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Abstract—Research in biological image analysis plays an
important role in understanding the underlying mechanisms of
cellular processes, which may lead to better knowledge of certain
aspects of the cell function. The primary analysis of biological
images requires the detection and tracking of hundreds of spots.
In this paper we presents an approach for the tracking of
spots in microscopy images based on the modification of the
algorithm presented by Feng et al. The improved algorithm
consists of replacing the original detection algorithm, Feature
Point Detection(FPD) with Isotropic Undecimated Wavelet Trans-
form (IUWT). The tracking algorithm based on Interacting
Multiple ModelIMM) remains fixed. The performance of the
presented method, IMM-IUWT along with two others, MHT,
based on Multiple Hypothesis Tracking (MHT) and IMM-FPD,
were validated on numerous challenging realistic synthetic image
sequences, and their performance was evaluated using root mean
square error (RMSE) metrics. The results indicate that the
presented method outperforms the original method. At high level
of signal to noise ratio (SNR), it is noted that the performance
of the modified method, IMM-IUWT, is similar to that of MHT
method. The quantitative comparative results demonstrated the
importance of spot detection in tracking contexts.

I. INTRODUCTION

In recent years, the field of fluorescence microscopy has been
improved and automated, and a large volume of image data are
being generated in biology and biomedical fields. The issue of
how to accurately process and analyze the data becomes one
of the major issues in the field because manual analysis is not
practical anymore [1]. This issue has drawn much attention
to systems for bioimage analysis based on computer vision
and image processing. Biological images obtained through
fluorescence microscopy contain a wealth of objects appearing
in the images as bright spots. These spots exhibit a Gaussian-
like appearance with high mean intensity compared to their
background, as shown in Figure 1. The analysis of these
images involves the detection and tracking of these bright
spots. Tracking of these spots is becoming a requisite for
describing biological processes and the working mechanisms
in the living cells.

The key idea of spot tracking is to establish correspondence
between spots in a sequence of images in order to construct
their trajectories throughout the time-lapsed sequence. How-
ever, there are several challenges which hinder the construction
of a robust spot tracking methods. These challenges include

Fig. 1.
spots [2]

(a) Example of a real fluorescence image containing multiple bright

high levels of noise, inhomogeneity in microscopy images,
temporary high spot density, spot disappearance, spot merging,
spot splitting and complex motion patterns. Several tracking
methods have been proposed to overcome these challenges but
often fail to yield satisfactory results in cases of the above
mentioned problems [3].

In this paper, we introduce a modified tracking algorithm based
on modifying the original tracking method developed by Feng
et al. [4]. The algorithm presented in this paper, replaces the
detection algorithm with the Isotropic Undecimated Wavelet
Transform (IUWT) [5]. Based on our previous work [6], it
is noted that the IUWT performed well compared to other
methods. The new approach has been applied to realistic,
synthetic image sequences containing multiple spots. The
results are then compared with tracking methods proposed in
Feng et al. [4] and Chenouard et al. [7].

The layout of the paper is as follows: Section II discusses
various studies on tracking. Section III, IV and V describe
the various algorithms used in the experiments. Section VI
presents the performance measures and in section VII exper-
iments are discussed. Section VIII discusses the experimental
results, and finally, the conclusions are given in section IX.



II. RELATED WORK

Several studies have investigated the tracking of spots in
microscope images and a number of methods have been
proposed to resolve the tracking issues but often fail to yield
satisfactory results in cases of high level of noise, complex
motion patterns and high spot density [3]. One approach for
spot tracking is based on the nearest neighbor method. How-
ever, this approach is most useful for spots which are far apart
and with low density, which is not the case in fluorescence
microscopy images. In cases of high spot density the search
strategy employed by nearest neighbor becomes ambiguous
since several correspondences are possible. Recently, several
methods for particle tracking have been proposed [8]-[10],
which can help to overcome the above mentioned problems.

Sbalzarini et al. [8] presented a 2-D feature tracking method for
the automatic detection and analysis of particle trajectories in
video imaging. The tracking algorithm requires no assumption
about the motion model, it is self initialized, discriminates
spurious detections and can handle temporary occlusion as
well as particle appearance and disappearance. The algorithm,
as presented in [8], starts by finding the particle locations
using feature point detection [8] then employs a motion
correspondence method for data association based on a graph
theoretical approach to solving the transportation problem [11].

Genovesio et al. [9] presented a method for tracking of
multiple moving spot-like particles showing different kinds
of dynamics. The method uses the 3-D undecimated wavelet
transform to detect spots and the prediction of spot future
states is accomplished by the Interacting Multiple Model
(IMM) algorithm [12]. Several models corresponding to dif-
ferent biologically realistic movement types are used. Then,
association is performed to establish the trajectories based on
the maximum likelihood of the innovation among the IMM
filters. The last step consists of updating the filters to compute
the final estimate.

Similar to Genovesio et al. [9], Feng et al. [4] used an IMM
filter to predict and maintain the particle state integrated with
the feature point detection algorithm presented in [36]. A data
association method based on multidimensional assignment was
applied to establish tracks. They combine IMM filter, Feature
Point Detection [8], multidimensional assignment, particle
occlusion handling, and merge-split events in a single software
package.

Chenouard et al. [13] studied the movement of spots in
biological images using a Multiple Hypothesis Algorithm.
The proposed algorithm, first detects spots in images using
Isotropic Undecimated Wavelet Transform (IUWT) [5].

An investigation which was done by Cheezum et al. [14]
focused on evaluating some popular tracking methods in
microscopy images. The authors evaluate the performance of
four non-probabilistic tracking algorithms using only synthetic
images and only for particle localization. It was found that
the performance of the tracking methods deteriorates as the
signal to noise ratio of the images decreases. However, the
study imposed certain limitations. First they were interested in
the localization error while the correspondence findings were
ignored, no real images were used and only non-probabilistic
methods were considered.

The recent study by Chenouard et al. [15] investigated the
performance of 14 tracking methods using synthetic image
sequences. This study included most of the tracking methods,
however, it did not include the algorithm presented in Feng et
al. [4]. The evaluation of the methods was based on synthetic
images of different scenarios. It was found that at present no
single method performs best in all scenarios.

III. DETECTION METHODS

A. Feature Point Detection (FPD)

The method of feature point detection was proposed in [16]
and used for the detection of bright particles in [8].

The algorithm consists of four steps:

1) Image restoration step: this step corrects imperfec-
tions in the image by using a box-car average estima-
tion and simultaneously enhances spot-like structures
by convolving with a Gaussian kernel. The convolu-
tion kernel is given by:
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where K’ and B are normalization factors, A,
defines the kernel width and w is the user tunable
constant. Thus the image after restoration is given
by:

i=w j=w

where(z,y) and (i,j) are pixel coordinates in the
image and kernel respectively.

2) Estimating the particle location: this is done by
locating local intensity maxima in the filtered image,
If(x,y). A local maximum is considered to be a spot
if it has the highest intensity within a local window
and the intensity is in the r*" highest percentile.

3) Refining the particle location: this step reduces the
standard deviation of the position measurement. It
is based on the assumption that the local intensity
maximum of point P at (Z,,%,) is near the true
geometric center (x,,y,) of the spot. The offset
is approximated by the distance to the gray-level
centroid in the filtered image I;(z,y):
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Factor mg(p) is the sum of all pixel values over a
feature point P given as:
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Then the refined location estimate is determined as:

(Tp, Up) = (Tp + €2(p), Ip + €y(p)) (€]

4)  Non-particle discrimination: this step rejects false
identifications such as auto fluorescence signals and



dust. This step is based on the intensity moments of
order 0 and 2, and identifies true spots as those within
a cluster in the mg, m; plane. A detailed description
of the discrimination step can be found in [8].

B. Isotropic Undecimated Wavelet Transform (IUWT)

The method of IUWT was proposed in [5] for the detection
of spots in biological images. The algorithm is based on the
assumption that spots will be present at each scale of wavelet
decomposition and thus will appear in the multiscale product.

The algorithm starts by convolving the image I(z,y) row by
row and column by column with a symmetric low pass filter
h =[1,4,6,4,1]/16, resulting in a smoothed image I (x,y).
The process is repeated for J scale levels, augmenting the
filter with 2¢=! — 1 zeros between taps in each case. The
corresponding wavelet coefficients W;(x,y) are given as:
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Then a hard thresholding is applied to reduce the effect of
noisy wavelet coefficients with ¢; = ko;, where o; is the
standard deviation of the noisy wavelet coefficients at scale
7and k = 3.
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Thus after hard thresholding, a multiscale product of each
wavelet coefficient is computed to get a correlation image
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All the values in the correlation image are compared to pre-
determined detection level [ to discriminate between particle
and background, and get a binary image of particles. A spot
is accepted only at positions where the correlation is above g4,
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IV. TRACKING METHODS
A. Interacting Multiple Models (IMM)

The IMM filter is a state estimation algorithm for systems with
multiple motion models. Internal model changing is based on a
finite state Markovian switching coefficient. The algorithm was
first developed for radar tracking systems [12], and introduced
to biological applications in [4], [9]. The generic IMM filter
using the Kalman filter as proposed in [9] contains several
models of linear systems:

x, = Alzp_y +wl_, an

2, = Hlzy, + vl (12)

Where z;, is the system state at time k, j denotes the index
of models, Ai‘is the state transition matrix for model Li at
time k and wj, ~ N(0,Qy) is the process noise. 2, is the
measurement state, H ,i is observation matrix for model Lfc at
time k, and v] ~ N(0,V;) is the measurement noise. The
n models of the IMM filter form a discrete set denoted as:
L= {L'...L"™} and the pyobgbility of switching from L} , to
L7 given as: m;; = P{L}|L}_,}.

B. Multiple Hypothesis Tracking

The Multiple Hypothesis Tracking method was previously
used in radar tracking and video surveillance [17]-[19] and
proposed for biological particle tracking by Chenouard et al.
[13]. The algorithm is based on Bayesian tracking principles.
The main idea of this algorithm is to build a set tracks that
maximizes the likelihood, £(B™), of the associations between
tracks, B™, and measurements, Z™", from the sequence of m
images:

B' & B™ 1

arg max L(B™) (13)
Where, Q2™ is the set of hypothesis tracks and, £(B™), the
likelihood of the tracks is defined as:

L(B™) = P{B™|Z™} (14)

A detailed description of the algorithm can be found in [7],
[20].

V. DETECTION AND TRACKING
A. IMM-FPD

The algorithm presented by Feng et al. [4], first uses the
Feature Point Detection (FPD) [8] method to detect spots in
time lapse image sequence. Then, the Interacting Multiple
Model (IMM) method is used to model the movements of
spots and generate cost values for particle linkage. The data
association based on multidimensional assignment [4] is used
to establish tracks.

B. IMM-IUWT

The proposed method in this paper is based on the original
tracking algorithm presented by Feng et al. [4] but we replaced
the original spot detection, Feature point Detection (FPD),
with, Isotropic Undecimated Wavelet Transform (IUWT) [5].
The IUWT method is applied to image sequences to provide
spot locations in each frame, then these spot locations are
linked to form tracks based on the tracking algorithm presented
by Feng et al. [4] using the Interacting Multiple Model (IMM)
filter.

C. MHT

The Multiple Hypothesis Tracking method presented by
Chenouard et al. [7] uses the detections provided by Isotropic
Undecimated Wavelet Transform(IUWT) [5] detector, then
these detections are then linked to form tracks based on a
Bayesian framework. The MHT algorithm aims at building
iteratively the set of tracks that maximizes the likelihood in
equation (14).



VI. EVALUATION

The particle tracking benchmark generator plugin [20], [21] in
the ICY software [22], [23] from Institut Pasteur in France,
was used to create the synthetic image time sequences. The
plugin creates realistic 2D /3D ~+ time fluorescent particles. By
adjusting parameters in the plugin configuration text file, dif-
ferent characteristics of particles can be achieved, for example,
particle motion type, number of particles, background noise,
particle intensity, and dimension and length of sequences.

In order to test the performance of the different algorithms,
the Root Mean Square Error (RMSE) was used. This measure
indicates the overall accuracy of matching points in the paired
tracks and was successfully used in Chenouard et al. [15].
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RMSE =

Where y; is the ground truth value for i* observations and j;
is the predicted value (value reported by the algorithm) and n
is the number of observation. This measure is implemented in
an Icy [22] plugin called tracking performance measures [24].

VII. EXPERIMENTAL SET-UP
A. Experiments with synthetic data

The performance of the proposed tracking methods was eval-
uated using synthetic (with ground truth) image sequences, as
shown in Figure 2.

Six types of synthetic image sequences, Seq A, Seq B, Seq C
and Seq D, Seq E, Seq F, were created using the synthetic
data benchmark generator [21]. These synthetic sequences
simulated different imaging conditions and different spot
movement. Each synthetic sequence was a two dimension plus
time (2D + t) image with size of 512 x 512 pixels containing
multiple spots in random locations. The length of the time
sequences was fixed at 50.

The first three sequences (Seq A, Seq B and Seq C) contained
10, 50 and 200 spots respectively, moving in linear motion
with random directions, and with randomly varying velocity
between v,,,;, = 2 and v, = 4. Gaussian noise was then
added to each sequence resulting in noisy synthetic sequences
with signal to noise ratio (SNR) values of {10,7,5,4,3,2,1}.
SNR in our experiments was defined as the ratio of spot
intensity, I, 42, divided by the noise standard deviation, 0 ,0ise:

SNR = Imas (16)

Onoise

The last three sequences (Seq D, Seq E, Seq F) contained 10,
50 and 200 spots moving with Brownian motion and with the
standard deviation of the motion fixed at sigma,Max = 4
and sigmapMin = 2. Gaussian noise was added to produce
SNR values of {10,7,5,4,3,2,1}.

VIII. EXPERIMENTAL RESULTS AND DISCUSSION

In this section, the performance of the proposed tracking
methods is evaluated using synthetic images with ground truth
by computing the root mean square error.

(a)

(b)

(@

Fig. 2. Examples of synthetic images used in the experiments. (a, b, ¢) shows
the images with increasing number of spots, 10, 50 and 200. (d and e) shows
the types of motions considered in our study, linear motion (d) and Brownian
motion (e).
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Fig. 3. Results for tracking spots moving in linear motion at different SN R.
(a) Seq A (10 spots) (b) Seq B (50 spots) (c) Seq C (200 spots).

Figures 3 and 4 show the results of three tracking methods
using synthetic images. The results from Figure 3 indicate that
the MHT method performs well compared to IMM-IUWT and
IMM-FPD at low SNR (1 to 2). However, as the SNR increases
from 3 to 10 the difference in performance between MHT
and IMM-IUWT appears to be less significant. The IMM-
FPD method produces results with higher error compared to
all other methods even at high SNR.

Results from Figure 4 also indicate that the MHT method per-
forms well at low SNR compared to other methods. However,
at SNR = 1, in Figure 4(a, b) it is noted that the MHT failed to
find tracks. As SNR increases, it is noted that the IMM-IUWT
performance increased. The improvement in performance of
the IMM-IUWT over IMM-FPD was the result of replacing
the detection algorithm, FPD with TUWT.

IX. CONCLUSION

This paper introduced a new method, IMM-IUWT, for particle
tracking and compared its performance with two other tracking
methods, MHT and IMM-FPD based on synthetic images. The
proposed method is a modification of the algorithm presented
in [4], here named IMM-FPD. The results from experiments on
synthetic image sequences indicate that the proposed method
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Fig. 4. Results for tracking spots moving in Brownian motion at different
SNR (a) Seq D (10 spots)(b) Seq E (50 spots)(c) Seq F (200 spots).

generally outperforms the original method, IMM-FPD espe-
cially at higher SNR levels. At low SNR, no single method
perform best. It is also noted that at high level of SNR,
the performance of IMM-IUWT and MHT is relatively the
same. This results show that the performance of the detection
algorithm is critical for best tracking performance. As part of
future work, we are planning to investigate the performance
of IMM-IUWT on real microscopy image sequences.
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