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Experimental setups for the optical implementation of projective measurements in the Laguerre-Gaussian basis
are discussed. Special attention is given to the case where the measurements are made with the aid of single-mode
fibers that are used to extract the Gaussian component from an optical distribution. Although this setup can, under
some conditions, implement the inner product operation accurately, the overlap with the Gaussian mode in the
single-mode fiber often produces cross-talk among Laguerre-Gaussian modes with different radial indices. The
extent of the cross-talk is analyzed quantitatively.
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I. INTRODUCTION

In many quantum, and also classical, optical applications
the need exists to perform projective measurements. One
particular application is quantum state tomography [1], which
is used to determine the density matrix of a photonic quantum
state. Although, the front ends and back ends (sources and
detectors) of classical and quantum optical systems are in
general different, the optical system between the front end and
back end of a quantum optical system that performs projective
measurements on photons will perform the same task on a
classical optical beam. For this reason, the discussion here
applies equally well to both classical and quantum optical
systems.

A projective measurement, in the context of quantum
mechanics, is understood to be the process where a projection
operator operates on some input state. Often this projection
operator is composed of a single basis element, and can as such
be represented by P = |�n〉〈�n|. The result of this projection
on an input state |ψ〉 is given by P|ψ〉 = |�n〉〈�n|ψ〉. When
the input state is a photon state, the measurement destroys the
photon so that one can express the projection simply in terms
of the inner product 〈�n|ψ〉. The measured quantity would
be proportional to |〈�n|ψ〉|2. In other words, to implement
a projective measurement in an optical system, one needs to
implement an inner product.

There have been various classical implementations of
inner products in optical systems. The VanderLugt optical
correlator [2] can be seen as an optical implementation of
an inner product. One can also use diffractive optical ele-
ments to implement so-called diffractive optical inner-product
transforms, which have been used to extract features for
optical pattern recognition applications [3]. This technology
has recently been reinvented to do modal decompositions of
the electric fields inside novel multimode optical fibers [4].

In quantum information systems, projective measurements
are routinely done to perform quantum state tomography [1]
or to measure the modal spectra of output quantum states [5].
However, as was pointed out recently [6], such measurements
can lead to errors in the measured values of the coefficients.
The reason for these errors is related to the fact that in these
experiments a single-mode fiber (SMF) is used to extract the
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Gaussian modal content from the field incident on the fiber
end. The overlap integral that gives the coupling constant
for the light coupling into the fiber does not resemble the
required inner product integral. The difference between the
overlap integral and the inner product integral gives rise to
an inaccurate estimate of the projective measurement. The
situation is in fact even more severe: due to the distortion of
the inner product integral, different modes are not in general
orthogonal with respect to this distorted inner product. As a
result, there is cross-talk among the different modes.

In this paper, we investigate different experimental setups
that can accurately perform optical projective measurements
(inner products). First, we described the different optical setups
that can be used to perform inner products and we provide
their mathematical models. The conditions under which these
setups would perform accurate projective measurements are
discussed. One of these setups, which incorporates an SMF, is
analyzed in more detail to demonstrate the cross-talk that can
occur due to the distortion caused by the Gaussian overlap.

The discussion is done in the context of the Laguerre-
Gaussian (LG) basis, which is widely used because the LG
modes are orbital angular momentum (OAM) eigenmodes [7].
However, the conclusions of this investigation also applies to
other sets of orthogonal functions, such as the Bessel-Gaussian
modes [8].

II. EXPERIMENTAL SETUPS

The expression for the inner product that is used in the
optical application under consideration is given by

〈f,g〉 =
∫∫

D
f (x)g∗(x) d2x, (1)

where D is the domain of integration, namely, the entire trans-
verse plane, f (x) and g(x) are two-dimensional normalized
complex-valued functions,1 the two-dimensional transverse
position vector is denoted by x, and ∗ denotes the complex
conjugate. The normalization of f (x) is defined by∫∫

D
|f (x)|2 d2x = 1, (2)

1In the context of quantum mechanics, f (x) can be interpreted as the
two-dimensional wave function of the quantum state: f (x) = 〈x|f 〉
and the same for g(x).
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FIG. 1. (Color online) Diagram of a system that performs pro-
jective measurements by coupling (the central part of) the Fourier
transform of f (x)g∗(x) into an SMF. For classical applications, the
light can be measured by a CCD pixel at the origin.

and the same for g(x). Henceforth, we drop theD. In an optical
system, f (x) would represent the complex distribution of the
optical field. To perform the inner product, f (x) first needs to
be multiplied by g∗(x). This is done by modulating the optical
field with a complex-valued transmission function, which can
be implemented with the aid of a diffractive optical element or
a spatial light modulator (SLM). For the sake of the subsequent
discussion we’ll assume that an SLM is used for this purpose.
The result behind the SLM then needs to be integrated to
complete the process for the inner product.

The physical transmission (or reflection) function of the
SLM is not normalized and therefore is only proportional to the
normalized function g∗(x) encoded on it. The proportionality
constant is obtained from the loss in optical power when a plane
wave is modulated by that SLM. In the discussions below, we
will ignore this constant.

A. Fourier approach

There are different approaches to implementing the final
integration optically. The first approach employs an optical
Fourier transform, as shown in Fig. 1. Passing the modulated
optical field f (x)g∗(x) through a 2-f system, one obtains the
Fourier transform of the product of the two functions. This
gives

F{fg∗} =
∫∫

f (x)g∗(x) exp[i2π (ax + by)] d2x

= f̃ (a) ⊗ g̃(a), (3)

where F{·} represents the Fourier transform operation and
⊗ denotes the correlation operation. The output is the
cross-correlation of the spectra f̃ (a) = F{f (x)} and g̃(a) =
F{g(x)}. If the two spectra are strongly correlated with
one another, one would observe a bright correlation peak
in the output plane. This is the idea behind the VanderLugt
optical correlator [2]. However, at the origin where a = 0 the
expression in Eq. (3) reduces to an inner product integral. In
other words, one can implement an inner product, provided
that one only measures the light at the center of the back focal
(Fourier) plane.

This method has been used to implement inner products
in classical systems to measure the modal content of optical
beam profiles [3,9]. In such cases the output in the back focal
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FIG. 2. (Color online) Diagram of a system that performs projec-
tive measurements by imaging the product f (x)g∗(x) onto the end of
an SMF.

plane (Fourier plane) is measured by a charge-coupled-device
(CCD) camera and the intensity that is measured by the pixel
at the origin represents the squared modulus of the result of the
inner product. The area of the pixel must be comparable to one
resolution cell in the output plane of the system. A resolution
cell is the area covered by the Fourier transform of the limiting
aperture (exit pupil) of the optical system.

B. Imaging onto SMF

Another method used to implement the integration process
is to image the light onto the end of the SMF, as shown in
Fig. 2. The SMF guides the photons that are coupled into
the fiber onto an avalanche photodiode. This method is often
employed in quantum optical applications where, instead of
the CCD camera, a detection system is needed that can detect
single photons with adequate efficiency.

The overlap integral that gives the coupling coefficient
(which is also an inner product) is

η =
∫∫

p(u)G(u; w) d2x, (4)

where η is the coupling efficiency, p(u) is a normalized
version [as in Eq. (2)] of the complex-valued optical field that
illuminates the end of the SMF, u represents the transverse
coordinates on the end of the SMF, and

G(u; w) = 1

w

√
2

π
exp

(
−|u|2

w2

)
(5)

is the normalized mode of the SMF, with w being the size of
the mode on the end of the SMF.

In the optical system the imaging is usually done with the
aid of a 4-f system, as shown in Fig. 2, which relays the image
of the product of the two functions f (x)g∗(x) onto the end of
the SMF, using an appropriate demagnification. Evaluating the
resulting overlap integral on the plane of the SLM,2 we obtain

η = N
∫∫

f (x)g∗(x)G(x; W ) d2x, (6)

2The same result for the coupling coefficient is obtained regardless
of the plane on which it is evaluated, provided that all the functions
are correctly transformed to that plane.
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where W is the size of the mode when imaged (magnified)
backward onto the SLM and N is a normalization constant for
the product of f (x) and g∗(x)

N =
[∫∫

|f (x)g∗(x)|2 d2x

]−1/2

. (7)

Note that although f (x) and g(x) may be individually
normalized, their product in general is not. The optical power
that is coupled into the SMF and measured by the detector is
given by PSMF = |η|2Pin where Pin is the total incident power
falling on the end of the SMF.

Since the expression in Eq. (6) plays an important role in
the following discussions, we provide a specific notation for
it. The Gaussian distorted inner product (GDIP) is defined as

〈f,g; W 〉G ≡
∫∫

f (x)g∗(x)G(x; W ) d2x. (8)

It then follows that one can express Eq. (6) as

η = N 〈f,g; W 〉G. (9)

While the inner product in Eq. (1) allows one to separate
the contributions of orthogonal basis functions, the coupling
coefficient, as given by Eq. (6), is indifferent to whether f (x)
and g(x) are orthogonal or not. Only when the overlap integral
becomes an inner product integral for f (x) and g(x), as in
Eq. (1), can it extract the coefficients in a reliable way.

The expression in Eq. (6) would be an inner product integral
if one can eliminate the Gaussian function G(x; W ) in some
way. The simplest way to remove G(x; W ) is to absorb it
into g∗(x). Hence, to compute the inner product between the
beam profile f (x) and a function h(x), one would program the
function g∗(x) ∝ h∗(x)/G(x; W ) onto the SLM, which follows
from the identity

〈f (x),h(x)/G(x; W ); W 〉G ≡ 〈f (x),h(x)〉. (10)

This approach is not always practical: due to the inverse of
the Gaussian mode, h∗(x)/G(x; W ) tends to diverge for large
x. In the case where the spectrum is to be measured in terms of
the Laguerre-Gaussian (LG) basis, one may be tempted to use
the Gaussian mode from the SMF to represent the Gaussian
envelope of the LG mode. Unfortunately, without the Gaussian
envelope, the remaining part of the LG mode, which needs to
be programed onto the SLM, is unbounded and diverges as
one moves away from the origin.

An alternative approach is to expand the size of the Gaussian
mode on the SLM by increasing the (de)magnification between
the SLM and the SMF, so that the nonzero part of fg∗ is
confined to the central part of the Gaussian mode where it is
more or less constant. The resulting expression can then be
approximated by

η ≈ N
W

√
2

π

∫∫
f (x)g∗(x) d2x, (11)

which follows from the property

〈f,g; W 〉G W→∞−→ 1

W

√
2

π
〈f,g〉. (12)

The drawback is that the measured coupling efficiency is
suppressed by a factor of 1/W . In a practical experiment this

implies low intensities or low photon counts, which would
increase the sensitivity to noise.

Although the overlap integral in Eq. (4) is also an inner
product, the coupling coefficient η is in general not equal to
the inner product 〈f,g〉. In some cases they are proportional
to each other. For instance, when G(x; W ) is absorbed into
g∗(x), the inner product is given by 〈f,h〉 = η/N and in the
limit where W is very large, the inner product is given by
〈f,g〉 = (π/2)1/2Wη/N .

C. Fourier transform onto SMF

The optical system that is considered for the projective
measurements in Ref. [6] is a combination of the above two
systems: the Fourier transform of the product is coupling into
a SMF. Such a system is modeled by

η = N
∫∫ ∫∫

f (x)g∗(x) exp[i2π (ax + by)]

×G

(
a;

w

f λ

)
d2x d2a, (13)

where a = u/f λ, with f being the focal length of the Fourier
transforming lens and λ being the wavelength. Evaluating the
integral over a, one obtains

η = N
∫∫

f (x)g∗(x)G
(
x; w′) d2x

= N 〈f (x),g(x); w′〉G, (14)

where

w′ = f λ

πw
. (15)

Equation (14) is equivalent to Eq. (6) with the substitution
W → w′. It also corresponds to Eq. (4) in Ref. [6], but in
Eq. (14) the integral is evaluated on the SLM plane, instead
of on the end of the SMF. As before, one can either absorb
G(x; w′) into g∗(x) or assume that w′ is large (which requires
that one makes f large), leading to the same drawbacks. In
Ref. [6] the Gaussian mode is not absorbed into the function
on the SLM and is allowed to have an arbitrary mode size.

Note that when w′ is large the resulting setup corresponds
to the one modeled by Eq. (3) and shown in Fig. 1 but where
the light is coupled into an SMF, instead of being registered
by one CCD pixel. The implication is that while the single
CCD pixel measures that total intensity of the light that falls
on the surface of that one CCD pixel, the SMF only extracts
the Gaussian component of the optical field that falls on its
end.

D. Modal transformation

There exists a more exact method to implement the required
inner product when using SMFs. One can transform the mode
that is to be detected into the Gaussian mode of the SMF.
From a quantum mechanics perspective, such a process can be
accomplished by a unitary transformation. In a physical optical
system this process can be accomplished with the aid of two
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FIG. 3. (Color online) Diagram of a system that performs modal
transformation to convert a particular mode f (x) = �n(x) into
the SMF Gaussian mode. The two SLMs modulate their incident
optical fields with g1(x) = exp[iθ1(x)] and g2(u) = exp[iθ2(u)],
respectively.

SLMs, separated either by a distance of free-space propagation
or by a 2-f system. The latter case is shown in Fig. 3. The
purpose of the two SLMs is to introduce two phase functions
that respectively transform the amplitude distribution and then
the phase of the mode. The SMF Gaussian mode, which is
obtained after the second SLM, is then imaged onto the end
of the SMF by a 4-f system. Since, this process is unitary, any
mode that is orthogonal to the mode that is being transformed
into the Gaussian would be transformed into a mode that is
orthogonal to the Gaussian and would therefore not be coupled
into the SMF. In this way the system is able to extract the
information associated with the particular mode without any
cross-talk from other modes.

To determine the two required phase functions θ1(x) and
θ2(u), one needs to solve the equation

G(u; w) = exp[iθ2(u)]
∫∫

�n(x) exp[iθ1(x)]K(x,u) d2x,

(16)

where �n(x) is the mode to be converted into the Gaussian
mode of the SMF and K(x,u) is the kernel of the particular type
of system (free-space propagation or 2-f Fourier transforming
system). Equation (16) represents a potentially challenging
inverse problem, akin to those associated with beam shap-
ing [10], and needs to be solved for every mode to be detected
with the inner product.

Due to the complexity associated with its implementation,
this type of system is seldom used for the purpose of
implementing inner products. However, see, e.g., [11].

E. Entangled photon pairs

In many optical implementations of quantum information
systems, entangled photon pairs are produced via spontaneous
parametric down-conversion (PDC). Projective measurements
are performed on the pair of entangled photons by making
simultaneous measurements in the two down-converted beams
of photons (the signal and idler beams). Each of the two
measurements are done by modulating the beam with an SLM
and coupling the result into an SMF. Usually the plane of the
SLM is imaged by a 4-f system onto the end of the SMF. Most
practical implementations of this experiment operate in the
so-called thin crystal limit: the Rayleigh range of the pump

beam is much larger than the thickness of the nonlinear crystal
that mediates the PDC process. Within the thin crystal limit,
the combined projective measurement for collinear PDC is
expressed by a three-way overlap [12]

α =
∫∫

p(x)m∗
s (x)m∗

i (x) d2x, (17)

where p(x) is the mode profile of the pump beam in the
crystal plane, and ms(x) and mi(x) are the two modes on the
crystal plane used for the projective measurement in the signal
and idler beams, respectively. It is assumed that p(x), ms(x),
and mi(x) are normalized functions, as defined in Eq. (2). In
practice, the latter two modes are introduced with the aid of
the two SLMs and need to be transformed (imaged) onto the
crystal plane for the calculation of the overlap with Eq. (17).
Together with the Gaussian modes from the two SMFs, the
actual integral becomes [13]

α =
∫∫

p(x)m∗
s (x)m∗

i (x)G(x; W )2 d2x. (18)

Here, W is the mode size of the Gaussian modes when imaged
back onto the crystal plane. As in Eq. (6), the correct overlap
requires the removal of the Gaussian modes in Eq. (18).
Usually the pump beam has a Gaussian profile. Therefore,
one can absorb the two Gaussian modes from the two SMFs
into the pump profile, which then modifies the latter’s mode
size, as follows:

1

w2
0

→ 1

w2
0

+ 2

W 2
, (19)

where w0 is the original pump beam radius. This method was
used in Ref. [13] to obtain good agreement with experimental
results. One can also absorb the Gaussian modes into the
modes ms(x) and mi(x). However, in practice this is not always
possible due to the tendency of the modified modal functions
to diverge.

F. Effect on orthogonality

In the two cases considered in Secs. II B and II C where
an SMF is used to extract the Gaussian component, there are
only two basic approaches to removing the Gaussian mode
to obtain an inner product integral. Either the Gaussian is
removed from the function on the SLM or the Gaussian is
expanded so that it becomes a constant function over the
support of the incident field. Depending on the application,
neither of these approaches may be practical: the function on
the SLM may diverge when one attempts to use it to remove the
Gaussian, or the light levels may be too low when one expands
the Gaussian, leading to unacceptably high noise sensitivity.
For this reason, one may not have a choice but to accommodate
the Gaussian modal overlap inside the inner product integral,
given by the expression in Eq. (6). It is precisely this scenario
that is considered in Ref. [6]. However, the situation is more
complicated than a mere drop in the coupling coefficient. If the
reduction in the coupling coefficient were the only problem,
one could remove it as follows:

η = Nf 〈f,�n; W 〉G
Nn〈�n,�n; W 〉G , (20)
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where �n is a basis function and Nf and Nn are the
normalization constants associated with the numerator and
denominator, respectively.

The problem is not only the reduction in the coupling
efficiency, but also the cross-talk that is introduced between
different basis functions due to the Gaussian distortion in
the inner product. Basis functions that were supposed to be
orthogonal are not in general orthogonal anymore. For the case
of an OAM basis such as the LG modes considered in Ref. [6],
the orthogonality between modes with different azimuthal
indices remains in tact, but the orthogonality between modes
with the same azimuthal indices and different radial indices is
lost.

Hence, if the input field only consists of LG modes with the
same radial index, then the inclusion of the Gaussian overlap
in the inner product will not adversely affect the extraction
process, provided that one uses Eq. (20) to correct the value
of the coefficients. Unfortunately, it is unlikely in a practical
experiment that one can ever assume that the incident field
only consists of LG modes with the same radial index. When
the input field f (x) contains LG modes with arbitrary radial
indices, the coefficient that is extracted by the GDIP for a
particular azimuthal index 〈f (x),Mp; W 〉G will consist of an
unknown linear combination of coefficients, associated with
the same azimuthal index but different radial indices

〈f (x),Mp; W 〉G =
∑

q

αq〈Mq,Mp; W 〉G, (21)

where αq denotes the coefficients. The two LG modes Mp =
MLG(x; p,	) and Mq = MLG(x; q,	) have the same azimuthal
index 	 and different radial indices p and q. The nonzero
overlap from the GDIP between LG modes with the same
azimuthal index and different radial indices is indicated by
〈Mq,Mp; W 〉G = Mpq . To unravel the coefficients for the
different radial indices in such a case, one needs to invert
the matrix Mpq . Hence, the benefit of using an orthogonal
basis is lost.

One can still obtain a reliable description of the density
matrix from quantum state tomography under these circum-
stances, but one needs to take the effect of the nonorthogo-
nality into account to obtain an accurate description of the
measurement process in terms of positive-operator valued
measures [14].

III. ANALYSIS

A. Analytical expressions

To investigate how serious this situation is, we analyze
the expression of the GDIP in Eq. (8) for the LG basis for
arbitrary azimuthal and radial indices. We do this with the aid
of a generating function for the LG modes at z = 0, which is
given by [13,15]

G = 1

1 − η
exp

[
(x ± iy)μ

(1 − η)w0
− (x2 + y2)(1 + η)

(1 − η)w2
0

]
, (22)

where μ and η are generating parameters for the azimuthal and
radial indices, respectively, the sign in the exponent is given
by the sign of azimuthal index 	, and w0 is the radius of the
beam waist. For particular values of the mode indices p and 	,

the LG mode is obtained by

MLG(x; p,	) = NLG

p!

[
∂p

∂ηp

∂ |	|

∂μ|	|G
]

η,μ=0

, (23)

where

NLG =
[

2π2|	|p!

(p + |	|)!
]1/2

(24)

is the modal normalization constant.
The result, after evaluating the integral in Eq. (8) with the

aid of Eqs. (5) and (22), is expressed as a generating function
of the GDIP for different radial indices

GG = 21+|	|(|	|)!√α

[2(1 − η1η2) + α(1 − η1)(1 − η2)]1+|	| , (25)

where3 α = w2
0/W 2 and η1 and η2 are the generating param-

eters for the input and output radial indices, respectively. The
result for a particular set of radial indices p and q are obtained
from the following calculation:

〈Mp,Mq ; W 〉G = Npq

⎡
⎣ ∂p

∂η
p

1

∂q

∂η
q

2

GG

⎤
⎦

η1,2=0

. (26)

The normalization constant Npq is obtained from Eq. (7),
where we again use generating functions to represent the
four LG modes with the same azimuthal index, but arbitrary
radial indices. The resulting generating function for the
normalization constant is

GN = (2|	|)!(ν1ν2ν3ν4)1+|	|

(ν1 + ν2 + ν3 + ν4 − 2)1+2|	| , (27)

where νn = 1/(1 − ηn). The normalization constant is pro-
duced by

Npq =
⎡
⎣ ∂p

∂η
p

1

∂q

∂η
q

2

∂p

∂η
p

3

∂q

∂η
q

4

GN

⎤
⎦

−1/2

η1,2,3,4=0

. (28)

B. Results

In Fig. 4 we show three different cases where we plot the
modulus squared GDIP between two LG modes with the same
azimuthal index. In each graph the one LG mode has a fixed
radial index p, while the radial index of the other mode q

varies from 0 to 5. All graphs are shown as a function of the
squared mode size ratio α = w2

0/W 2. Since these values are
all computed with normalized functions, the maximum value
that can be obtained is 1.

In Fig. 4(a) we show the case for 	 = 0 and p = 0. One can
see that the largest overlap appears when p = q = 0. However,
the cases where p 
= q are not zero as one would have found for
an accurate inner product. In other words, the LG modes with
different radial indices are not orthogonal with respect to the
GDIP. The (p = q = 0) curve reaches a value of 1 at α = 2.
This implies that for 	 = 0 and p = 0 the point where α = 2
(w0 = √

2W ) produces a product fg∗ that exactly matches

3In the notation of [6]: α = 2σ 2/a2
0 .
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FIG. 4. (Color online) GDIP as a function of the squared mode
size ratio α, showing the overlap between two LG modes. In all
three graphs, the two LG modes have the same azimuthal index:
(a) 	 = 0, (b) 	 = 1, and (c) 	 = 3. The radial index for one LG mode
is (a) p = 0, (b) p = 2, and (c) p = 1. The radial index of the other
LG mode ranges over q = 0–5 in all three graphs.

the SMF Gaussian mode. This is a unique case that is not
reproduced for any other LG mode.

In Fig. 4(b) we considered the case where 	 = 1 and p =
2. In this case the largest overlap occurs for p = q = 2, as
expected. Again the cases where p 
= q are not zero. They are
in fact quite large and become larger than the (p = q) case for
α � 1. The maximum value of the GDIP that is obtained for
the LG mode with 	 = 1 and p = 2 is much smaller than 1.
The reason is that the product fg∗ does not exactly match the
SMF Gaussian mode.

FIG. 5. (Color online) Curves for q = 0.4, as in Fig. 4(c), but
with a logarithmic vertical scale and for small values of α.

The case where 	 = 3 and p = 1 is shown in Fig. 4(c).
Again, as expected, the largest overlap occurs for p = q = 1
and the cases where p 
= q are not zero. Instead, the latter
curves become larger than the (p = q) case for α � 1. As
in Fig. 4(b), the maximum value that is obtained for the LG
mode with 	 = 3 and p = 1 is significantly smaller than 1,
because the product fg∗ does not match the SMF Gaussian
mode.

In all the cases shown in Fig. 4, one can see that the
curves for p 
= q are suppressed as α → 0. This confirms the
statement that an accurate inner product can be implemented
by having a small enough value for α. In other words,
when the SMF mode is small compared to the size of the
Fourier transform of the product fg∗, one can implement an
accurate inner product, as discussed in Secs. II A and II C. To
demonstrate this tendency, we show in Fig. 5 the suppression of
the (p 
= q) curves, compared to the (p = q) curve, by plotting
the curves of Fig. 4(c) with a logarithmic vertical scale over a
range of small values for α. Note how much the (p 
= q) curves
are suppressed compared to the (p = q) curve, as α → 0.

IV. SUMMARY AND CONCLUSIONS

The practical optical implementation of inner products
for the purpose of projective measurements in classical or
quantum optical systems is discussed. We explain a number
of different methods to implement accurate inner products.
However, these implementations are often not practical. For
this reason we analyze, for the LG basis, the consequences
of the inaccuracy caused by the overlap with the Gaussian
mode of an optical fiber, which results in the so-called
Gaussian distortion of the inner product. We show that this
distorted version of the inner product not only causes a reduced
coefficient for the overlap, as reported before [6], but also a loss
of orthogonality between modes with different radial indices
of the LG modes. These effects are analyzed quantitatively
to demonstrate their severity. We also point out that one can
reduce these effects with an optimal choice for the mode sizes.

Although we only considered the LG basis here, the same
arguments can be made for other bases, such as the Bessel-
Gaussian basis [8], which is another OAM basis. In such a
case the radial degree of freedom is governed by a continuous
parameter instead of a discrete index.
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17, 9347 (2009).
[5] J. P. Torres, A. Alexandrescu, and L. Torner, Phys. Rev. A 68,

050301 (2003); C. K. Law and J. H. Eberly, Phys. Rev. Lett.
92, 127903 (2004); F. M. Miatto, A. M. Yao, and S. M. Barnett,
Phys. Rev. A 83, 033816 (2011).

[6] H. Qassim, F. M. Miatto, J. P. Torres, M. J. Padgett, E. Karimi,
and R. W. Boyd, J. Opt. Soc. Am. B 31, A20 (2014).

[7] L. Allen, M. W. Beijersbergen, R. J. C. Spreeuw, and J. P.
Woerdman, Phys. Rev. A 45, 8185 (1992).

[8] F. Gori, G. Guattari, and C. Padovani, Opt. Commun. 64, 491
(1987).

[9] D. Flamm, D. Naidoo, C. Schulze, A. Forbes, and M. Duparré,
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