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 Abstract—This paper assesses the potential of 

multispectral data attained using WorldView-2 (WV2) satellite 

to estimate and map the variability in canopy nitrogen (N) 

concentration across C3 and C4 grasslands. The WV2 satellite 

image was acquired for the Cathedral Peak region of the 

Drakensberg Mountain range, South Africa. The Random 

Forest (RF) regression algorithm was used to develop a 

relationship between two-band normalized ratio indices (RIs), 

including the Normalized Difference Vegetation Index (NDVI), 

computed from the WV2 image data and N concentration. The 

RF-based variable importance scores calculated using the 

training dataset (n = 150) showed that the RI computed 

involving the costal-blue (400–450 nm) and yellow (585–625 

nm) band is the most important, when predicting canopy N 

concentration in the area. Using the validation dataset (n = 64), 

the RF explained 71% of the variation, with a Nash–Sutcliffe 

efficiency (NSE) = 0.68, in predicting N across the C3 grass, 

Festuca costata, and C4 grasses, Themeda triandra and Rendlia 

altera grasslands. Overall, results indicate that predictions of 

canopy N using new multispectral data with unique band 

setting, such as WV2 spectra are possible for C3 and C4 

grasslands. 

 Index Terms – Grass nitrogen content, worldview-2, random 

forests, remote sensing. 

I. INTRODUCTION 

Vegetation carbon and nitrogen (N) content in 

rangeland ecosystems have been strongly linked through a 

number of critical ecological processes, such as net primary 

production of plant functional types, litter decomposition, 

and rates of photosynthesis [1, 2]. The net primary 

production of quality biomass is one of the outcomes of 

complex interaction between vegetation and environment, 

which is one of the key factors of rangeland condition. Such 

interaction is widely considered in global climate change 

research that focuses on studying the impacts of 

 

 
Manuscript submitted on 30 October 2013 

Authors of this study are thankful of the University of KwaZulu-Natal 

for providing the necessary support. Additional support was provided by 
the National Research Foundation (NRF), the KwaZulu-Natal Department 

of Agriculture and Environmental Affairs (KZN DAE) and the Ezemvelo 
KZN Wildlife. 

The authors are with the South African National Space Agency 

(SANSA), Pretoria 0087; School of Agriculture, Earth and Environmental 
Sciences, University of KwaZulu-Natal, P. Bag X01, Scottsville 3209, 

Pietermaritzburg, South Africa, and the Natural Resources and the 

Environment, Council for Scientific and Industrial Research (CSIR), 

Pretoria 0001, South Africa, respectively. Corresponding author e-mail: 

cadjorlolo@sansa.org.za 

climatic variables (e.g. elevated CO2 and temperatures) on 

growth responses of C3 and C4 types of  grass species [3]. 

The C3 or C4 denotes an initial photosynthetic product of 3-

carbon and 4-carbon compounds, respectively. Studies have 

highlighted that the rates of assimilation or conversion of 

macro nutrients under changing environmental or climatic 

conditions differ between C3 and C4 grass species [3-8]. 

For example, these two groups of grasses generally differ, 

with the C3 grass type having higher concentration of N, but 

lower carbon (C)/N ratio, compared to C4 grass type [9]. 

At landscape scale, C3 and C4 grass forage nutrients 

can vary in response to multiple factors such as precipitation, 

fire, herbivory and site-specific edaphic conditions [3, 10]. 

These factors are inextricably linked, creating a patchy 

distribution of forage nutrients across landscapes composed 

of diverse grass species [11, 12]. Currently, the prediction 

and mapping of canopy nutrient concentration, specifically, 

across C3 and C4 grasslands is lacking due to the fine-scale 

nature of the variation and large abundance of grass species 

[13]. However, the estimation and mapping of N 

concentration across C3 and C4 grasslands should provide 

insight into their carbon and N cycles and, therefore, be a 

useful indicator into models of plant functional type 

dynamics and ecosystem productivity [14]. 

Remote sensing applications have proved to be a source 

of proximal data for estimating several canopy attributes 

relating to biophysical, physiological or biochemical 

characteristics of vegetation [14-16]. The remote sensing 

hyperspectral systems, which acquire reflectance data in 

hundreds of narrow (< 10 nm), contiguous spectral channels, 

over the visible, near-infrared and shortwave-infrared 

portions of the electromagnetic spectrum (400–2500 nm) 

have been more successful, compared to traditional 

broadband (>100 nm) multispectral sensors [17]. The major 

challenge is that although hyperspectral systems provide a 

continuous spectrum for each pixel of a scene, such data are 

high in dimension, not easily accessible and can be 

relatively costly [18]. In this regard, new generation, space-

borne multispectral sensors, such as DigitalGlobe’s 

WorldView-2 (WV2) satellite with unique band settings 

offer new opportunities for characterizing the biophysical 

and biochemical attributes of vegetation [19, 20].  

The normalized difference vegetation index (NDVI) 

based on a combination of bands from the red and infrared 

wavelengths or normalized ratio indices (RIs), often 

calculated from two-band combination, have been used to 

improve the ability to predict the concentration per unit area 

of biochemicals at leaf or canopy scales [21-23]. The NDVI 
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is sensitive to the difference between high reflectance in the 

near infrared and low reflectance in the red region to predict 

biophysical parameters. The difference in reflectance 

spectra is strongly related to increased absorption in the red 

region by chlorophyll for vegetation with greater 

chlorophyll concentration, combined with increased near 

infrared scattering by vegetation structural components, for 

vegetation with high biomass. Plant N constitutes a 

significant part of the chlorophyll concentration in the leaf 

canopy. Nitrogen status in plant canopy significantly affects 

leaf area, leaf chlorophyll content and photosynthetic rate, 

often altering biomass production [15, 24]. Zhao et al. [24] 

found that leaf N and chlorophyll concentrations were 

linearly correlated with reflectance ratios of 405/715 nm  

and 1075/735 nm for C4 crop, sorghum (Sorghum bicolor). 

Hansena and Schjoerring [15] illustrated that RIs calculated 

on  wavebands centered at 440, 447, 459 and 573 nm 

wavelengths were useful for predicting percentage N 

concentration for wheat crops. These bands centers are 

within the spectral range for WV2 sensor (i.e. coastal blue, 

blue, green and yellow channels). 

In order to predict variability in biochemical or patterns 

at landscape scale, it is critical that vegetation indices 

should be universal and species-independent, accounting for 

the species-specific differences in reflectance, scattering and 

internal or canopy structure [23, 25]. Several data analysis 

approaches, including those based on parametric techniques 

(e.g. simple stepwise linear regression and partial least 

squares) have been commonly used to combine the 

information content of remotely sensed vegetation variables 

[21]. The major challenge is that such parametric techniques 

have often yielded limited results, largely because of their 

requirements to satisfy some statistical conditions or to 

assume normal distribution of the input dataset. On the other 

hand, advanced techniques based on machine learning 

algorithms: artificial neural networks [26], support vector 

machines [27] and RF [19], which make no assumption of 

the input data distribution have increasingly offered a better 

capability to analyze remote sensing data [28, 29]. From this 

background, the current study assesses the capability of 

combining the information content of VIs computed from 

the WV2 image data for estimation of canopy N 

concentration. The paper further assesses the utility of the 

RF regression in mapping variation in N concentration 

across a landscape composed of C3 and C4 grass species. 

II. METHODS 

A. The study area 

 The study area is located in the Cathedral Peak region 

(uKhahlamba World Heritage Site) of the Drakensberg 

Mountain range in KwaZulu-Natal province, South Africa. 

The specific sampling site (Fig. 1) is underlain by relatively 

homogeneous Drakensberg basalt form of the Stormberg 

series. Patches of the C3 and C4 type of grasslands on crests 

and in open valleys were sampled, across the Montane and 

sub-alpine vegetation belts (1280–2865 m above mean sea 

level). The sub-alpine belt has been described as Themeda-

Festuca, sub-alpine grassland [30] and is composed of the 

C3 and C4 type of grass species. It is further divided into 

two grassland communities known as the Themeda triandra 

(red grass) and Festuca costata (tussock fescue) sub-alpine 

grasslands. Notably, there are strong associations of T. 

triandra and F. costata occurrence on warm, northerly and 

cool, southerly slopes, respectively [31, 32]. The study area 

is also characterized by high rainfall (> 800 mm per annum). 

Misty conditions, low temperatures, seasonal frosts, snow, 

fire, herbivory and topographic factors play an important 

role in influencing the composition and functioning of C3 

and C4 grasses in the area [33]. 

 The C4 grassland communities consist  mainly of the T. 

triandra and Rendlia altera (Toothbrush grass) species, 

while the C3 community consists mainly of unpalatable  F. 

costata and its co-existing, coarse C3 species, F. caprina, 

Merxmuellera macowanii and Pteridium aquilinum 

(Bracken fern). The F. costata, F. caprina and M. 

macowanii remain evergreen throughout the dry (winter) 

season. They normally grow as large tussocks that are taller 

than the surrounding C4 grasslands. They also grow in an 

aggregated pattern, which makes them easily distinguishable 

in the field.  

 The dominant C4 grassland communities can make up 

70%, or more, of the composition in C4 community or a 

patch. The R. altera is characterized by relatively narrow 

leaves, which tend to fold and break-up into fibres in mature 

plants. This results in low leaf production and in a relatively 

low canopy density. The T. triandra forms dense and tufted 

stands that are distinctly red-coloured, when they are fully 

mature.  

 The study area consists of catchments which reflect 

some dominant species or vegetation communities, wetness 

and topographic gradients, and therefore a variation in foliar 

N concentration. The target C3 and C4 communities or 

patches were already classified by previous studies 

conducted in the area  [34, 35]. Thus, areas of interest 

sampled for the current study are consistent with the spatial 

distribution of the dominant C3 and C4 grasses under study. 

B. Plant sample collection 

 The field campaign was conducted to coincide with the 

date (28 April 2011) of the WV2 image acquisition. All 

target plants were at a mature state and thus full canopy 

cover. The stratified random sampling approach was 

adopted to place sample plots in each of the target grassland 

patches. A total of 64 plots were sampled for F. costata, 49 

plots for R. altera and 101 plots for T. triandra grassland. 

The targets, namely the mature grass species in a 1×1 m 

sub-plots were clipped, just above the ground. These plots 

were randomly established by throwing a 1 m
2
 quadrat, 

about three times, within a larger 10 × 10 m vegetation plots. 

All the plots sampled had 60% or more of the candidate 

grass species. The above-ground grass biomass was 
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harvested and weighed in situ, and then transported in 

brown paper bags, placed in a cooler box, to the feed lab 

within two to four hours of harvesting. 
 

 
Fig. 1. Location of the Cathedral Peak study area 

C. Chemical analysis 

 The harvested grass samples for each target species 

were dried at 70°C for 48 hours in an oven and subsequently 

weighed. The dried samples were then mill-crushed to about 

1 mm. These dried and crushed samples were processed for 

complete feed analyses, including the percentage N 

concentration, calculated on a 100% dry-matter (DM) basis 

for samples. The Kjeldahl procedure was used to determine 

the concentration of nitrogen. The prior digestion of the 

samples was done in a mixture of sulphuric acid, selenium 

and salicylic acid [36]. The samples were then 

colorimetrically measured, using a continuous flow analyser 

(SKALAR SAN plus).The resultant data were pooled for 

use in the statistical analysis phase. 

D. Image acquisition and pre-processing 

 The WV2 multispectral image used in this study 

comprises eight (8) variable spectral channels, spanning the 

wavelength range: 400–450 nm (B1-coastal blue), 450–510 

nm (B2-blue), 510–581 nm (B3- green), 585–625 nm (B4-

yellow), 630–690 nm (B5-red), 705–745 nm (B6-red edge), 

770–895 nm (B7-near infrared- 1), and 860–1040 nm (B8-

near infrared-2). The spatial resolution of the 8 bands was 2 

m, covering an area of 25 km
2
. The data were delivered at 

product level LV3D (DigitalGlobe, Longmont, Colorado, 

USA). That means the image had been radiometrically 

corrected and orthorectified by the supplier. The mean in-

track, cross-track and off-nadir view angles were -3.1°, 

14.9° and 15.3°, respectively. The WV2 satellite’s mean 

azimuth and elevation angles were 112.1° and 72.9°, 

respectively, and the sun azimuth and sun elevation angles 

were 32.6° and 40.8°, respectively. The registration mean 

error of the image was 0.15 m. The digital numbers were 

converted to WV2 radiance, using the absolute radiometric 

calibration factors and effective bandwidths for each band, 

using ENVI 4.8 software.  

 Considering that the WV2 image was acquired for a 

mountainous landscape, it was necessary to process the data, 

in order to correct for the topographic effects of the rugged 

and undulating terrain, and the Sun’s geometry. 

Topographic corrections were calculated with the only 

available 20 m digital elevation module (DEM). However, it 

turned out that the 20 m DEM was insufficient in correcting 

the topographic effects on the WV2 dataset, for the 

landscape under investigation. This was the case, even when 

the 20 m DEM was re-sampled step by step from 20 m to 10 

m, and 5 m, to match the WV2 spatial resolution. The 

output images were inaccurate, with a substantial positional 

shift between the DEM and the WV2 dataset, showing a 

chessboard pattern of the output image. Therefore, 

topographic correction was excluded from the analysis, in 

order not to introduce an additional error to the reflectance 

values. In this regard, steep slopes and sheltered areas were 

masked from all analysis. 

E. Vegetation indices 

 Using the 8 bands of WV2 image data, a total of n×n = 

56 normalized ratio indices were computed from all possible 

two-band combinations. Normalized ratio indices or RIs 

combine the vegetation reflectance spectra present between 

two or more wavebands to enhance the spectral contribution 

from the vegetation canopy while minimizing perturbing 

factors such as substrate water and soil color changes or 

atmospheric effects. The differences in canopy reflectance 

associated with changes in plant N concentration are 

influenced by changes in vegetation cover, leaf area index 

(LAI) and aboveground biomass [15, 22, 23, 37]. The 

current study sought after exploring the optimal band 

combinations for predicting nitrogen content in samples and 

assesses the empirical relationships for different C3 and C4 

grass species. The normalized ratio indices were calculated 

for all WV2 wavebands to investigate their usefulness for 

estimating biophysical and biochemical properties of 

vegetation, including N concentration. Wavelengths of 

typical absorption peaks for N include: 1020 nm, 1510 nm, 

1730 nm, 1980 nm , 2060 nm, 2130 nm, 2180 nm, 2240 nm, 

and 2300 nm [38, 39]. Given the spectral coverage for WV2, 



JSTARS-2013-00744 

4 

 

the computation of classic N indices such as the Normalized 

Difference Nitrogen Index or  NDNI [40] was not possible. 

Hence the multispectral 8 bands of WV2 allowed a 

computation of the RI as follows: 

RI =
𝑅(𝑖,𝑛)−𝑅(𝑗,𝑛)

𝑅(𝑖,𝑛)+𝑅(𝑗,𝑛)
        [1] 

where 𝑅(𝑖,𝑛)  and 𝑅(𝑗,𝑛)  are the reflectance of any two 

bands for spectral sample, n. The resultant normalized ratio 

indices derived from the input WV2 bands were then 

assessed to find the coefficient of determination (R
2
) 

between these indices and the N content of the samples and 

compared between C3/C4 species. This process yielded 

symmetrical R
2
 values, for each pair of bands, computed 

using all possible combination of the shorter and longer 

wavelength bands. Therefore, only n = 28 variables were 

used in the RF regression analysis. All the R
2
 values were 

plotted in a histogram plot which revealed a characteristic 

high and low pattern of R
2
 values, indicating a number of 

‘‘hot spots’’ with relatively high correlation coefficients. 

F. Collecting image spectra 

 Pixels representing the dominant grasslands were used 

to estimate the minimum and maximum NDVI threshold 

values for the target grass species. Next, a region-of-interest 

map was created, using the NDVI variable. This was tested 

against very high spatial resolution (50 cm) WV2 

panchromatic image data. Subsequently, the region-of-

interest map was used to subset the preferred grassland areas, 

and pixels representing other vegetated surfaces or patches 

of bare soils (road and eroded surfaces) were masked out, 

using the mask tool in the ENVI4.8 software. A 1×1 pixel (4 

m
2
) corresponding to the centre coordinate of each sampled 

plot (1×1 m) locations was used to extract image spectra for 

all plots. The plots were located in homogenous sites and 

created around the centre co-ordinate. 

III. DATA ANALYSIS 

A. Random forest regression and variable importance 

 The RF [41] utilizes bootstrap samples with no 

replacement to construct a large number of regression trees. 

The RF bootstraps and sub-samples the training data (i.e. 

about 66% randomly and independently-selected samples) 

and then combines the predictions from the resulting 

ensemble of regression trees. These assign each RI variable 

to a response (N) value, based on the maximum number of 

votes that the value receives from the collection of all trees 

[41]. About one-third of the data, which were not included 

in the bootstrapped training sample, called out-of-bag (OOB) 

cases were used to evaluate the final model. The OOB 

samples offer an unbiased estimates of the prediction error 

[19]. The RF algorithm is easy to implement because only 

few parameters are tuned: (i) the number of regression trees 

to grow (ntree) and (ii) the bootstrapped number of 

predictors to split at each regression tree node (mtry). In the 

current study, the default mtry value, in the case of RF 

regression analysis, was calculated as p/3, whereby p is the 

number of predictors [41].  

 The RF algorithm offers variable importance (VIP) 

scores in its computation, providing researchers with 

valuable insights to explore the effect of each predictor 

variable on the response variable. The VIP measure was 

used to assess the contribution made by each of the WV2-

derived RIs in predicting canopy N concentration. The 

assessment of the VIP is an important step for ranking the 

predictor variables before the final model estimation. The 

VIP also helps to interpret data and understand the 

underlying interacting processes. For each tree of the forest, 

the VIP score of a predictor variable was calculated as the 

normalized increase in mean square error of a tree when the 

observed values of this variable are randomly permuted. The 

difference in prediction accuracy prior and after permuting a 

variable in the OOB samples was used to calculate VIP 

score of a variable [42]. In this respect, the number of 

observations predicted correctly, decreases substantially if 

the permuted variable is strongly associated with the 

response variable. A detailed account of the random forest-

based variable importance can be found in [43, 44]. 

B. Random forest-based forward variable selection  

 The RF algorithm not only yields very high regression 

accuracy but it is also a novel technique of modelling 

complex interactions among predictor variables and it is 

suitable for assessing variable importance and variable 

selection. The two main objectives of variable selection 

process are: 1) to identify key predictors highly correlated to 

the dependent variable for interpretation purpose; and 2) to 

identify a subset of predictors sufficient to fit a good 

prediction model of the dependent variable[45]. Application 

of the RF variable selection technique for both classification 

[33] and regression [46] analyses of remote sensing data has 

been demonstrated by several studies. Adjorlolo et al. [47] 

showed that the variables that RF identified as most 

important for classifying selected C3 and C4 species 

coincided with expectations based on the literature [48]. 

 Using the RF ranked variable importance, a greedy fast 

forward variable selection (FvS) procedure was 

implemented [33]. The FvS procedure involved iteratively 

fitting the RF model on the training data and at each 

iteration building a new model by adding the predictor 

variable with highest importance.  For each stage of the FvS 

process, the average OOB error was computed in order to 

assess the accuracy of the FvS model iterations. The 

optimum subset of RIs was determined using the iteration 

with the lowest OOB error. 

C. Model validation 

 The performance of the models was measured by 

calculating the coefficient of determination (R
2
), root mean 

square error (RMSE) and Nash–Sutcliffe efficiency (NSE). 
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The RMSE (Equation 2) provides a direct estimate of the 

model error expressed in the original measurement unit [21] 

whilst the NSE (Equation 3) index validates the model 

efficiency by assessing the relative magnitude of the 

residues compared to the variance in measured N 

concentration [49].  

 

      [2] 

 

     [3] 

where ŷ indicates predicted N and y was the measured N 

value, ӯ represents the mean of measured N values and n is 

the number of samples. 

IV. RESULTS AND DISCUSSION 

A. The relationship between WV2-derived RIs and N 

 Table 1 shows the descriptive statistics for the 

measured N concentrations, for each category of species, as 

well as the whole-dataset (n = 214). The mean N 

concentration (1.54%) was largest for R. altera, whilst the 

mean N concentration (0.73%) was lowest for the C3 grass 

(F. costata), which can be considered as a weed [33].  

   
TABLE I 

 N CONCENTRATIONS (%) IN C3 AND C4 GRASS SPECIES 

SAMPLED IN THE CATHEDRAL PEAK STUDY AREA (100% DM) 

Dependent 

variables 

No. of 

samples 

Mean Min Max SD CV 

(%) 

Nitrogen (%)       

F. costata 64 0.73 0.41 1.56 0.25 34.42 

T. triandra 101 1.11 0.54 1.89 0.37 33.11 

R. altera 49 1.54 0.53 1.86 0.24 15.26 

All combined 214 1.09 0.41 1.89 0.43 38.87 

 

 
Fig. 2. Coefficient of determination (R2) between N concentration and RIs. 

The R2 values obtained were symmetrical for the all possible two band 

combinations using the eight multispectral bands of WorldView-2.  

 

 Although correlation coefficients between vegetation 

indices and N vary, similar patterns can be observed 

between different species. Fig. 2 shows the correlation 

coefficients between WV2-derieved vegetation indices and 

N concentration for each species, and across all species. The 

RI computed involving the costal-blue and yellow bands 

yielded the highest coefficient of correlation (Fig 2). This 

can be attributed to strong light absorption due to leaf 

concentration of chlorophylls a and b [15]. On the other 

hand, the maximum sensitivity of chlorophyll a 

concentration is around 520 nm to 630 nm, a range within 

which the yellow band (585–625 nm) of the WV2 is found. 

In addition, the RIs computed involving the longer near-

infrared bands yielded strong correlations with nitrogen. 

The near-infrared region has been reported to show strong 

correlation with concentration of macro-nutrient content in 

green plants, even at low levels of concentration [50]. The 

current study also showed that the longer wavelength, near-

infrared (860–1040 nm) band combined well with the 

yellow and red-edge wavebands of WV2 to yield good 

results. This can be explained by possible influence of inter-

species variation [33, 47]. 

 Table 2 shows the results obtained from the RF 

regression analysis: R
2
, RMSE, and NSE values. An 

analysis of the results indicates that canopy concentration of 

N is better estimated across all species, compared to within 

class estimation. This is explained by the relatively low 

variation in N concentration, in each of the grasslands under 

study, on one hand, and the magnitude of RF capability for 

detecting canopy N concentration, on the other hand. This is 

shown by very low within class NSE (0.42 and 0.18) values 

obtained for F. costata and R. altera, respectively. Fig. 3 

shows the predicted versus measured N concentration for 

randomly selected training and test data sets for each target 

grass species. 
TABLE II 

PERCENTAGE VARIATIONS ACCOUNTED FOR BY RF 
REGRESSION MODELS, USING N = 28 PREDICTOR VARIABLES. 

ALL SPP. (ALL SPECIES). 

Grass 

species 

Training dataset (n = 

150 for all-combined) 

  Test dataset (n = 64 ) 

R2 RMSE (%) NSE RMSE 
(%) 

NSE R2  

F. costata 0.45 0.14 0.42  - - - 

T. triandra 0.56 0.26 0.50  - - - 

R. altera 0.51 0.20 0.18  - - - 

All Spp. 0.70 0.25 0.68  0.26 0.68 0.68 

All Spp.* 0.71 0.24 0.70  0.24 0.69 0.71 

*Selected RIs (n = 6) of two-band combinations: B4B1, B6B1, B8B4, 
B6B5, B7B3, B8B6, with model mtry = 3 and ntree = 500. 

B.  Random forest-based VIP and variable selection 

 The RF model implementation inherently determines 

VIP for each input RI feature. Fig. 4 shows the VIP scores 

obtained in the current experiment. The order of importance 

is similar to that of a previous study, which predicted N 

concentration in the African rangeland environment, using 

WV2-derived features [20]. RF-based forward variable 

selection was used to select an optimum subset (n = 6) of RI 

variables and to assess whether the prediction accuracy 

could be improved [19, 42]. The result obtained indicates a 

marginal improvement. This can be explained on the basis 
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that the RF is insensitive to the relatively small size (n < 100) 

of the input RI features (n = 28). The use of the RF 

demonstrated a robust approach of integrating remote 

sensing applications with field data to predict or map 

variability in N concentration, across the C3 and C4 type of 

grasslands.  

 
Fig. 3. RF regression using the training and test datasets: F. costata (FC), 

T. triandra (TT), R. altera (RA). 

 

 
Fig. 4. RF-based VIP for RIs in predicating N. The RF model was 
developed using mtry = 9 and ntree = 500. Higher score indicates greater 

OOB error rate when the variable is permuted and thus higher importance. 

 

C. Mapping nitrogen concentration 

 In in this study the RF regression algorithm was also 

implemented to map the percentage N concentration across 

the landscape, composed of the C3 and C4 type of grasses 

under investigation. The model implementation was done 

using the EnMAP-box software. Fig. 5 depicts the spatial 

distribution of the canopy N concentration in the study area.  

 Although the area mapped is underlain by relatively 

homogeneous Drakensberg basalt formations of the 

Stormberg series, there are, undoubtedly, spatial variations 

in canopy N concentrations, as depicted in the final map. 

Previous studies conducted in the area have shown that there 

are strong associations of T. triandra and F. costata 

occurrence on warm northerly and cool southerly slopes, 

respectively [32]. Strikingly, the final map of N tends to 

reflect the mean nutrient concentration between the T. 

triandra and F. costata, as observed in the study area. 

Moreover, the good NSE (Table 2) value obtained for the 

All-combined data indicates that there exists the capability 

of detecting N concentration in the areas, given the inter-

species variation. In addition, the spatial distribution of the 

N values, as predicted for the high-lying crests, which were 

dominated by the T. triandra and R. altera, also showed 

higher concentrations of N. The final map thus offers the 

potential for linking forage N variability with range 

conditions, even in landscapes with disparate C3 and C4 

grass/weed composition. 

 

Fig. 5. EnMAP-Box implementation of RF for the estimation of N 

distribution in the study area (map is 2 m spatial resolution). Light green 

pixels represent the lowest N concentration values. The white spaces 
represent masked or other land-cover types that were not modeled. Further 

details on the EnMAP-Box software utility can be found on the website of 

the EnMAP: http://www.enmap.org.  

 

V. CONCLUSION 

The main focus was to predict and map C3 and C4 grass 

canopy concentration of N using vegetation indices based 

on a combination of bands developed from new generation 

remote sensing multispectral data. Random forest analyses 

of the canopy N concentration using WV2 imagery yielded 

statistically significant prediction model, which produced an 

accurate map of canopy N for the Cathedral Peak study area 

in South Africa. The prediction of canopy N concentration 

across C3 and C4 grasslands in the area is within 0.22% of 

the mean observed N content. The result showed that the 

study approach is robust and generally applicable where 

canopy N data are available for C3 and C4 grass 

environment. In addition, this study demonstrates the 

http://www.enmap.org/
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practical utility of WV2 multispectral satellite imaging 

sensor and for future strategically positioned, few bands, 

imaging sensors for mapping biochemical properties of 

vegetation. This potential means that scientists and land 

managers will be able to make spatial estimates of N 

variability that is critical to understanding the functioning of 

ecosystems. Nevertheless, the effects of other canopy 

properties such as biomass and phenology on canopy N 

estimation remain a subject of further investigation. 
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