that
surveillance is an important issue. This increase is not only
driven by commercial institutions like banks and airports, but
also by governments through law enforcement departments. As
the cost of these cameras decreases, the labour cost required
to monitor these systems is increasing [1]. Meanwhile, the
volume of video recordings generated by these systems makes
it impossible to monitor every frame. In fact, most of the
video recordings are used mainly as forensic evidence, being
called upon to verify the facts after an event has occurred [1].
Moreover, there are situations of targeted monitoring where
operators decide to pay close attention to a camera feed
based on the appearances of pedestrians, rather than their
behaviour [2].

The monitoring of surveillance systems calls for a scientific
solution, which is offered by computer vision in the form of
active surveillance. Active surveillance “attempts to detect,
recognize and track certain objects from image sequences,
and more generally, to understand and describe object be-
haviour” [3]. Thus, the ultimate goal is to automate the
entire surveillance process. This technology has applications
in diverse areas including access control, flux statistics and
congestion analysis, and anomaly detection and subsequent
alerting of personnel. These are high level functions which in-
volve the description and understanding of object behaviours.
The low level functions required for these capabilities are
modelling of environments, object detection, classification,

recognition and tracking, and the retrieval and fusion of data
from multiple cameras.

II. BACKGROUND

Collins et al. [1] implemented one of the most complete
automated surveillance systems. It uses multiple, different sen-
sors such as video and thermal cameras to achieve cooperative
tracking. Moreover, their system distinguishes different types
of objects like people, groups of people and cars. Another
state-of-the-art system is the Knight system by Shah et al.
[4] which can detect, track and categorize objects such as
people and vehicles in an environment covered by multiple
cameras. It also flags abnormal events such as a person in
danger and presents a summary in terms of key frames and
a textual description of observed activities. This summary is
presented to a human operator for final analysis and decision
making.

Our goal is to design and implement a system that can
detect and track multiple interacting pedestrians using a single
static camera. A review of complete systems pointed out
challenges that we must solve and issues that we must take
into account in order to realize our system. Firstly, background
subtraction does not work in crowded scenes. Secondly,
tracking algorithms can fail and result in fragmented tracks.
Therefore, a method must be devised to connect the fragments
into complete tracks. Thirdly, a data association method is
required to assign detected objects to tracks. Finally, we should
explicitly detect and handle merge and split events.

A. Object detection

Object detection is an important first stage of a surveillance
system because it focuses the attention of subsequent stages
such as tracking and classification on dynamic regions of
the image and scene. Techniques for object detection may
be classified as either background subtraction [5], optical
flow [6] or machine learning [7]. Background subtraction and
optical flow methods rely on the motion of objects to detect
them. The goal of background subtraction is to maintain an
image that is representative of the scene covered by a camera.
Optical flow methods, particularly dense flow methods, can be
computationally expensive and thus not suitable for real-time
systems [1]. Machine learning approaches to object detection
learn the generic appearance and shape of objects, for them to
be detected in images and videos [8]. Most of these methods
must be trained off-line using large labelled data sets. They do



not adapt to the changes in the appearance of objects as it is
not possible to learn all the appearances of all the objects in
a class. Moreover, it is especially difficult to make viewpoint
or scale-invariant models. Algorithms have been proposed to
learn the appearance of objects online but they rely on robust
tracking and/or selective updating of the models [7]. This is
a drawback because incorrectly labelled samples can corrupt
the learnt models. As a result we use background subtraction
in our system to detect moving objects.

Background subtraction should handle challenges such as
gradual and sudden changes in illumination, shadows and
dynamic background objects like escalators. Wren et al. [9]
model each pixel with a single Gaussian distribution to allow
for small variations. This type of model cannot handle multi-
modal events such as waving trees or flickering monitors
which occur in uncontrolled environments [5]. Grimson et al.
[5] extend the model by modelling each pixel as a mixture of
K Gaussian distributions, where K is fixed and is the same
for all pixels. The algorithm relies on the assumption that the
background is visible more frequently than any foreground
object and that it has modes with relatively narrow variances
[10].

The major drawbacks of the model by Grimson et al.
are the initialization and slow stabilization of the parameters
[10]. Moreover, the number of components in a mixture is
the same and fixed for all pixels. Zivkovic [11] proposes an
improvement that determines at runtime the optimal number
of Gaussian distributions required to model the values of
each pixel, in addition to estimating the parameters of each
distribution in the mixture. Another drawback is that the noise
in the images is assumed to have a Gaussian distribution. A
viable solution is to model the variations in the intensity of a
pixel using adaptive kernel density estimation [12]. Algorithms
in this class estimate the density function directly from the
data without making any assumptions about the underlying
distribution.

In this paper, moving object detection is performed using
the improved mixture of Gaussian distributions algorithm
as outlined by KaewTraKulPong and Bowden [10]. Their
improvements to the original method by Grimson et al. [5]
solve the issues related to the initialization and stabilization
of the model parameters.

B. Tracking

Tracking is a crucial component for automated surveillance.
It seeks to consistently label objects of interest in every frame
of a video sequence. Tracking can be a complex problem as a
result of noise, cluttered environments, illumination changes in
the scene, object and camera motions, non-rigid and articulated
objects, and occlusions. Requiring that a tracking system runs
in real-time presents a further challenge, as this renders many
solutions infeasible due to high computational costs [13].
Tracking may also require the use of multiple cameras either
to handle occlusions or to cover large areas. In this case the
challenge is reconciling the different identities of an object as

seen from the fields of view of different cameras. In our case
a single static camera is used.

Yilmaz et al. [14] classify tracking algorithms into point,
kernel and silhouette tracking methods. Point tracking methods
include the Kalman and particle filters. Our goal is to track
multiple interacting objects. Tracking silhouettes is not ideal
as they are sensitive to occlusions. Moreover, they provide
more detail than is required for our purpose. Kernel-based
methods such as tracking-by-detection [15] and the mean-
shift tracker [16] require an external method for initialization.
This can be provided by an object detection method such
as background subtraction [5]. The next issue is that of
initializing the search. Cominaciu et al. [16] start searching
where the pattern was found on the previous time step.
However, they suggest incorporating a filtering algorithm to
better predict the starting position. The appearance of objects
may change due to variations in illumination and viewpoint,
and the non-rigidity of objects. Kernel-based tracking methods
must account for these changes. One approach is to adapt the
appearance of objects models. An example is the mean-shift
tracker [16] which considers the current appearance of the
tracked object as the target appearance. This adapted template
could be corrupted because either of background regions in
the template or occlusions.

Recent approaches use machine learning methods to learn
the appearance of objects online [15]. Even in this case, a
strategy must be devised to search for regions in the next frame
that are confidently explained by the classifiers. An alternative
approach is to pair online learning methods with particle filter
methods to predict prospective object locations [17]. We also
note that online learning of object-specific appearances may
corrupt the learnt model if incorrectly labelled samples are
used.

We use point tracking methods, particularly filtering meth-
ods, to track pedestrians. Filtering methods assume a one-to-
one relationship between measurements and tracks. However,
measurements from the object detection stage are not labelled
and could be from valid objects, false alarms or clutter. In the
case of multiple target tracking the measurements could also
be from new targets. Data association is required to solve this
measurements origination problem.

The simplest data association algorithm is the nearest neigh-
bour tracker which updates a track with the measurement
that is closest to the predicted state of the track [18]. This
tracker may result in one track stealing the measurement of
another especially when the targets are close together. An
improvement is the global nearest neighbour (GNN) method
which minimizes the sum of the distances between predicted
states of the tracks and measurements [18]. GNN works well
when there is no clutter or track contention, and it cannot
handle the appearance and disappearance of objects.

The joint probabilistic data association (JPDA) filter is more
robust to clutter and track contention [19]. It is the extension
of the probabilistic data association filter to multiple target
tracking. The JPDA filter assumption is that the target may
not have generated the closest measurement. As a result, the



average of the measurements is used to update the state of
the target. One drawback of JPDA is that the tracks of closely
spaced targets tend to drift towards each other because the
same subset of measurements is used to update both targets
[20]. Also, the number of tracked objects must be known and
fixed.

JPDA introduces the concept of the probability of track-
measurement association to multiple target tacking. This con-
cept is crucial to multiple hypothesis tracking (MHT) which
is a deferred logic method [21]. MHT is an exhaustive method
for enumerating all possible track-to-measurement associa-
tions. Ultimately, an optimal set of disjoint tracks, referred
to as a hypothesis, must be retained. Two approaches to MHT
are the hypothesis-oriented MHT [21] and the track-oriented
MHT [22]. The original hypothesis-oriented MHT yields joint
probabilities of measurement-to-track association hypotheses.
The probabilities of individual tracks may then be obtained by
marginalization. It is a top-down approach and the reverse of
track-oriented MHT.

This work uses multiple hypothesis tracking for data asso-
ciation. It implicitly provides facilities for track initialization,
continuation and termination [23]. It also explicitly models
both spurious measurements and constraints on measurements.
The MHT approach is memory and computation intensive but
techniques such as gating and track clustering are available to
improve the situation.

C. Learning object appearances

Standard tracking approaches like mean-shift [16] and the
Kalman filter assume that the object of interest is never
completely occluded. This assumption and unsuitable motion
models can result in tracking failure. These methods do not
directly address what happens after tracking failure. Instead,
new tracks are initialized after tracking failure or when objects
reappear. In this paper machine learning algorithms are used
to learn object-specific appearances which are then used
to uniquely re-identify objects when they reappear or after
tracking failure.

At least three aspects are essential for learning the ap-
pearance model of an object for re-identification purposes.
First, the features used to represent the appearance of objects
must be discriminative. In the case of recognizing people,
biometric features such as the face, iris and gait could be used
to re-identify people, but most surveillance video have low
resolution or are difficult to segment. As a result it is necessary
to model the global appearance of each object. This leads to
the second aspect which is that models must be learned online
because discriminative appearances of tracked objects cannot
be known in advance.

Lastly, a strategy must be devised to decide which samples
to use to update the model. Each update can introduce errors
which can lead to the classifier not learning the appearance
of the intended object [13]. The errors may be due to the
inaccuracies in segmenting the object. Moreover, some of the
background will be treated as part of the foreground no matter
how tight the bounding box.

III. SYSTEM COMPONENTS

This section provides more detail on the major components
of the system.

A. Track-oriented MHT

The major component of track-oriented MHT is the calcu-
lation of the probability that a measurement was generated by
a track with which it is associated. The preferred approach
is to use Bayes’ theorem and combinatorial analysis of the
data association problem to derive the joint probability of a
hypothesis. The result is the probabilistic expression presented
by Reid [21]. For the purpose of implementation, it is easier
to use the mathematically equivalent log-likelihood ratio pro-
posed by Sittler [24]:
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where tk is the time between the (k − 1)th and the kth
measurements (the last received and current measurements).
The parameter mi is the number of measurements associated
with track i and εk is chosen such that[
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2

∣∣∣∣∣
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> 0. (2)

An assumption made in deriving the score is that the num-
bers of new objects and false alarms may be modelled using
Poisson distributions with parameters λ0 and λN , respectively.
λ0 is the average number of new objects per unit time per
unit area of the region under surveillance. Similarly, λN is
the number of false measurements per unit time per unit area.
The observations on a single object are assumed to follow a
Poisson process with the average rate λs.

Each object is assumed to persist independently through
a length of time that has an exponential distribution with
time constant τ0. This is the mean track length. The kth
measurement associated with track i is zik. The predicted state
of the track is x̂ik and Hik is the Kalman filer measurement
matrix. Sik is the Kalman filter innovation covariance matrix.
T is the current time and vi is the last time a measurement
associated with track i was received. A detailed analysis of
this formula and its application to tracking may be found in
[24] and [25]. We note that tracks with larger log-likelihood
ratios are preferred.

B. One-class SVM

One-class support vector machines are used to learn the
appearance of objects of interest. In this case only positive
training samples represented in the hue-saturation-value fea-
ture space are used. The goal is to obtain a function f(x) that



demarcates a region S ⊆ RD in the input space representative
of the training data such that

f(x) ≥ 0, if x ∈ S, f(x) < 0, if x /∈ S.

Kivinen et al. [26] derive the optimization problem:

min
w,b

ν

2
||w||2 + 1

N

N∑
i=1

[max(0, b−w · φ(xi))−Nbν] .

The function φ(x) transforms the input data x from RD into
RP where a hyperplane optimally separates the data from the
origin. The parameters of the hyperplane are the offset from
the origin b and the normal w = {w1, w2, . . . , wP }. N is
the number of training samples and ν ∈ (0, 1) is a parameter
chosen by the user.

Training a support vector machine means solving this
optimization problem, which must be done online. Online
learning is achieved using stochastic gradient descent (SGD)
which uses a single sample at each iteration. This is in
contrast to Newton gradient descent which uses all samples
at each iteration. The goal is to find a sequence of parame-
ters {(wn, bn)}N+1

n=1 , hence a sequence of decision functions
f = {f1, f2, . . . , fN+1}. The initial parameter set (w1, b1) is
arbitrary and (wn, bn), n > 1, is obtained after observing the
(n− 1)th training sample, that is

wn =

n−1∑
i=1

αni φ(xi), (3)

fn(x) = wn · φ(xn)− bn. (4)

A superscript is used for the Lagrange multipliers αni , i =
1, 2, . . . , n−1, to emphasize that they evolve as more samples
are used to train the SVM. Application of SGD yields the
following set of iterative equations:

αn+1
i = (1− νηn)αni , i = 1, 2, . . . , n, (5)

αn+1
n+1 =

{
ηn, if fn(xn) < 0,
0, otherwise. (6)

bn+1 =

{
bn − (1− ν)ηn, if fn(xn) < 0,

bn + νηn, otherwise. (7)

IV. SYSTEM INTEGRATION

We have identified four major components of the system,
which are the mixture of Gaussians to background subtrac-
tion for object detection, MHT for data association, and the
Kalman filter and OCSVM for online learning of object
appearances. For the purpose of integrating these compo-
nents into a complete system, we introduce the pedestrian,
the integer-programming problem-solver (IPPSolver) and the
single camera system (SCS) components. The pedestrian
component represents what we are tracking, as well as its
track. The IPPSolver converts the MHT problem into an
integer-programming problem and then solves it[25]. The SCS
coordinates the interaction between the various classes.

Figure 1 shows the high-level interactions between the
components. It indicates that the SCS object must have one and
only one of the each of the DA and BS objects as data member.

OnlineLearning (OL)

Pedestrian

KalmanFilter (KF)

IPPSolver

DataAssociation 
(DA)

BkgrndSubtraction 
(BS)

SCS*

1
1

1

1
1

11

1
1

1
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Fig. 1: The interaction of the system components.

The same holds for the relationship between the Pedestrian
object and the KF and OL objects. This is the case because the
Pedestrian object represents what is being tracked as modelled
by the OL object, as well as the track which is obtained using
the KF object. The DA object contains a list of Pedestrians.
The DA object contains a list of Pedestrians.

V. RESULTS

We consider scenarios that test the ability of the system
to handle various tracking problems. These include object re-
identification, tracking two people walking side-by-side and
crossing paths. We also provide examples of tracking failures
in the system. The datasets collected by Baltieri et al. [27], [28]
and Rasid and Suandi [29] are used. These videos are chosen
because they meet the assumptions of the system which are
that each pedestrian occupies a small fraction of the frame, the
camera looks down on the pedestrians and the only moving
objects are pedestrians.

We use the Jaccard similarity coefficient (JSC) to measure
the similarity between the system output S and ground truth
G bounding boxes:

J(S,G) =
|S ∩G|
|S ∪G|

, (8)

where |A| denotes the area of the bounding box A. The track
length and normalized mean squared error (NMSE) are also
used to measure the performance of the system. A person is
said to be correctly tracked in a given frame if JSC ≥ 0.65.
The ground truth was generated using the MATLAB toolbox
developed by Dollàr [30].

For each scenario, the first experiment that we perform
is determining the optimal parameter T for the background
subtraction method. For a given pixel, N of the M sorted
densities in the mixture with weights wi, i = 1, 2, . . . ,M
represent the background if

N∑
j=1

wi ≤ T (9)

where T is the minimum fraction of the data that should
account for the background. This is to ensure that the bounding
boxes enclose as much of the pedestrians as possible. All other
parameters are set empirically.

A. Scenario 1: Two people walking side-by-side

The first scenario tests the ability of the system to track
two people walking side-by-side. The first experiment that is



Fig. 2: Tracking results for scenario 1. The system generated
tracks in black and the corresponding ground truth tracks in
red.

performed is to determine the optimal parameter T for the
background subtraction method. The value T = 0.65 is used
in subsequent experiments because it results in the highest true
positive rate. In the second experiment, the system is used
to track two people as they walk across the scene. Figure 2
shows the tracks generated by the system in black as well
as the respective ground truth tracks in red. Pedestrian 1 was
correctly tracked for 78 of the 79 frames he was in the scene
with an NMSE of 3.79 pixels. Pedestrian 9 was correctly
tracked for 75 of the 77 frames he was in the scene with
NMSE of 4.55 pixels.

B. Scenario 2: Re-identification

In this section we test the re-identification ability of the
system. The first experiment that we perform is to determine
the optimal value of the background subtraction parameter T .
The values of T ∈ (0.5, 0.75) yield the same true positive rate.
However, the values of T ∈ (0.6, 0.75) yield better precision
rates. As a result, T = 0.65 was used in the experiments.

In the second experiment, a tracked pedestrian is completely
occluded by a pillar and the system manages to re-identify him
when he reappears and extend his track. Figure 3 shows the
track generated by the system in green as well as the ground
truth track in red. The pedestrian then disappears behind the
third pillar (on the right) and is not re-identified when he
reappears. This is due to poor illumination in that region which
changes the appearance of the pedestrian. This highlights issue
that an object can only be re-identified if its current appearance
is similar to one of the previously seen appearances. The
system successfully tracked the pedestrian in 38 of the 48
frames with an NMSE of 9.72 pixels which is slightly higher
than the NMSEs in the first scenario.

C. Scenario 3: Crossing paths

Next we test the ability of the system to track two pedes-
trians whose paths cross. The first experiment is to determine

Fig. 3: Tracking results for scenario 2. Green indicates the
system generated track, and the ground truth track is shown
in red.

the optimal value for the background subtraction parameter T .
The values of T ∈ (0.55, 0.70) yield the same results for all
measures. A value of T = 0.65 is used in the experiments to
match those used in previous experiments.

The second experiment demonstrates how the system han-
dles merging and splitting tracks. Figure 4a shows the tracks
three frames before the merger takes place. The pedestrians are
still tracked individually even though they are not detected as
separate entities in those frames. This is because a track that
is not associated with a measurement in a given number of
consecutive frames, in this case three, is assumed to have left
the scene and is deleted. This is used to manage the number
of hypotheses in the MHT tracking algorithm.

Figure 4b shows that the merged group is being tracked
as a single object. This track was created when the two
pedestrians first merged but had to be supported by additional
measurements to ensure that it is not a false track. Figure 4c
shows that the group is still tracked as a single object even
though the pedestrians have finally separated. It will only be
deleted after three consecutive missed detections. At this point
the splitting event has been detected and the measurements are
used for re-identification.

The pedestrians are successfully re-identified as shown
in Figure 4d. where the system generated tracks and the
associated ground truth tracks are shown in red and magenta.
The pedestrian on the left was correctly tracked for 51 of
the 53 frames he was in the scene with an NMSE of 8.89
pixels. The pedestrian on the right was correctly tracked for
30 of the 31 frames he was in the scene with an NMSE of
6.91 pixels. Note that our system tracks overshoot the ground
truth tracks substantially when going into the merger. This
is because tracks are retained for at most three consecutive
frames even though the tracked objects are not detected in
those frames.



(a) Before merging. (b) During merging.

(c) After splitting. (d) System and true tracks.

Fig. 4: Tracking results of scenario 3, of two people whose
paths cross.

Fig. 5: Tracking results for scenario 4. The system fails
because the two pedestrians have similar appearances.

D. Scenario 4: Re-identification failure

This section demonstrates a scenario where the system fails
because of the similar appearance of pedestrians. In Figure
5 the pedestrian on the right was occluded by the middle
pillar when the pedestrian on the left entered the scene. This
meant that the track of the leading pedestrian could be used
for re-identification. As a result, the lagging pedestrian was
mistaken for the leading pedestrian because their appearances
are similar. This can be resolved by using different or ad-
ditional features that preserve the shape information of the
pedestrian such as the histogram of orientation gradients. Re-
identification can also be improved by using a rule that a
pedestrian cannot move move faster than some bound and thus
cannot jump significantly in position from one frame to the
next.

VI. CONCLUSIONS

The goal of this paper was to design and implement a system
that can detect and track multiple interacting pedestrians over a
prolonged period of time. Such a system is necessary because
of the challenges emerging from the growing number of closed
circuit cameras, which expensive to monitor. Our focus is only
part of a complete system that would include understanding
and describing the behaviour of pedestrians. The components
of the system that were identified are object detection, motion
estimation using filters, data association, and learning the
appearance of pedestrians.

Gaussian mixture models were used to detect moving ob-
jects. Long-term tracking is achieved using data association,
filtering and online learning. Data association is realized using
multiple hypothesis tracking. One-class support vector ma-
chines are used to learn the appearance of tracked objects and
re-identify those object once tracking fails. The components
must interact to produce a complete system which required
the introduction of additional components.

The system performs well as can be judged visually from
the output. This observation is also supported by quantitative
measures. The fact that a similar set of parameters was used
for all scenarios indicates that the system is fairly robust.

There are improvements that can be made to the system.
The first improvement would be to use a number of features
to represent objects. Colour features are discriminative but,
as used in this paper, do not incorporate shape. This was
highlighted in one of the experiments when one pedestrian
was mistaken for another with a similar colour histogram.
Complementing the colour histogram with a histogram of
oriented gradients may solve the problem.

Re-identification can also be improved by using bounds on
the perceived speeds of objects, as mentioned in the previous
section. Another improvement would be to extend the system
to handle multiple merges and splits. Currently the system can
handle a single merge and split event at the same time. All
that is required is a data structure to keep track of the merges
and splits.

Finally, a set of hypotheses in the same tree are maintained
separately when transforming the track-oriented MHT problem
into an integer programming problem. This simplifies the
implementation but increases the memory requirement. We
could optimize the implementation by using a tree structure.
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