
The Entity-to-Algorithm Allocation Problem:
Extending the Analysis

Jacomine Grobler
Department of Industrial and

Systems Engineering
University of Pretoria and
Council for Scientific and

Industrial Research
Pretoria, South Africa

Email: jacomine.grobler@gmail.com

Andries P. Engelbrecht
Department of Computer Science

University of Pretoria
Pretoria, South Africa

Graham Kendall1 and
V.S.S. Yadavalli2

School of Computer Science
University of Nottingham, UK and Malaysia1

Department of Industrial and
Systems Engineering
University of Pretoria

Pretoria, South Africa2

Abstract—This paper extends the investigation into the algo-
rithm selection problem in hyper-heuristics, otherwise referred
to as the entity-to-algorithm allocation problem, introduced
by Grobler et al.. Two newly developed population-based
portfolio algorithms (the evolutionary algorithm based on self-
adaptive learning population search techniques (EEA-SLPS)
and the Multi-EA algorithm) are compared to two meta-
hyper-heuristic algorithms. The algorithms are evaluated under
similar conditions and the same set of constituent algorithms
on a diverse set of floating-point benchmark problems. One of
the meta-hyper-heuristics are shown to outperform the other
algorithms, with EEA-SLPS coming in a close second.

I. INTRODUCTION

Since the first multi-method algorithms, memetic algo-
rithms, were developed the allocation of solutions or entities
to the various algorithms making up the memetic algorithm,
has become an important consideration. Therefore, inves-
tigating various entity-to-algorithm allocation strategies is
important to determine best practice guidelines for multi-
method algorithms. Grobler et al. [1] initiated such a study,
where three multi-method algorithms were compared with
regards to their entity-to-algorithm allocation strategy. Over
the last year new multi-method algorithms have, however,
been proposed and it thus became necessary to extend this
work to include additional algorithms.

An analysis of the multi-method literature identified a
number of promising multi-method algorithms developed
over the last couple of years. The population-based algo-
rithm portfolio [4] and the fitness-based area under the
curve-bandit strategy [5] were included in the previous
investigation. This paper thus focuses on investigating the
entity-to-algorithm allocation strategies of the multiple evo-
lutionary algorithm of Yuen et al. [3], the evolutionary
algorithm based on self-adaptive learning population search
techniques [2], and two versions of the heterogeneous meta-
hyper-heuristic (HMHH) [6] algorithm.

One of the main issues in multi-method algorithm liter-
ature is the fact that each newly introduced multi-method
algorithm utilizes its own set of low level algorithms as
selected by the authors. However, since the selection of the
set of low level algorithms has an enormous impact on the

performance of the multi-method algorithm, it is impera-
tive that different entity-to-algorithm allocation mechanisms
should be compared while both use the same set of multi-
method algorithms. This practice is currently not adopted in
literature, and it is thus impossible to know which high-level
strategy is truly better. Herein lies the contribution of this
paper, namely providing an unbiased comparison of three
different multi-method algorithms to independently evaluate
the entity-to-algorithm allocation mechanism.

Algorithm performance was evaluated on a set of var-
ied floating-point benchmark problems. The most promis-
ing results were obtained by the exponentially increasing
heuristic space diversity (EIHH) algorithm, but EEA-SLPS
and the standard HMHH demonstrated similar performance.
Good performance, when compared to the multi-method
algorithms’ constituent algorithms, was also demonstrated.

The rest of the paper is organized as follows: Section II
provides a brief overview of the multi-method algorithm
literature. Section III describes the multi-method algorithms
which were evaluated. The results are documented in Sec-
tion IV before the paper is concluded in Section V.

II. A BRIEF REVIEW OF RELATED LITERATURE

Multi-method algorithms have appeared in various differ-
ent domains over the last couple of years. Examples include
memetic computation [7], algorithm portfolios [8], algorithm
ensembles [9], and hyper-heuristics [10]. This section pro-
vides a closer inspection of multi-method literature.

Memetic algorithms (MAs), the algorithmic pairing of
a population-based search method with one or more re-
finement methods [7], can be considered the first multi-
method techniques applied in the field of computational in-
telligence [11]. The ability of global optimization algorithms
to quickly identify promising areas of the search space is
combined with local search algorithms which are able to
refine good solutions more efficiently.

Various more complex self-adaptive multi-method al-
gorithms have since been developed. In the DE domain,
the intelligent selection of mutation operators and control
parameters during optimization is considered in [18], [19],



and [20]. The self-adaptive DE algorithm of Qin and
Suganthan [12] which makes use of different DE learning
strategies which are weighted based on previous algorithm
success, is another example. Various heterogeneous PSO
algorithms have also been developed [21].

Traditionally, cooperative algorithms are multi-
population techniques where problem variables are
distributed over a number of subpopulations to be optimized
separately. A solution is constructed by combining the
best solution obtained by each subpopulation. The
heterogeneous cooperative algorithm of Olorunda and
Engelbrecht [13] makes use of different EAs to update each
of the subpopulations, thereby combining the strengths and
weaknesses of various optimization strategies within the
same algorithm. Promising results in terms of robustness
and consistent performance were obtained when compared
to other single-method EAs.

Vrugt et al.’s highly successful population-based ge-
netic adaptive method for single objective optimiza-
tion (AMALGAM-SO) [14] was developed after the success
of the multi-objective AMALGAM algorithm. This algo-
rithm is one of the few examples of an algorithm which
continually updates the allocation of algorithms to entities
during the optimization run. AMALGAM-SO employs a
self-adaptive learning strategy to determine the percentage
of candidate solutions in a common population to be al-
located to each of three EAs. A restart strategy is used
to update the percentages based on algorithm performance.
This technique performed well when compared to a number
of single method EAs on the 2005 IEEE Congress of Evo-
lutionary Computation benchmark problem set [30]. Closer
inspection of the algorithm, however, uncovers a large bias
towards CMAES. Since it is well-known that CMAES is the
best choice among the available algorithms for solving the
CEC2005 problems, the question of how well the algorithm
will perform without this assistance, remains to be answered.

Peng et al. [4] developed the population based algorithm
portfolio (PAP). This algorithm is based on the principle
of multiple subpopulations each assigned to one algorithm
from a portfolio of available algorithms. At pre-specified
time intervals, entities are migrated between subpopulations
to ensure effective information sharing between the different
optimization algorithms. A pairwise metric was also pro-
posed which can be used to determine the risk associated
with an algorithm failing to solve the problem in question.
It should be noted, however, that PAP makes use of a static
entity-to-algorithm allocation strategy. Thus, the algorithm
is stuck with the initial allocation throughout the rest of the
optimization run. This implies that when a different entity-
to-algorithm allocation is required at a different stage of
the optimization run, no update to the entity-to-algorithm
allocation can be made. What influence this has on algorithm
performance, remains to be determined.

Tang et al. [15] recently developed an extended version
of PAP, namely PAP based on Estimated Performance Matrix
(EPM-PAP) which contains a novel constituent algorithms
selection module. EMP-PAP was shown to outperform a
number of single EAs. It should be noted that the motivation
of PAP is to select constituent algorithms so as to achieve
good overall performance on a set of problem instances in

contrast to, for example, HMHH and AMALGAM which
attempt to obtain the best possible solution on a specific
problem instance.

Another successful adaptive strategy selection mecha-
nism was investigated by Fialho et al. [16]. Comparisons
of alternative credit assignment methods [17] and strategy
selection mechanisms within a differential evolution frame-
work [5] highlighted the superior performance of the fitness-
based area under curve bandit (FAUC-Bandit) technique.

Hyper-heuristics [22] promote the design of more gen-
erally applicable search methodologies and tend to focus
on performing relatively well on a large set of different
problems, in contrast to specialized algorithms which focus
on outperforming the state-of-the-art for a single application.
Most recent hyper-heuristic algorithms consist of a high level
methodology which controls the selection or generation of
a generic search strategy while using a set of low-level
heuristics as input. This strategy facilitates the automatic
design of several algorithmic aspects, thus the impact of
hyper-heuristic research on recent optimization trends is
significant. The tabu-search hyper-heuristic of Burke et
al. [23] and the simulated annealing based hyper-heuristic
of Dowsland et al. [24] are notable examples.

In summary, a number of state of the art algorithms
can be identified from the fields of algorithm portfolios,
algorithm ensembles, adaptive operator selection strategies
and hyper-heuristics. The FAUC-Bandit method [5] was
previously identified as the most promising adaptive operator
selection mechanism [1]. Until recently, PAP [4] was the
best performing portfolio algorithm and AMALGAM [14]
was the best ensemble algorithm. The HMHH algorithm [6]
was the only hyper-heuristic selecting from a set of low
level meta-heuristics (LLMs) during the optimization run.
However, the recent development of two algorithms, namely
the multiple evolutionary algorithm (Multi-EA) [3] and
the evolutionary algorithm based on self-adaptive learning
population search techniques (EEA-SPLS) [2], has led to
confusion with regards to the relative performance of the
most promising multi-method algorithms. This confusion is
largely caused by the use of different low level heuristics in
each of the two algorithms. Multi-EA claims superior per-
formance to PAP and AMALGAM and EEA-SLPS claims
superior performance to PAP. Grobler et al. previously com-
pared the performance of FAUC-Bandit, PAP and HMHH,
but it has now become necessary to extend this evaluation
to include Multi-EA and EEA-SLPS. The focus of this
paper is thus to compare the performance of Multi-EA and
EEA-SLPS to two variations of the HMHH algorithm. The
next section will provide more detail with regards to the
experimental setup.

III. A SELECTION OF MULTI-METHOD ALGORITHMS

To ensure that Multi-EA, EEA-SLPS and the two HMHH
algorithms are evaluated under a common baseline, it is
important that the same set of constituent algorithms are used
by each multi-method algorithm. The constituent algorithms
used in this paper were selected based on their diversity
profiles as described in [1]:



• A genetic algorithm (GA) with a floating-
point representation, tournament selection, blend
crossover [25] [13], and self-adaptive gaussian mu-
tation [6].

• The guaranteed convergence particle swarm opti-
mization algorithm (GCPSO) [26].

• The self-adaptive (SaNSDE) algorithm [27].

• The covariance matrix adapting evolutionary strat-
egy algorithm (CMAES) [28].

The algorithm control parameters values listed in Table I
were found to work well for the algorithms under study
during initial parameter optimization. The notation a −→ b
is used to indicate that the associated parameter is decreased
linearly from a to b over 95% of the maximum number of
iterations, Imax.

TABLE I. LOW-LEVEL META-HEURISTIC ALGORITHM
PARAMETERS.

Parameter Value used
GCPSO parameters
Acceleration constant (c1) 2.0 −→ 0.7
Acceleration constant (c2) 0.7 −→ 2.0
Inertia weight (w) 0.9 −→ 0.4
SaNSDE parameters As specified in [27].
GA parameters
Probability of crossover (pc) 0.6 −→ 0.4
Probability of mutation (pmut) 0.1
Blend crossover parameter (α) 0.5
GA tournament size (Nt) 3
CMAES parameters As specified in [28].

The four multi-method algorithm frameworks which
were selected for comparison are described in the rest of
this section.

A. The heterogeneous meta-hyper-heuristic algorithm

The HMHH algorithm consists of a number of algorith-
mic elements. As indicated in Figure 1, these elements con-
sists of a common population of entities, each representing a
candidate solution which is adapted over time, a set of low
level meta-heuristic (LLM) algorithms, and an acceptance
strategy.

At the start of the optimization run, the population of
entities is divided equally into a number of subpopulations.
These subpopulations are adapted in parallel by the set of
LLM algorithms. Each entity is able to access the genetic
material of other subpopulations, as if part of a common
population of entities. The allocation of entities to LLMs
is updated on a dynamic basis throughout the optimization
run. The idea is that an intelligent algorithm can be adapted
which selects the appropriate LLM at each kth iteration to
be applied to each entity within the context of the common
parent population, to ensure that the population of entities
converge to a high quality solution. The LLM allocation is
maintained for k iterations, while the common parent pop-
ulation is continuously updated with new information and
better solutions. Throughout this process, the performance
of the various LLMs is stored as defined by Qδm(t), the
total improvement in fitness function value of all entities
assigned to the mth LLM from iteration t− k to iteration t.

Fig. 1. The heterogeneous meta-hyper-heuristic.

More specifically,

Qδm(t) =

|IIIm(t)|∑
i=1

(f(xxxi(t− k))− f(xxxi(t))) ∀i ∈ IIIm(t)

(1)

where f(xxxi(t)) denotes the objective function value of entity
i at time t and IIIm(t) is the set of entities allocated to the mth

LLM at time t. Qδm(t) is used throughout the optimization
process as input to the HMHH selection process responsible
for allocating entities to LLMs.

The HMHH algorithm was considered promising since
each entity can use unique meta-heuristics that are helpful
for dealing with the specific search space characteristics it
is encountering at that specific stage of the optimization
process, and the role the LLM is playing in the larger
algorithm.

With reference to Burke et al.’s classification [23], the
heterogeneous meta-hyper-heuristic algorithm can be consid-
ered a heuristic selection methodology and an online learn-
ing perturbation hyper-heuristic. For the sake of complete-
ness, the HMHH pseudocode is provided in Algorithm 1.

A derivative of the HMHH algorithm, the exponentially
increasing heuristic space diversity hyper-heuristic algorithm
with no a priori knowledge (EIHH) [31], was also included
in the investigation. The EIHH has a similar structure as
the HMHH algorithm, but uses the set of available LLMs
to influence the heuristic space diversity of the algorithm.
At the start of the optimization run only one LLM is made
available to the hyper-heuristic. As the optimization process
progresses, additional randomly selected LLMs are made
available at predetermined exponential time intervals. Here
the hyper-heuristic is forced to move from exploitation to ex-
ploration. The idea is to obtain maximum performance gains
from the first LLM. As the performance gains decrease the
rest of the LLMs become available to diversify the heuristic
space and improve the overall algorithm performance. The
EIHH was shown to provide the best results when compared
to a number of other heuristic space diversity management



Algorithm 1: The heterogeneous meta-hyper-heuristic.
1 t = 0
2 Initialize the parent population XXX(t+ 1)
3 Ai(t) denotes the index of the LLM applied to entity
i at iteration t

4 for all entities i ∈XXX(t+ 1) do
5 Randomly select an initial LLM, Ai(1), from the

set of LLMs to apply to entity i
6 end
7 while stopping conditions are not satisfied do
8 for all entities i do
9 Apply LLM Ai(t) to entity i for k iterations

10 t = t+ k
11 Calculate Qδm(t) using Equation (1).
12 end
13 for all entities i do
14 Use Qδm(t) as input to select LLM Ai(t)

according to the rank-based tabu search
entity-to-LLM allocation strategy.

15 end
16 end

strategies and also outperformed the HMHH algorithm so
will also be included in the multi-method algorithm evalua-
tion.

B. The multiple evolutionary algorithm

The basis of the multiple evolutionary algorithm (Multi-
EA) [3] is a portfolio of promising evolutionary algorithms
which are run independently from each other. Throughout
the optimization run, the partial convergence curves of the
constituent evolutionary algorithms are extrapolated to a
common future point in time. These extrapolations are used
at each iteration to predict the future performance of each
algorithm and determines which algorithm will be used
to execute the next iteration of the portfolio. During the
development of the algorithm Yuen et al. [3] experimented
with various extrapolation methods including exponential
curves, polynomials and Taylor series. However, a least
squares error linear regression method was determined to be
the most effective solution. The robustness of the algorithm
is further increased by subdividing each partial convergence
curve into a number of subcurves, each with their own pre-
diction. All the predictions for a specific algorithm are then
considered to be sample points of an unknown distribution
and a bootstrap probability distribution is fitted to the points.
The final prediction for each algorithm is then sampled from
the distribution associated with its predictive measure. The
main idea is to have multiple linear regression models each
with an equal probability of selection for each algorithm at
each iteration of the portfolio. For the sake of completeness,
the pseudocode of the Multi-EA algorithm is provided in
Algorithm 2.

One of the main differences between Multi-EA and
some of the other popular portfolio methods is that each
constituent algorithm is executed independently from all
other algorithms and no information exchange mechanism
is used between the different subpopulations. The reason
provided for this decision is that offspring from different

Algorithm 2: The multiple evolutionary algorithm [3].
1 Let na be the number of constituent algorithms

available for selection.
2 Let Mn be the number of entities assigned to

algorithm n.
3 for all algorithms m = 1 to na do
4 Run algorithm m until there is a change in

fitness. Let αm be the number of generations that
algorithm m has run.

5 end
6 while stopping conditions are not satisfied do
7 Compute the nearest common future point tmin,

where
tmin = max((α1 + 1)M1, . . . , (αna + 1)Mna).

8 for all algorithms m = 1 to na do
9 Construct convergence curve

Cm = {(j, fm(j))|j = 1, . . . , αm}.
10 Construct sub-curves

{Cm(1), . . . , Cm(αi − 1)}.
11 for each sub-curve Cm(l) do
12 Perform a least square line fit to obtain

line parameters a and b.
13 Predict the fitness at the smallest future

point, pfm(tmin, l).
14 end
15 Use the αm− 1 sample points of pfm(tmin, l)

where l = 1, . . . , αm − 1, to construct a
bootstrap probability distribution bpdm(tmin).

16 Sample bpdm(tmin) to obtain pfm(tmin).
17 end
18 Choose the algorithm with index which has the

best predicted performance according to
pfpfpf(tmin).

19 Run it for one generation so that αm = αm + 1.
20 Record the best solution found thus far by the

portfolio.
21 end

algorithms is not able to mislead each other. However,
this also results in the different algorithms being unable to
learn from each other which influences the benefit of using
multiple algorithms simultaneously. Since the computational
budget is divided between different algorithms without the
algorithms benefiting from each other’s learning, it is debat-
able whether the portfolio will be greater than the sum of
its parts.

C. The evolutionary algorithm based on self-adaptive learn-
ing population search techniques

Similar to PAP [4], the evolutionary algorithm based on
self-adaptive learning population search techniques (EEA-
SLPS) [2] consists of entities divided into subpopulations.
These subpopulations are adapted in parallel by an assigned
constituent algorithm, where one constituent algorithm is
used per subpopulation. Each entity only has access to other
entities within the same subpopulation in order to prevent
the same genetic material from being adapted repeatedly.
However, an information exchange mechanism is used to
ensure that each constituent algorithm benefits from the
learning of the other algorithms. A strong focus of Xue



et al’s [2] work was the investigation of alternative infor-
mation exchange mechanisms and their impact on portfolio
performance. Eighteen mechanisms were evaluated and the
best strategy was identified as replacing the worst individual
of each subpopulation by the current best individual of the
entire ensemble. This replacement was found to work best
at each iteration as indicated in Algorithm 3.

Algorithm 3: The evolutionary algorithm based on
self-adaptive learning population search techniques [2].
1 Let xxx∗(t) be the best solution in the entire portfolio

at time t.
2 Initialize np subpopulations, PPP 1,PPP 2, ...,PPPnp
3 while stopping conditions are not satisfied do
4 Evaluate all the entities in PPP 1,PPP 2, ...,PPPnp
5 for all algorithms m do
6 Adapt PPPm using algorithm m
7 end
8 Activate migration procedure as follows: for all

subpopulations m do
9 if xxx∗(t) /∈ PPPm then

10 Replace the worst solution in PPPm by
xxx∗(t)

11 end
12 end
13 end

IV. EMPIRICAL EVALUATION

The four multi-method algorithms were evaluated on the
first 14 problems of the 2005 IEEE Congress of Evolu-
tionary Computation benchmark problem set, which enables
algorithm performance evaluation on both unimodal and
multimodal functions and includes various expanded and
hybridized problems, some with noisy fitness functions [30].
The control parameters of the three multi-method algorithms
are used “as-is” as defined by the original authors and are
specified in Table II.

TABLE II. HMHH, MULTI-EA, AND EEA-SLPS PARAMETERS.

Parameter Value used
Common algorithm parameters
Population size (ns) 100

Maximum number of iterations (Imax), 100nx

where nx denote the number of dimensions.

Multi-EA and EEA-SLPS
Number of entities assigned to CMAES 14

Number of entities assigned to GCPSO 18

Number of entities assigned to GA 18

Number of entities assigned to SaNSDE 50

HMHH
Number of iterations between re-allocation (k) 5

Size of tabu list 3

The results of the multi-method algorithm framework
comparison is presented in Table V, where the results for
each algorithm were recorded over 30 independent simu-
lation runs. The symbols µ and σ denote the mean and
standard deviation associated with the corresponding perfor-
mance measure and #FEs denotes the number of function
evaluations which were needed to reach the global optimum

within a specified accuracy. Where the global optimum could
not be found within the maximum number of iterations, the
final solution at Imax, denoted by FFV , was recorded.

Statistical tests were also used to evaluate the signifi-
cance of the results. The results in Table IV were obtained
by comparing each dimension-problem-combination of the
algorithm under evaluation, to all of the dimension-problem-
combinations of the other algorithms. For every comparison,
a Mann-Whitney U test at 95% significance was performed
(using the two sets of 30 data points of the two algorithms
under comparison) and if the first algorithm statistically
significantly outperformed the second algorithm, a win was
recorded. If no statistical difference could be observed a
draw was recorded. If the second algorithm outperformed
the first strategy, a loss was recorded for the first algo-
rithm. The total number of wins, draws and losses were
then recorded for all combinations of the algorithm under
evaluation. As an example, (5-19-4) in row 2 column 1,
indicates that the EIHH algorithm significantly outperformed
the HMHH algorithm five times over the benchmark problem
set. Furthermore, 19 draws and four losses were recorded.

TABLE III. HYPOTHESES ANALYSIS OF ALTERNATIVE
MULTI-METHOD ALGORITHMS.

HMHH EIHH EEA-SLPS
HMHH NA 4− 19− 5 11− 8− 9

EIHH 5− 19− 4 NA 6− 16− 6

EEA-SLPS 9− 8− 11 6− 16− 6 NA

Multi-EA 3− 4− 21 3− 1− 24 2− 3− 23

Multi-EA TOTAL
HMHH 21− 4− 3 36− 3− 17

EIHH 24− 1− 3 35− 36− 13

EEA-SLPS 23− 3− 2 38− 27− 19

Multi-EA NA 8− 8− 68

From the results it can be seen that the HMHH, EIHH,
and EEA-SLPS algorithms all scored a high number of wins.
Overall the EIHH algorithm is the best performing algorithm
due to the largest difference between its number of wins
and losses. The performance of the Multi-EA algorithm on
the benchmark set is, however, disappointing. This worse
than expected performance should be investigated further,
however, the lack of an information exchange mechanism is
a strong suspect for the poor performance.

In an attempt to further verify the performance of the
multi-method algorithms, each multi-method algorithm was
also compared under similar conditions to its constituent
algorithms. The results are recorded in Table VI. In Ta-
ble IV Mann-Whitney U tests were used to compare the
performance of each constituent algorithm to the different
multi-method algorithm. The same number of wins-draws-
losses format of Table IV was used.

TABLE IV. HYPOTHESES ANALYSIS OF THE VARIOUS ALGORITHMS
VERSUS THEIR CONSTITUENT ALGORITHMS.

Algorithm HMHH EIHH EEA-SLPS Multi-EA
CMAES 0-3-25 4-2-22 4-2-22 2-2-24

SaNSDE 17-2-9 16-8-4 12-12-4 5-0-23

GA 22-3-3 23-2-3 23-4-1 4-5-19

GCPSO 20-1-7 20-3-5 19-3-6 8-3-17

TOTAL 55-18-39 63-15-34 58-21-33 19-10-83



TA
B

L
E

V.
R

E
S

U
LT

S
O

F
T

H
E

E
V

A
L

U
A

T
IO

N
O

F
A

LT
E

R
N

A
T

IV
E

M
U

LT
I-

M
E

T
H

O
D

F
R

A
M

E
W

O
R

K
S

O
N

T
H

E
20

05
IE

E
E

C
E

C
B

E
N

C
H

M
A

R
K

P
R

O
B

L
E

M
S

E
T.

Pr
ob

(D
im

s)
H

M
H

H
E

E
A

-S
L

PS
M

ul
ti-

E
A

FF
V

#
FE

s
FF

V
#

FE
s

FF
V

#
FE

s
µ

σ
µ

σ
µ

σ
µ

σ
µ

σ
µ

σ

1
(
1
0
)

1
.0

0
E

−
0
6

0
1
1
8
7
0

5
3
8
.9

3
1
.0

0
E

−
0
6

0
1
3
9
2
3

5
1
7
.7

4
2
0
1
4
.3

9
1
8
.4

3
1
.0

0
E

+
0
5

0

1
(
3
0
)

1
.0

0
E

−
0
6

0
5
2
9
8
3

2
7
2
3
.3

1
.0

0
E

−
0
6

0
3
5
2
9
7

2
9
7
4
.8

1
3
1
1
6

4
6
9
0
.2

3
.0

0
E

+
0
5

0

2
(
1
0
)

1
.0

0
E

−
0
6

0
1
4
0
1
3

1
2
4
6
.7

1
.0

0
E

−
0
6

0
1
8
5
5
3

8
5
8
.1

2
3
8
1
3
.7

1
2
5
6
.8

1
.0

0
E

+
0
5

0

2
(
3
0
)

1
.0

0
E

−
0
6

0
9
0
7
2
7

1
5
8
7
6

1
.0

0
E

−
0
6

0
9
0
5
0
7

2
0
6
4
.3

5
5
6
1
3

1
2
5
4
0

3
.0

0
E

+
0
5

0

3
(
1
0
)

1
.0

0
E

−
0
6

0
2
2
7
5
0

3
0
0
3

1
.0

0
E

−
0
6

0
4
5
2
8
3

2
2
9
5
.7

1
.2

9
E

+
0
7

4
.0

9
E

+
0
6

1
.0

0
E

+
0
5

0

3
(
3
0
)

2
9
5
.3

5
9
9
8
.7

4
2
.7

9
E

+
0
5

2
7
7
8
2

1
.0

0
E

−
0
6

0
2
.8

5
E

+
0
5

5
4
0
0
.7

2
.5

6
E

+
0
8

8
.5

8
E

+
0
7

3
.0

0
E

+
0
5

0

4
(
1
0
)

1
.0

0
E

−
0
6

0
1
5
8
5
3

1
3
4
1
.8

1
.0

0
E

−
0
6

0
1
9
9
2
7

1
1
2
8
.9

3
8
2
0
.4

1
9
4
5
.1

1
.0

0
E

+
0
5

0

4
(
3
0
)

1
.0

0
E

−
0
6

0
1
.5

0
E

+
0
5

2
7
9
6
2

2
1
6
1
.6

3
3
2
8
.6

2
.7

5
E

+
0
5

5
4
9
0
5

6
4
3
0
8

1
1
1
9
3

3
.0

0
E

+
0
5

0

5
(
1
0
)

1
.0

0
E

−
0
6

0
1
7
1
1
0

8
8
3
.3

1
1
.0

0
E

−
0
6

0
3
2
4
7
0

7
2
5
8
.9

9
6
7
.1

8
3
7
1
.6

3
1
.0

0
E

+
0
5

0

5
(
3
0
)

1
7
4
.5

2
7
8
.1

7
3
.0

0
E

+
0
5

0
8
9
4
.2

5
7
7
7
.6

6
3
.0

0
E

+
0
5

0
1
2
1
4
4

2
6
2
7
.4

3
.0

0
E

+
0
5

0

6
(
1
0
)

0
0

3
3
4
1
7

7
3
8
8
.8

0
0

4
9
3
3
7

8
3
3
4
.1

1
.5

0
E

+
0
8

7
.0

9
E

+
0
7

1
.0

0
E

+
0
5

0

6
(
3
0
)

0
.1

3
2
6
7

0
.7

2
6
6
5

2
.4

3
E

+
0
5

3
3
9
3
5

4
.6

4
4
7

1
3
.1

8
5

2
.8

7
E

+
0
5

3
0
4
6
7

5
.3

5
E

+
0
9

3
.1

2
E

+
0
9

3
.0

0
E

+
0
5

0

7
(
1
0
)

0
.1

6
2

0
.1

3
6
3
2

1
.0

0
E

+
0
5

0
0
.0

0
5

0
.0

0
7
3
1
0
8

7
4
5
6
3

3
6
8
3
5

0
.0

0
2
3
3
3
3

0
.0

0
6
2
6
0
6

3
5
9
8
8

4
2
7
3
2

7
(
3
0
)

0
.0

0
3
6
6
6
7

0
.0

0
8
0
8
7
2

1
.3

0
E

+
0
5

1
.1

3
E

+
0
5

0
0

1
.1

8
E

+
0
5

9
3
4
0
6

0
.0

0
0
3
3
3
3
3

0
.0

0
1
8
2
5
7

5
5
2
0
2

9
7
8
0
5

8
(
1
0
)

2
0
.0

6
0
.0

8
6
6
8
1

1
.0

0
E

+
0
5

0
2
0
.1

1
6

0
.1

0
3
4
4

1
.0

0
E

+
0
5

0
2
0
.3

1
2

0
.0

7
4
6
5
2

1
.0

0
E

+
0
5

0

8
(
3
0
)

2
0
.1

6
9

0
.1

2
0
4
1

3
.0

0
E

+
0
5

0
2
0
.2

8
1

0
.1

8
9
8

3
.0

0
E

+
0
5

0
2
0
.9

4
2

0
.0

5
0
5
6
1

3
.0

0
E

+
0
5

0

9
(
1
0
)

0
.0

0
5

0
.0

0
5
0
8
5
5

4
3
3
2
0

1
9
2
0
2

0
.0

6
9
6
6
7

0
.3

6
0
8
4

4
5
9
5
3

2
0
6
2
0

2
6
.1

5
9

1
1
.6

1
.0

0
E

+
0
5

0

9
(
3
0
)

2
.3

7
6
3

1
.3

9
6
4

2
.9

8
E

+
0
5

1
0
0
7
9

1
.2

5
5

1
.6

8
6
5

2
.0

5
E

+
0
5

9
2
2
7
0

1
1
2
.1

7
2
8
.1

8
5

3
.0

0
E

+
0
5

0

1
0
(
1
0
)

1
5
.5

5
6

9
.1

7
4
6

1
.0

0
E

+
0
5

0
8
.8

8
3
7

5
.4

3
6
6

1
.0

0
E

+
0
5

0
4
7
.4

0
4

1
3
.5

7
4

1
.0

0
E

+
0
5

0

1
0
(
3
0
)

5
5
.7

6
8

1
9
.8

3
8

3
.0

0
E

+
0
5

0
5
2
.6

8
7

2
3
.6

2
3

3
.0

0
E

+
0
5

0
2
4
7
.2

5
6
4
.7

9
1

3
.0

0
E

+
0
5

0

1
1
(
1
0
)

5
.0

4
6
4

2
.2

5
2
5

9
7
2
8
3

1
4
8
8
0

4
.1

7
6
5

1
.5

4
3
9

1
.0

0
E

+
0
5

0
4
.1

8
6
8

1
.6

6
3
2

1
.0

0
E

+
0
5

0

1
1
(
3
0
)

2
4
.3

7
8

5
.1

2
2
4

3
.0

0
E

+
0
5

0
2
0
.6

6
1

2
.6

1
1
4

3
.0

0
E

+
0
5

0
2
0
.1

4
7

3
.3

9
3
1

3
.0

0
E

+
0
5

0

1
2
(
1
0
)

3
0
2
.8

6
5
4
6
.0

6
6
9
5
4
3

3
9
3
1
7

9
2
.1

9
1

3
3
0
.6

6
9
8
7
3

2
8
0
1
2

1
8
6
1
6

1
0
6
7
9

1
.0

0
E

+
0
5

0

1
2
(
3
0
)

2
6
1
1
.5

3
6
2
2
.3

2
.9

5
E

+
0
5

2
0
1
6
2

7
8
0
3
.4

1
0
9
2
5

3
.0

0
E

+
0
5

0
3
.0

8
E

+
0
5

1
.0

7
E

+
0
5

3
.0

0
E

+
0
5

0

1
3
(
1
0
)

0
.4

3
2
6
7

0
.1

6
2
8
2

9
9
0
5
0

5
2
0
3
.4

0
.3

5
5
3
3

0
.1

5
8
2
2

1
.0

0
E

+
0
5

0
1
7
0
.1

5
1
6
4
.6

6
1
.0

0
E

+
0
5

1
5
.8

3
3

1
3
(
3
0
)

2
.0

1
8
7

0
.4

4
2
6
2

3
.0

0
E

+
0
5

0
1
.7

1
9

0
.8

8
6
2

3
.0

0
E

+
0
5

0
1
8
4
6
2

1
1
1
1
6

3
.0

0
E

+
0
5

0

1
4
(
1
0
)

3
.6

3
9
7

0
.2

9
1
2
2

1
.0

0
E

+
0
5

0
3
.4

0
5
7

0
.3

2
2
9
8

1
.0

0
E

+
0
5

0
3
.6

1
3
3

0
.3

2
9
9
6

1
.0

0
E

+
0
5

0

1
4
(
3
0
)

1
3
.1

4
0
.4

4
0
1
1

3
.0

0
E

+
0
5

0
1
2
.8

9
0
.4

9
1
2
4

3
.0

0
E

+
0
5

0
1
3
.3

9
1

0
.1

8
9
8
9

3
.0

0
E

+
0
5

0



TA
B

L
E

V
I.

R
E

S
U

LT
S

O
F

T
H

E
L

O
W

-L
E

V
E

L
M

E
TA

-H
E

U
R

IS
T

IC
A

L
G

O
R

IT
H

M
S

O
N

T
H

E
20

05
IE

E
E

C
E

C
B

E
N

C
H

M
A

R
K

P
R

O
B

L
E

M
S

E
T.

Pr
ob

C
M

A
E

S
Sa

N
SD

E
G

A
G

C
PS

O
(D

im
s)

FF
V

#
FE

s
FF

V
#

FE
s

FF
V

#
FE

s
FF

V
#

FE
s

µ
σ

µ
σ

µ
σ

µ
σ

µ
σ

µ
σ

µ
σ

µ
σ

1
(
1
0
)

1
.0

0
E

−
0
6

0
8
5
2
6
.7

3
0
2
.7

8
1
.0

0
E

−
0
6

0
2
0
1
8
0

4
2
4
.5

9
1
.0

0
E

−
0
6

0
1
8
5
5
7

1
5
8
2
.4

1
3
8
.4

6
.8

0
7
3

1
.0

0
E

+
0
5

0

1
(
3
0
)

1
.0

0
E

−
0
6

0
1
9
1
1
0

4
4
7
.4

8
1
.0

0
E

−
0
6

0
3
8
9
7
3

8
3
9
.5

1
1
.0

0
E

−
0
6

0
9
9
2
9
7

4
8
6
0
.4

2
3
1
.8

1
2
9
.4

9
1

3
.0

0
E

+
0
5

0

2
(
1
0
)

1
.0

0
E

−
0
6

0
9
1
5
6
.7

2
8
6
.1

1
.0

0
E

−
0
6

0
3
8
3
7
7

2
0
8
8
.3

1
.0

8
7
3

1
.5

4
1
.0

0
E

+
0
5

0
5
4
4
.1

1
.5

9
1
5

1
.0

0
E

+
0
5

0

2
(
3
0
)

1
.0

0
E

−
0
6

0
2
6
7
8
3

7
3
9
.1

1
.0

0
E

−
0
6

0
2
.8

9
2
6
E

+
0
5

1
9
9
1
7

4
4
6
.6

7
2
2
8
.6

9
3
.0

0
E

+
0
5

0
5
6
7

3
.0

1
6
9

3
.0

0
E

+
0
5

0

3
(
1
0
)

1
.0

0
E

−
0
6

0
1
3
3
2
0

3
7
9
.1

1
1
.0

0
E

−
0
6

0
4
6
3
3
7

2
0
5
9
.9

9
.7

6
1
3
E

+
0
5

1
.0

4
6
8
E

+
0
6

1
.0

0
E

+
0
5

0
9
7
0
.9

6
1
4
1
1
.8

9
9
1
7
7

4
5
0
9
.6

3
(
3
0
)

1
.0

0
E

−
0
6

0
6
1
1
7
3

1
3
8
7
.4

1
.7

9
4
6
E

+
0
5

1
.1

4
8
9
E

+
0
5

3
.0

0
E

+
0
5

0
5
.9

2
5
5
E

+
0
6

2
.6

5
4
5
E

+
0
6

3
.0

0
E

+
0
5

0
1
0
5
4
3

8
7
0
5
.2

3
.0

0
E

+
0
5

0

4
(
1
0
)

1
.0

0
E

−
0
6

0
9
5
9
0

2
8
3
.2

7
1
.0

0
E

−
0
6

0
4
2
7
6
7

2
6
0
5
.2

3
8
0
.1

9
5
1
0
.2

5
1
.0

0
E

+
0
5

0
3
2
0
.6

9
0
.2

0
8
1
3

1
.0

0
E

+
0
5

0

4
(
3
0
)

1
.0

0
E

−
0
6

0
2
9
3
5
7

5
7
0
.3

5
1
9
5
.1

9
1
8
6
.5

1
3
.0

0
E

+
0
5

0
1
5
9
4
6

7
0
5
1
.1

3
.0

0
E

+
0
5

0
3
2
5
.4

5
1
.5

4
1
6

3
.0

0
E

+
0
5

0

5
(
1
0
)

1
.0

0
E

−
0
6

0
1
7
4
3
3

5
4
6
.0

4
1
.0

0
E

−
0
6

0
3
6
2
8
0

1
0
9
8
.7

8
6
9
.5

6
1
2
4
1
.9

1
.0

0
E

+
0
5

0
1
2
.8

5
8

0
.2

8
3
0
1

1
.0

0
E

+
0
5

0

5
(
3
0
)

1
.0

0
E

−
0
6

0
1
.1

4
6
5
E

+
0
5

3
9
6
0
.1

9
7
8
.5

6
4
2
5
.2

8
3
.0

0
E

+
0
5

0
1
2
8
8
7

3
0
7
0

3
.0

0
E

+
0
5

0
2
2
.3

5
6

0
.5

2
1
2
2

3
.0

0
E

+
0
5

0

6
(
1
0
)

6
.6

7
E

−
0
4

2
.5

4
E

−
0
3

1
8
9
5
0

7
4
4
.5

2
0
.2

6
5
3
3

1
.0

0
9
8

5
2
9
8
7

1
3
2
1
3

3
4
6
.9

1
1
2
7
4

1
.0

0
E

+
0
5

0
8
4
0
.0

1
4
.6

2
5
2
E

−
1
3

2
6
4
8
0

7
9
9
.3

1

6
(
3
0
)

0
.1

3
2
6
7

0
.7

2
6
6
5

1
.2

0
1
8
E

+
0
5

3
7
8
7
0

0
.8

5
9

1
.7

1
8
7

2
.7

6
1
9
E

+
0
5

3
3
7
9
4

1
2
8
1
.6

2
5
4
0
.4

3
.0

0
E

+
0
5

0
8
4
0
.0

1
4
.6

2
5
2
E

−
1
3

6
9
4
2
3

1
5
4
0

7
(
1
0
)

1
2
6
7

4
.6

2
5
2
E

−
1
3

1
.0

0
E

+
0
5

0
0
.0

4
1
6
6
7

0
.0

2
5
6
0
8

9
9
9
2
0

4
3
8
.1

8
1
2
6
7

4
.6

2
5
2
E

−
1
3

1
.0

0
E

+
0
5

0
2
7
0
.0

1
1
.7

3
4
5
E

−
1
3

3
8
5
1
7

1
1
3
1
.4

7
(
3
0
)

4
6
9
6
.3

2
.7

7
5
1
E

−
1
2

3
.0

0
E

+
0
5

0
0
.0

1
2

0
.0

1
7
8
8
9

1
.8

3
2
9
E

+
0
5

1
.1

8
8
E

+
0
5

4
6
9
6
.3

2
.7

7
5
1
E

−
1
2

3
.0

0
E

+
0
5

0
2
7
0
.0

1
1
.7

3
4
5
E

−
1
3

1
.9

9
8
E

+
0
5

1
1
1
3
9

8
(
1
0
)

2
0
.3

1
2

0
.1

1
2
7
1

1
.0

0
E

+
0
5

0
2
0
.3

4
5

0
.0

7
7
6
2
6

1
.0

0
E

+
0
5

0
2
0
.1

9
7

0
.1

2
2
8
7

1
.0

0
E

+
0
5

0
6
4
6
7
9

6
0
6
6
8

1
.0

0
E

+
0
5

0

8
(
3
0
)

2
0
.8

9
2

0
.1

7
4
5
9

3
.0

0
E

+
0
5

0
2
0
.8

8
6

0
.0

4
1
7
2
8

3
.0

0
E

+
0
5

0
2
0
.3

6
8

0
.0

9
4
3
3
6

3
.0

0
E

+
0
5

0
6
.6

7
8
5
E

+
0
5

3
.1

2
6
7
E

+
0
5

3
.0

0
E

+
0
5

0

9
(
1
0
)

1
.9

4
5
7

1
.5

1
0
5

8
8
2
0
3

3
0
6
0
1

0
0

4
3
6
9
0

2
2
4
7
.8

0
.0

0
3
3
3
3
3

0
.0

0
4
7
9
4
6

1
8
9
8
3

6
0
2
0
.3

1
2
0
.0

1
7
.2

2
6
9
E

−
1
4

4
3
2
8
0

3
7
0
1
.2

9
(
3
0
)

3
9
.5

6
4

6
.4

5
4
3

3
.0

0
E

+
0
5

0
0

0
1
.0

6
0
8
E

+
0
5

4
2
5
0
.5

0
.0

0
4
3
3
3
3

0
.0

0
5
0
4
0
1

1
.5

6
8
E

+
0
5

3
9
9
1
3

2
2
2
8
.2

1
4
0
3
.9

3
.0

0
E

+
0
5

0

1
0
(
1
0
)

1
.6

4
7

1
.1

7
6
7

9
0
9
4
7

2
7
6
2
5

5
.6

4
6

1
.3

6
7

1
.0

0
E

+
0
5

0
3
1
.1

7
4

1
2
.9

8
8

1
.0

0
E

+
0
5

0
1
9
.9

9
0

4
1
1
2
3

2
0
5
3

1
0
(
3
0
)

9
.3

9
1

3
.2

8
1
7

3
.0

0
E

+
0
5

0
3
1
.5

0
3

5
.4

7
1
3

3
.0

0
E

+
0
5

0
1
2
2
.9

4
3
2
.7

8
2

3
.0

0
E

+
0
5

0
4
6
9
9
.3

9
7
4
.8

8
3
.0

0
E

+
0
5

0

1
1
(
1
0
)

1
.2

9
8
9

1
.3

6
4
7

3
0
3
1
0

1
0
4
9
6

5
.3

2
4
8

1
.0

4
8
6

1
.0

0
E

+
0
5

0
7
.5

8
7
6

1
.1

9
2
9

1
.0

0
E

+
0
5

0
3
0
6
.4

9
2
1
.1

7
2

9
9
7
3
0

1
4
7
8
.9

1
1
(
3
0
)

9
.0

2
5
5

3
.0

5
4
6

3
.0

0
E

+
0
5

0
2
7
.5

1
.6

4
7
8

3
.0

0
E

+
0
5

0
3
0
.6

5
9

3
.4

5
3
2

3
.0

0
E

+
0
5

0
3
2
5
.6

6
4
6
.2

1
6

3
.0

0
E

+
0
5

0

1
2
(
1
0
)

1
5
4
6
.1

2
7
3
5
.5

7
0
0
5
3

4
3
0
9
0

2
4
.7

0
1

3
0
.9

1
4

8
1
1
5
0

2
3
4
5
6

8
7
3
.7

1
5
6
6
.8

1
.0

0
E

+
0
5

0
1
5
4
7

0
.0

6
1
0
2
6

1
.0

0
E

+
0
5

0

1
2
(
3
0
)

2
0
3
2
4

1
9
2
6
1

3
.0

0
E

+
0
5

0
1
0
5
9
4

2
8
6
8
.8

3
.0

0
E

+
0
5

0
1
5
2
1
4

1
1
5
8
7

3
.0

0
E

+
0
5

0
4
9
7
8
.1

1
0
.0

7
8

3
.0

0
E

+
0
5

0

1
3
(
1
0
)

0
.8

9
7

0
.2

5
3
2
3

1
.0

0
E

+
0
5

0
0
.3

4
2
3
3

0
.0

5
6
3
6
6

1
.0

0
E

+
0
5

0
0
.4

3
9
6
7

0
.1

6
9
5
1

1
.0

0
E

+
0
5

0
1
0
.2

3
7

0
.0

9
7
5
1
9

1
.0

0
E

+
0
5

0

1
3
(
3
0
)

3
.1

7
9

0
.5

6
0
6
4

3
.0

0
E

+
0
5

0
1
.2

9
7
7

0
.1

1
7
7

3
.0

0
E

+
0
5

0
1
.6

5
7

0
.4

7
2
5
6

3
.0

0
E

+
0
5

0
1
0
.8

0
3

0
.1

1
5
1
1

3
.0

0
E

+
0
5

0

1
4
(
1
0
)

2
.5

8
4
7

0
.5

3
0
2
4

1
.0

0
E

+
0
5

0
3
.2

7
4
3

0
.2

5
2
9
2

1
.0

0
E

+
0
5

0
3
.6

9
1
3

0
.3

1
4
2
1

1
.0

0
E

+
0
5

0
2
7
.5

5
8

1
.4

4
7
5

9
6
7
0
0

1
2
5
8
5

1
4
(
3
0
)

1
0
.3

9
4

0
.8

1
0
3

3
.0

0
E

+
0
5

0
1
2
.7

0
7

0
.2

3
6
9
4

3
.0

0
E

+
0
5

0
1
3
.0

9
2

0
.3

1
8
4
7

3
.0

0
E

+
0
5

0
8
.6

7
6
3

7
.1

7
0
8

3
.0

0
E

+
0
5

0



Similar to the results obtained in [6], it can be seen that
the HMHH algorithm again performed statistically signif-
icantly better a large number of times when compared to
three of its four constituent algorithms. CMAES performed
better than the HMHH when solving unimodal problems,
but the HMHH performance improved in comparison with
CMAES as problem size and complexity increased. An
inspection of the algorithm ranks does, however, indicate
that the HMHH algorithm was able to identify CMAES as
the best performing algorithm and bias the search towards
CMAES. The inefficiency of the HMHH algorithm is then
understandable since computational resources are required
to first “learn” which algorithm is the best algorithm for the
problem at hand.

V. CONCLUSION

This paper has investigated four alternative multi-method
algorithms using the same set of constituent algorithms.
The heterogenous meta-hyper-heuristic algorithm was shown
to outperform the Multi-EA algorithm and EEA-SLPS ap-
proach and also compared favourably to its constituent
algorithms.

Future work could focus on extending this study to a
larger set of benchmark problems of different sizes. A more
in-depth analysis of the impact of various entity-to-algorithm
allocation features on multi-method algorithm performance
could also be useful as well as a more detailed study into
the mechanisms driving the poor performance of Multi-EA.

REFERENCES

[1] J. Grobler, A. P. Engelbrecht, G. Kendall, and V.S.S. Yadavalli. “Multi-
method algorithms: Investigating the entity-to-algorithm allocation
problem.,” Proceedings of the Congress on Evolutionary Computation,
pp. 570–577, 2013.

[2] Y. Xue, S. Zhong, Y. Zhuang, and B. Xu, “An ensemble algorithm
with self-adaptive learning techniques for high-dimensional numeri-
cal optimization,” Applied Mathematics and Computation, vol. 231,
pp. 329–346, 2014.

[3] S. Y. Yuen, C.K. Chow, and X. Zhang. “Which algorithm should I
choose at any point of the search: an evolutionary portfolio approach,”
Proceedings of the 2013 Conference on Genetic and Evolutionary
Computation, pp. 567–574, 2013.

[4] F. Peng, K. Tang, G. Chen, and X. Yao,“Population-Based Algorithm
Portfolios for Numerical Optimization,” IEEE Transactions on Evolu-
tionary Computation, vol. 14, no. 5, pp. 782–800, 2010.

[5] A. Fialho, R. Ros, M. Schoenauer, and M. Sebag, “Comparison-based
Adaptive Strategy Selection in Differential Evolution,” Proceedings of
the 2011 Genetic and Evolutionary Computation Conference, 2011.

[6] J. Grobler, A. P. Engelbrecht, G. Kendall, and V. S. S. Yadavalli, “In-
vestigating the impact of alternative evolutionary selection strategies
on multi-method global optimization,” Proceedings of the 2011 IEEE
Congress on Evolutionary Computation, pp. 2337-2344, 2011.

[7] X. Chen, Y. Ong, M. Lim, and K. Tan, “A multi-facet survey on
memetic computation,” IEEE Transactions on Evolutionary Compu-
tation, vol. 15, no. 5, pp. 591–607, 2011.

[8] C. P. Gomes and B. Selman, “Algorithm portfolios,” Artificial Intelli-
gence, vol. 126, no. 1–2, pp. 43–62, 2001.

[9] T. G. Dietterich, “Ensemble methods in machine learning,” Lecture
notes in computer science, pp. 1–15, 2000.

[10] E. K. Burke, G. Kendall, and E. Soubeiga, “A Tabu-Search Hyper-
heuristic for Timetabling and Rostering,” Journal of Heuristics, vol. 9,
no. 6, pp. 451–470, 2003.

[11] W. E. Hart, N. Krasnogor, and J. E. Smith, “Recent Advances in
Memetic Algorithms,” Springer-Verlag, 2005.

[12] A. K. Qin and P. N. Suganthan,“Self-adaptive differential evolution
algorithm for numerical optimization,” Proceedings of the 2005 IEEE
Congress on Evolutionary Computation, pp. 1785–1791, 2005.

[13] O. Olorunda and A. P. Engelbrecht, “An Analysis of Heterogeneous
Cooperative Algorithms,” Proceedings of the 2009 IEEE Congress on
Evolutionary Computation, pp. 1562–1569, 2009.

[14] J. A. Vrugt, B. A. Robinson, and J. M. Hyman, “Self-Adaptive Mul-
timethod Search for Global Optimization in Real-Parameter Spaces,”
IEEE Transactions on Evolutionary Computation, vol. 13, no. 2,
pp. 243–259, 2009.

[15] K. Tang, F. Peng, G. Chen, and X. Yao. “Population-based Algorithm
Portfolios with automated constituent algorithms selection,” Informa-
tion Sciences, vol. 279, pp. 94–104, 2014.

[16] A. Fialho, M. Schoenauer, and M. Sebag, “Fitness-AUC bandit
adaptive strategy selection vs. the probability matching one within
differential evolution: an empirical comparison on the BBOB-2010
noiseless testbed,” Proceedings of the GECCO 2010 Workshop on
Black-Box Optimization Benchmarking, 2010.

[17] W. Gong, A. Fialho, and Z. Cai, “Adaptive strategy selection in dif-
ferential evolution,” Proceedings of the 2010 Genetic and Evolutionary
Computation Conference, 2010.

[18] R. Mallipeddi, P. N. Suganthan, Q. K. Pan, and M. F. Tasgetiren
“Differential evolution algorithm with ensemble of parameters and
mutation strategies,” Applied Soft Computing, vol. 11, pp. 1679–1696,
2011.

[19] J. Zhong, M. Shen, J. Zhang, H. Chung, Y. Shi, and Y. Li “A
Differential Evolution Algorithm with Dual Populations for Solving
Periodic Railway Timetable Scheduling Problem,” IEEE Transactions
on Evolutionary Computation, In press.

[20] J. Tvrdik “Modifications of Differential Evolution with Composite
Trial Vector Generation Strategies,” Soft Computing Models in Indus-
trial and Environmental Applications Advances in Intelligent Systems
and Computing, vol. 188, pp. 113-122, 2013.

[21] A.P. Engelbrecht “Heterogeneous particle swarm optimization,”
Swarm Intelligence, pp. 191-202, 2010.

[22] E. K. Burke, M. Hyde, G. Kendall, G. Ochoa, E. Ozcan, and
R. Qu, “Hyper-heuristics: A survey of the state of the art,” tech. rep.,
University of Nottingham, 2010.

[23] E. K. Burke, M. Hyde, G. Kendall, G. Ochoa, E. Ozcan, and
J. R. Woodward, “A Classification of Hyper-heuristic Approaches,”
International Series in Operations Research and Management Science,
In M. Gendreau and J-Y Potvin (Eds.), Springer (in press).

[24] K. A. Dowsland, E. Soubeiga, and E. K. Burke, “A simulated anneal-
ing based hyperheuristic for determining shipper sizes for storage and
transportation,” European Journal of Operational Research, vol. 179,
pp. 759–774, 2007.

[25] L. J. Eshelman and J. D. Schaffer, “Real-coded genetic algorithms
and interval schemata,” In D. Whitley, editor, Foundations of Genetic
Algorithms, vol. 2, pp. 187–202, 1993.

[26] F. Van den Bergh and A. P. Engelbrecht, “A new locally convergent
particle swarm optimiser,” Proceedings of the IEEE International
Conference on Systems, Man and Cybernetics, vol. 3, pp. 6–12, 2002.

[27] Z. Yang, K. Tang, and X. Yao, “Self-adaptive Differential Evolution
with Neighbourhood Search,” Proceedings of the 2008 IEEE Congress
on Evolutionary Computation, pp. 1110-1116, 2008.

[28] A. Auger, and N. Hansen, “A Restart CMA evolution strategy With
increasing population size,” Proceedings of the 2005 IEEE Congress
on Evolutionary Computation, pp. 1769-1776, 2005.

[29] D. Hadka and P. Reed “Borg: An auto-adaptive Many-Objective Evo-
lutionary Computing Framework,” Evolutionary Computation, 2012.

[30] P. N. Suganthan, N. Hansen, J. J. Liang, K. Deb, Y. P. Chen,
A. Auger, and S. Tiwari. “Problem definitions and evaluation criteria
for the CEC 2005 special session on real-parameter optimization,”
Nanyang Technological University and Kanpur Genetic Algorithms
Laboratory, 2005, KanGAL Report Number 2005005.

[31] J. Grobler, A. P. Engelbrecht, G. Kendall, and V.S.S. Yadavalli.
“Heuristic space diversity management in a meta-hyper-heuristic
framework,” Proceedings of the Congress on Evolutionary Compu-
tation, 2014.


