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Abstract. We present a logic inspired by partially observable Markov
decision process (POMDP) theory for specifying agent domains where
the agent’s actuators and sensors are noisy (causing uncertainty). The
language features modalities for actions and predicates for observations.
It includes a notion of probability to represent the uncertainties, and the
expression of rewards and costs are also catered for. One of the main
contributions of the paper is the formulation of a sound and complete
decision procedure for checking validity of sentences: a tableau method
which appeals to solving systems of equations. The tableau rules elimi-
nate propositional connectives, then, for all open branches of the tableau
tree, systems of equations are generated and checked for feasibility. This
paper presents progress made on previously published work.

1 Introduction and Related Work

Imagine a robot that is in need of an oil refill. There is an open can of oil on the
floor within reach of its gripper. If there is nothing else in the robot’s gripper, it
can grab the can (or miss it, or knock it over) and it can drink the oil by lifting
the can to its mouth and pouring the contents in (or miss its mouth and spill).
The robot may also want to confirm whether there is anything left in the oil-can
by weighing its contents with its ‘weight’ sensor. And once holding the can, the
robot may wish to replace it on the floor. In situations where the oil-can is full,
the robot gets five units of reward for gabbing the can, and it gets ten units of
reward for a drink action.

In order for robots and intelligent agents in stochastic domains to reason
about actions and observations, they must first have a representation or model
of the domain over which to reason. For example, a robot may need to represent
available knowledge about its grab action in its current situation. It may need
to represent that when ‘grabbing’ the oil-can, there is a 5% chance that it will
knock over the oil-can. As another example, if the robot has access to information
about the weight of an oil-can, it may want to represent the fact that the can
weighs heavy 90% of the time in ‘situation A’, but that it is heavy 98% of the
time in ‘situation B’.



The oil-drinking domain is (partially) formalized as follows. The robot has
the set of (intended) actions A = {grab, drink, weigh, replace} with expected
meanings. The robot can make observations only from the set Ω = {obsNil,
obsLight, obsMedium, obsHeavy}. Intuitively, when the robot performs a weigh

action (i.e., it activates its ‘weight’ sensor) it will perceive either obsLight,
obsMedium or obsHeavy; for other actions, it will perceive obsNil. The robot
experiences its world (domain) through three Boolean features: F = {full,
drank, holding} meaning respectively that the oil-can is full, that the robot has
drunk the oil and that it is currently holding something in its gripper. Given a
formalization BK of our scenario, the robot may have the following queries:

– If the oil-can is empty and I’m not holding it, is there a 0.9 probability that
I’ll be holding it after grabbing it, and a 0.1 probability that I’ll have missed
it? That is, does (¬full ∧ ¬holding) → ([grab]0.9(¬full ∧ holding) ∧
[grab]0.1(¬full ∧ ¬holding)) follow from BK ?

– If the oil-can is not full, I’ve drunk the oil and I’m holding the can, is there a
0.7 probability of perceiving the can is light, given I weighed it? That is, does
(¬full ∧ drank ∧ holding)→ (obsLight | weigh : 0.7) follow from BK ?

Modal logic is considered to be well suited to reasoning about beliefs and
changing situations [6, 14]. Partially observable Markov decision process
(POMDP) theory [30, 17] has proven to be a good general framework for formal-
izing dynamic stochastic systems. Our goal is to integrate logic with stochastic
actions and observations, taking the semantics of POMDPs in particular. To our
knowledge, there exists no such logic; see the discussion of related work below.
This paper though, concerns work that is a step towards that goal. Here we
present the Specification Logic of Actions and Observations with Probability
(SLAOP). With SLAOP, POMDP models can be represented compactly.

The present version of SLAOP is an extension of the Specification Logic of
Actions with Probability (SLAP) [24, 27], but with an improved completeness
proof due to a new decision procedure. SLAP is extended with (i) notions of
rewards and action costs, (ii) a notion of equality between actions and observa-
tions and (iii) observations for dealing with perception/sensing. To establish a
correspondence between POMDPs and SLAOP, SLAOP must view observations
as objects at the same semantic level as actions. We make use of the results of
[26] to add observations as first-class objects.

A preliminary version of SLAOP has been presented at a doctoral consortium
[23]. Since then, significant progress has been made. We mention only some of the
major changes. Firstly, the present version of SLAOP inherits the 2 operator
from SLAP, which is important for marking sentences as globally applicable
axioms. The preliminary version of SLAOP had no 2 operator. Another change
is, instead of the predicate (ς | α : q) used in the present version, a modal
operator [ς | α]qϕ with a slightly different definition was used in the ‘old’ SLAOP.
[ς | α]qϕ can be read ‘The probability of perceiving ς in a world in which ϕ holds
is equal to q, given α was performed.’ It turned out that specifying ϕ creates
unwanted interactions with the modal operator [α]qϕ for specifying transition
probabilities. Moreover, we have determined that (ς | α : q) (with the given



meaning; cf. § 3.2) is sufficient for specifying perception probabilities (cf. § 5).
Last and most importantly, the decision procedure of the preliminary version
relied on many intricate tableau rules; relying on the solvability of systems of
inequalities (as in the present version) is much cleaner and the decidability of
such systems carries over to help prove the decidability of SLAOP. The decision
procedure for the previous version of SLAOP was not proven complete. The
current version is proved complete and terminating.

A formal approach how to specify probabilistic transition models with SLAP
has been published [24], and there, a solution to the frame problem for SLAP
is also presented. That frame solution can easily be employed for SLAOP. A
decision procedure for validity checking in SLAP is presented in a journal article
[27]. The procedure for SLAP is simpler than for SLAOP because it does not use
the ‘label assignment’ approach (cf. § 4.3). We opted for a decision procedure
with label assignments for SLAOP because the proof of completeness is then
easier to understand (see the accompanying technical report [25]), and sentences
of a certain form which are not allowed in SLAP are allowed in SLAOP (see
§ 4.3).

Related work is discussed next. Then Section 3 presents the syntax and se-
mantics of SLAOP. Section 4 presents the two-phase decision procedure. Sec-
tion 5 provides examples of application of the decision procedure. Some con-
cluding remarks are made in Section 6.

2 Related Work

Several frameworks exist for reasoning about probabilistic inference in static
domains [1, 9, 13, 16, 29, 33]. Here, a “static domain” is a domain in which the
physical state of the system does not change, although the state of information
of various agents in the system may change. In SLAOP, the focus is more on how
stochastic actions change the physical state of a system. Some of these logics are
concerned with how knowledge changes as new information is gained, however,
the information received is not seen as an observation object. Moreover, they do
not express the probability with which the received information was expected in
the current situation. That is, they take the new information as certain. SLAOP
can express the fact that information (in the form of observation objects) may be
incorrect to some degree. This ability of SLAOP is carried over from the SLAP
logic [24, 27].

Poole’s Independent Choice Logic using the situation calculus (ICLSC ) [20]
is a relatively rich framework, with acyclic logic programs which may contain
variables, quantification and function symbols. For certain applications, SLAOP
may be preferred due to its comparative simplicity. And because SLAOP’s se-
mantics is very close to that of standard POMDP theory, it may be easier to
understand by people familiar with POMDPs. Finally, decidability of inferences
made in the ICLSC are, in general, not guaranteed.

Bonet and Geffner [3] present a framework with heuristic search algorithms
for modeling and solving MDPs and POMDPs. It seems similar to the ICLSC



in its application area. Their framework uses high-level logical representations,
but it is not presented as a logic, nor does it empoy logical entailment.

DTGolog [5] is a programming language, rather than a logic, and it does not
deal with stochastic observations.

PODTGolog [22] is another logic programming framework which does deal
with stochastic observations, but it does not have a well defined semantics.

Many popular frameworks for reasoning about action, employ or are based
on the situation calculus [22]. Reified situations make the meaning of formu-
lae perspicuous. However, the situation calculus seems too rich and expressive
for our purposes, and it would be desirable to remain decidable, hence the re-
striction to a propositional modal framework. The validity problem for SLAOP
is decidable, which sets it apart from first-order logics for reasoning about ac-
tion (including the situation calculus) or reasoning with probabilities (including
BHL’s approach [2] and ESP [11]). In other words, having a decidable formalism
to reason about POMDP’s is considered an asset and would set us apart from
other more expressive logical formalisms addressing action and sensing under
uncertainty. Moreover, BHL’s approach and ESP cannot deal with nondeter-
ministic actions.

Iocchi et al. [15] present a logic called E+ for reasoning about agents with
sensing, qualitative nondeterminism and probabilistic uncertainty in action out-
comes. Planning with sensing and uncertain actions is also dealt with. Noisy
sensing is not dealt with, that is, sensing actions are deterministic. They men-
tion that although they would like to be able to represent action rewards and
costs as in POMDPs, E+ does not yet provide the facilities.

There are some logics that come closer to what we desire [8, 34, 11, 33], that is,
they incorporate notions of probability, but they were not created with POMDPs
in mind and typically do not take observations as first-class objects. On the
other hand, there are formalisms for specifying POMDPs that employ logic-
based representation [4, 35, 28], but they are not defined entirely as logics. Our
work is to bring the representation of and reasoning about POMDPs totally into
the logical arena. One is then in very familiar territory and new opportunities
for the advancement in reasoning about POMDPs may be opened up.

Systems of linear inequalities are at the heart of Nilsson’s probabilistic logic
[19], which has been extended with stochastic actions by Thiébaux et al. [32].
Fagin, Halpern and Megiddo [10] use a similar idea to prove that the axiomati-
zation of their logic for reasoning about probabilities is complete. None of these
deals with observations.

3 Specification Logic of Actions and Observations with
Probability

First we present the syntax of SLAOP, then we state its semantics.

3.1 Syntax

The vocabulary of our language contains six sorts of objects of interest:



1. a finite set of fluents (alias, propositional atoms) F = {f1, . . . , fn},
2. a finite set of names of atomic actions A = {α1, . . . , αn},
3. a finite set of names of atomic observations Ω = {ς1, . . . , ςn},
4. all real numbers R,3

5. a countable set of action variables VA = {vα1 , vα2 , . . .},
6. a countable set of observation variables VΩ = {vς1, vς2, . . .}.

From now on, we denote R ∩ [0, 1] as R[0,1]. We shall refer to elements of A∪Ω
as constants. We are going to work in a multi-modal setting, in which we have
modal operators [α]q, one for each α ∈ A and q ∈ R[0,1], and predicates (ς | α : q),
one for each pair in Ω ×A and q ∈ R[0,1].

Definition 1. Let f ∈ F , α ∈ (A∪VA), ς ∈ (Ω∪VΩ), v ∈ (VA∪VΩ), q ∈ R[0,1]

and r ∈ R. The language of SLAOP, denoted LSLAOP , is the least set of Ψ
defined by the grammar:

ϕ ::= f | > | ¬ϕ | ϕ ∧ ϕ.
Φ ::= ϕ | α = α | ς = ς | Reward(r) | Cost(α, r) | [α]qϕ | (ς | α : q) |

(∀v)Φ | ¬Φ | Φ ∧ Φ.
Ψ ::= Φ | 2Φ | ¬Ψ | Ψ ∧ Ψ.

The scope of quantifier (∀v) is determined in the same way as is done in first-
order logic. A variable v′ appearing in a formula Ψ is said to be bound by quan-
tifier (∀v) if and only if v′ is the same variable as v and is in the scope of (∀v).
If a variable is not bound by any quantifier, it is free. In LSLAOP , variables are
not allowed to be free; they are always bound.

(For SLAP, Φ ::= ϕ | [α]qϕ | ¬Φ | Φ∧Φ.) Note that formulae with nested modal
operators of the form 22Φ, 222Φ, [α]q[α]qϕ and [α]q[α]q[α]qϕ et cetera are not
in LSLAOP . ‘Single-step’ or ‘flat’ formulae are sufficient to specify action transi-
tions probabilities, that is, for specifying a transition model. To reason about the
effects of sequences of actions, nesting may be appropriate, but SLAOP is not
for reasoning at that level. As usual, we treat ⊥,∨,→ and ↔ as abbreviations.
→ and ↔ have the weakest bindings and ¬ the strongest; parentheses enforce
or clarify the scope of operators conventionally.

The definition of a POMDP reward function R(a, s) may include not only the
reward value of state s, but it may deduct the cost of performing a in s. It will
be convenient for the person specifying a POMDP using SLAOP to be able to
specify action costs independently from the rewards of states, because these two
notions are not necessarily connected. To specify rewards and execution costs
in SLAOP, we require Reward and Cost as special predicates. Reward(r) can
be read ‘The reward for being in the current situation is r units’ and we read
Cost(α, c) as ‘The cost for executing α is c units’.

3 In SLAP [27] and the previous version of SLAOP [23], rational numbers were used.
Due to our completeness proof relying on Tarski’s quantifier elimination method [31]
which involves real numbers, we use real numbers here.



[α]qϕ is read ‘The probability of reaching a ϕ-world after executing α, is
equal to q’. [α] abbreviates [α]1. (ς | α : q) is read ‘The probability of perceiving
ς, given α was performed, is q’.
〈α〉ϕ abbreviates ¬[α]0ϕ and is read ‘It is possible to reach a world in which

ϕ holds after executing α’. Note that 〈α〉ϕ does not mean ¬[α]¬ϕ. [α]qϕ and
¬[α]qϕ are referred to as dynamic literals. (ς | α : q) and ¬(ς | α : q) are referred
to as perception literals.

One reads 2Φ as ‘Φ holds in every possible world’. We require the 2 opera-
tor to mark certain information (sentences) as holding in all possible worlds—
essentially, the axioms which model the domain of interest. (∀vα) is to be read
‘For all actions’ and (∀vς) is to be read ‘For all observations’. (∀v)Φ (where
v ∈ (VA ∪ VΩ)) can be thought of as a syntactic shorthand for the finite con-
junction of Φ with the variables replaced by the constants of the right sort (cf.
Def. 3 for the formal definition). (∃v)Φ abbreviates ¬(∀v)¬Φ.

3.2 Semantics

SLAOP extends SLAP. SLAP structures are non-standard: They have the form
〈W,R〉, where W is a finite set of worlds such that each world assigns a truth
value to each atomic proposition, and R is a binary relation on W . Moreover,
SLAP is multi-modal in that there are multiple accessibility relations. Intuitively,
when talking about some world w, we mean a set of features (propositions) that
the agent understands and that describes a state of affairs in the world or that
describes a possible, alternative world. Let w : F 7→ {0, 1} be a total function
that assigns a truth value to each fluent. Let C be the set of all possible functions
w. We call C the conceivable worlds.

SLAP structures are comparable to Markov decision processes (MDPs) [21]
without reward functions, whereas SLAOP structures are comparable to POMDPs
(with reward functions). A POMDP model is a tuple 〈S,A, T,R,Ω,O, b0〉; S is
a finite set of states the agent can be in; A is a finite set of actions the agent
can choose to execute; T is the function defining the probability of reaching one
state from another for each action; R is a function giving the expected immedi-
ate reward gained by the agent for any state and agent action; Ω is a finite set
of observations the agent can experience of its world; O is a function giving a
probability distribution over observations for any state and action performed to
reach that state; b0 is the initial probability distribution over all states in S.

A SLAOP structure is a ‘translation’ of a POMDP model, except for the
initial belief-state b0.4

Definition 2. A SLAOP structure is a tuple S = 〈W,R,O,N,Q,U〉 such that

1. W ⊆ C a non-empty set of possible worlds.
2. R : A 7→ Rα, where Rα : (W ×W ) 7→ R[0,1] is a total function from pairs of

worlds into the reals; That is, R is a mapping that provides an accessibility

4 Specification of the initial belief-state is required at a higher level of reasoning. It is
left for future work.



relation Rα for each action α ∈ A; For every w− ∈ W , it is required that
either

∑
w+∈W Rα(w−, w+) = 1 or

∑
w+∈W Rα(w−, w+) = 0.

3. O is a nonempty finite set of observations;
4. N : Ω 7→ O is a bijection that associates to each name in Ω, a unique

observation in O;
5. Q : A 7→ Qα, where Qα : (W × O) 7→ R[0,1] is a total function from

pairs in W × O into the reals; That is, Q is a mapping that provides a
perceivability relation Qα for each action α ∈ A; For all w−, w+ ∈ W : if
Rα(w−, w+) > 0, then

∑
o∈O Qα(w+, o) = 1, that is, there is a probability

distribution over observations in a reachable world; Else if Rα(w−, w+) = 0,
then

∑
o∈O Qα(w+, o) = 0;

6. U is a pair 〈Re,Co〉, where Re : W 7→ R is a reward function and Co is a
mapping that provides a cost function Coα : C 7→ R for each α ∈ A.

Note that the set of possible worlds may be the whole set of conceivable worlds.
Rα defines the transition probability pr ∈ R[0,1] between worlds w+ and

world w− via action α. If Rα(w−, w+) = 0, then w+ is said to be inaccessible
or not reachable via α performed in w−, else if Rα(w−, w+) > 0, then w+ is
said to be accessible or reachable via action α performed in w−. If for some w−,∑
w+∈W Rα(w−, w+) = 0, we say that α is inexecutable in w−.
Qα defines the observation probability pr ∈ R[0,1] of observation o per-

ceived in world w+ after the execution of action α. Assuming w+ is accessi-
ble, if Qα(w+, o) > 0, then o is said to be perceivable in w+, given α, else if
Qα(w+, o) = 0, then o is said to be unperceivable in w+, given α. The defini-
tion of perceivability relations implies that there is always at least one possible
observation in any world reached due to an action.

Because N is a bijection, it follows that |O| = |Ω|. (We take |X| to be the
cardinality of set X.) The value of the reward function Re(w) is a real number
representing the reward an agent gets for being in or getting to the world w. It
must be defined for each w ∈ C. The value of the cost function Co(α,w) is a real
number representing the cost of executing α in the world w. It must be defined
for each action α ∈ A and each w ∈ C.

Definition 3 (Truth Conditions). Let S be a SLAOP structure, with α, α′ ∈
A, q, pr ∈ R[0,1] and r ∈ R. Let f ∈ F and let Φ be any sentence in LSLAOP .
We say Φ is satisfied at world w in structure S (written S, w |= Φ) if and only
if the following holds:

S, w |= > for all w ∈W ;
S, w |= f ⇐⇒ w(f) = 1 for w ∈W ;
S, w |= ¬Ψ ⇐⇒ S, w 6|= Ψ ;
S, w |= Ψ ∧ Ψ ′ ⇐⇒ S, w |= Ψ and S, w |= Ψ ′;
S, w |= (α = α′) ⇐⇒ α, α′ ∈ A are the same element;
S, w |= (ς = ς ′) ⇐⇒ ς, ς ′ ∈ Ω are the same element;
S, w |= Reward(r) ⇐⇒ Re(w) = r;
S, w |= Cost(α, r) ⇐⇒ Coα(w) = r;



S, w |= [α]qϕ ⇐⇒
∑
w′∈W,S,w′|=ϕRα(w,w′) = q;

S, w |= (ς | α : q) ⇐⇒ Qα(w,N(ς)) = q;
S, w |= 2Φ ⇐⇒ for all w′ ∈W,S, w′ |= Φ;
S, w |= (∀vα)Φ ⇐⇒ S, w |= Φ|vαα1

∧ . . . ∧ Φ|vααn ;

S, w |= (∀vς)Φ ⇐⇒ S, w |= Φ|vςς1 ∧ . . . ∧ Φ|
vς

ςn ,

where we write Φ|vc to mean the formula Φ with all variables v ∈ (VA ∪ VΩ)
appearing in it replaced by constant c ∈ A ∪Ω of the right sort.

A formula ϕ is valid in a SLAOP structure (denoted S |= ϕ) if S, w |= ϕ for
every w ∈ W . ϕ is SLAOP-valid (denoted |= ϕ) if ϕ is true in every structure
S. If |= θ ↔ ψ, we say θ and ψ are semantically equivalent (abbreviated θ ≡ ψ).

ϕ is satisfiable if S, w |= ϕ for some S and w ∈ W . A formula that is not
satisfiable is unsatisfiable or a contradiction. The truth of a propositional formula
depends only on the world in which it is evaluated. We may thus write w |= ϕ
instead of S, w |= ϕ when ϕ is a propositional formula.

Let K be a finite subset of LSLAOP . We say that ψ is a local semantic con-
sequence of K (denoted K |= ψ) if for all structures S, and all w ∈ W of S, if
S, w |=

∧
θ∈K θ then S, w |= ψ. We shall also say that K entails ψ whenever

K |= ψ. If {θ} |= ψ then we simply write θ |= ψ. In fact, K |= Ψ if and only if
|=

∧
θ∈K θ → Ψ (i.e., K entails Ψ iff

∧
θ∈K θ → Ψ is SLAOP-valid).

If there exists a world w ∈ C such that w |= δ, where δ is a propositional
formula, and for all w′ ∈ C, if w′ 6= w then w′ 6|= δ, we say that δ is definitive
(then, δ defines a world; δ is a complete propositional theory). Let Def (ϕ) be
all the definitive formulae which entail ϕ, that is, Def (ϕ) = {δ ∈ LSLAOP |
δ is definitive and δ |= ϕ}.

4 Decision Procedure for SLAOP Entailment

In this section we describe a decision procedure which has two phases: creation of
a tableau tree (the tableau phase) which essentially eliminates propositional con-
nectives, then a phase which checks for inconsistencies given possible mappings
from ‘labels’ (of the tableau calculus) to worlds (the label assignment phase).
Particularly, in the label assignment phase, solutions for systems of inequalities
(equations and disequalities) are sought.

4.1 The Tableau Phase

The necessary definitions and terminology are given next.
A labeled formula is a pair (x, Ψ), where Ψ ∈ LSLAOP is a formula and x is

an integer called the label of Ψ . A node Γ jk with superscript j (the branch index)
and subscript k (the node index), is a set of labeled formulae. The initial node,
that is, Γ 0

0 , to which the tableau rules must be applied, is called the trunk.

Definition 4. A tree T is a set of nodes. A tree must include Γ 0
0 and only nodes

resulting from the application of tableau rules to the trunk and subsequent nodes.
If one has a tree with trunk Γ 0

0 = {(0, Ψ)}, we’ll say one has a tree for Ψ .



When we say ‘...where x is a fresh integer’, we mean that x is the smallest
positive integer of the right sort (formula label or branch index) not yet used in
the node to which the incumbent tableau rule will be applied.

A tableau rule applied to node Γ jk creates one or more new nodes; its child(ren).

If it creates one child, then it is identified as Γ jk+1. If Γ jk creates a second child,

it is identified as Γ j
′

0 , where j′ is a fresh integer. That is, for every child created
beyond the first, a new branch is started.

A node Γ is a leaf node of tree T if no tableau rule has been applied to Γ in
T . A branch is the set of nodes on a path from the trunk to a leaf node. Note
that nodes with different branch indexes may be on the some path.

Definition 5. Γ is higher on a branch than Γ ′ if and only if Γ is an ancestor
of Γ ′.

A node Γ is closed if (x,⊥) ∈ Γ for any x ≥ 0. It is open if it is not closed. A
branch is closed if and only if its leaf node is closed. A tree is closed if all of its
branches are closed, else it is open.

A preprocessing step occurs, where all (sub)formulae of the form (∀vα)Φ and
(∀vς)Φ are replaced by, respectively, (Φ|vαα1

∧ . . . ∧ Φ|vααn) and (Φ|vςς1 ∧ . . . ∧ Φ|
vς

ςn).
The occurrence of (∃vς)¬(vς | α : 0) in rule obs (below) is only an abbreviation
for the semantically equivalent formula without a quantifier and variables.

The tableau rules for SLAOP follow. A rule may only be applied to an
open leaf node. To constrains rule application to prevent trivial re-applications
of rules, a rule may not be applied to a formula if it has been applied to
that formula higher in the tree, as in Definition 5. For example, if rule 2

were applied to {(0,2p1), (1,¬[go]0p2)} ⊂ Γ 2
3 , then it may not be applied to

{(0,2p1), (1,¬[go]0p2)} ⊂ Γ 2
4 .

Let Γ jk be a leaf node.

– rule ⊥: If Γ j
k contains (n, Φ) and (n,¬Φ), then create node Γ j

k+1 = Γ j
k ∪ {(n,⊥)}.

– rule ¬: If Γ j
k contains (n,¬¬Φ), then create node Γ j

k+1 = Γ j
k ∪ {(n, Φ)}.

– rule ∧: If Γ j
k contains (n, Φ ∧ Φ′), then create node Γ j

k+1 = Γ j
k ∪ {(n, Φ), (n, Φ′)}.

– rule ∨: If Γ j
k contains (n,¬(Φ ∧ Φ′)), then create node Γ j

k+1 = Γ j
k ∪ {(n,¬Φ)} and

node Γ j′

0 = Γ j
k ∪ {(n,¬Φ

′)}, where j′ is a fresh integer.

– rule =: If Γ j
k contains (n, c = c′) and c and c′ are distinct constants, or if Γ j

k

contains (n,¬(c = c′)) and c and c′ are identical constants, then create node
Γ j
k+1 = Γ j

k ∪ {(n,⊥)}.
– rule 3ϕ: If Γ j

k contains (0,¬[α]0ϕ) or (0, [α]qϕ) for q > 0, then create node Γ j
k+1 =

Γ j
k ∪ {(n, ϕ)}, where n is a fresh integer.

– rule obs: If Γ j
k contains (x,¬[α]0ϕ) or (x, [α]qϕ) for q > 0 and some x, then create

node Γ j
k+1 = Γ j

k ∪ {(0,2(δ1 → (∃vς)¬(vς | α : 0)) ∨ 2(δ2 → (∃vς)¬(vς | α :
0)) ∨ · · · ∨ 2(δn → (∃vς)¬(vς | α : 0)))}, where δi ∈ Def (ϕ).

– rule 2: If Γ j
k contains (0,2Φ) and (n, Φ′) for any n ≥ 0, and if it does not yet

contain (n, Φ), then create node Γ j
k+1 = Γ j

k ∪ {(n, Φ)}.
– rule 3: If Γ j

k contains (0,¬2Φ), then create node Γ j
k+1 = Γ j

k ∪ {(n,¬Φ)}, where n
is a fresh integer.



One might wonder why there is not a rule to deal with the case when Γ jk
contains (x, [α]qϕ) and (x,¬[α]qϕ), or no rule for when Γ jk contains (x, (ς | α : r))
and (x, (ς | α : r′)) where r 6= r′. As will be seen in Section 4.2, these and similar
cases are dealt with.

Definition 6. A branch is saturated if and only if any rule that can be applied
to its leaf node has been applied. A tree is saturated if and only if all its branches
are saturated.

Once the tableau phase is completed, inconsistencies are sought for each
open branch of the saturated tree. Depending on the results, certain branches
may become closed. Depending on the final structure and contents of the tree,
the sentence for which the tree was created can be determined as valid or not.
Before the second phase can be explained, we need to explain how a system of
inequalities (SI) can be generated from a set of dynamic and perception literals.

4.2 Systems of Inequalities

Definition 7. W (Γ, n)
def
= {w ∈ C | w |= ` for all (n, `) ∈ Γ where ` is a

propositional literal}. W (Γ )
def
=

⋃
x∈{0,1,...,n′}W (Γ, x), where n′ is the largest

label mentioned in Γ .

Let n = |W (Γ )|. Let W (Γ )# = (w1, w2, . . . , wn) be an ordering of the worlds in
W (Γ ). With each world wk ∈W (Γ )#, we associate a real variable prαk ∈ R[0,1].
One can generate

ci,1pr
α
1 + ci,2pr

α
2 + · · ·+ ci,npr

α
n = qi and ci,1pr

α
1 + ci,2pr

α
2 + · · ·+ ci,npr

α
n 6= qi,

for a formulae (x, [α]qiϕi) ∈ Γ , respectively, (x,¬[α]qiϕi) ∈ Γ such that ci,k = 1
if wk |= ϕi, else ci,k = 0, where x represents a label.

Adding an equation

prα1 + prα2 + · · ·+ prαn = dprα1 + prα2 + · · ·+ prαne

will ensure that either
∑
w+∈W (Γ )Rα(w−, w+) = 1 or

∑
w+∈W (Γ )Rα(w−, w+) =

0, as stated in Definition 2 on page 7.
Let m = |Ω|. Let Ω# = (ς1, ς2, . . . , ςm) be an ordering of the observations in

Ω. With each observation in ςj ∈ Ω#, we associate a real variable prςj .
One can generate

prσj = qj and prσj 6= qj

for a formula (x, (σj | α : qj)) ∈ Γ , respectively, (x,¬(σj | α : qj) ∈ Γ , where
σj ∈ Ω# and prσj ∈ {prς1, . . . , prς2, . . . , prςm}.

Adding an equation

prς1 + prς2 + · · ·+ prς2 + · · ·+ prςm = dprς1 + prς2 + · · ·+ prς2 + · · ·+ prςme.

ensures that either
∑
o∈O Qα(w+, o) = 1 or

∑
o∈O Qα(w+, o) = 0, as stated in

Definition 2 on page 7.



Let ∆(α) be a set of dynamic literals mentioning α and let Ω(α) be a set of
perception literals involving α. Let S(∆(α)) and S(Ω(α)) be the systems formed
from ∆(α), respectively, Ω(α). Let v be the vector of all variables mentioned in
S(∆(α)) or S(Ω(α)). Z(∆(α)) and Z(Ω(α)) denote the solution set for S(∆(α)),
respectively, S(Ω(α)). It is the set of all solutions of the form (sα1 , s

α
2 , . . . , s

α
n),

respectively, (sς1, s
ς
2, . . . , s

ς
m), where assigning sαi to prαi ∈ v for i = 1, 2, . . . , n,

respectively, assigning sςj to prςj ∈ v for j = 1, 2, . . . ,m solves all the (in)equalities
in S(∆(α)), respectively, S(Ω(α)) simultaneously. An SI is feasible if and only
if its solution set is not empty.

Suppose ∆(replace) contains [replace]0.43(full ∧ ¬holding) and
¬[replace]0.43(full ∧ ¬holding). Then S(∆(replace)) will contain

0 + prα2 + 0 + prα4 + 0 + 0 + 0 + 0 = 0.43
0 + prα2 + 0 + prα4 + 0 + 0 + 0 + 0 6= 0.43.

This system is clearly infeasible, and the whole system S(∆(replace)) of which
this one is a subsystem is, by extension, also infeasible. As will be seen in the
next subsection, a node for which an infeasible system can be generated will be
recognized as closed.

Suppose Ω(weigh) contains (obsHeavy|weigh : 0.56) and (obsHeavy|weigh :
0.55). Then S(Ω(weigh)) will contain

prς4 = 0.56

prς4 = 0.55,

where Ω# = {obsNil, obsLight, obsMedium, obsHeavy}. This system is clearly
infeasible, and thus also S(∆(replace)).

The interested reader can refer to the technical report [25] for a more thor-
ough explication of the generation of SIs.

4.3 The Label Assignment Phase

Given two formulae (x, Φ), (x′, Φ′) ∈ Γ such that Φ contradicts Φ′, if x and x′

represent the same world, then Γ should close. But if x 6= x′, one must determine
whether x and x′ can be made to represent different worlds. In other words, one
must check whether there is a ‘proper’ assignment of worlds to labels such that
no contradictions occur.

In SLAP, sentences of the form ¬2Φ are not in the language. The reason is
that the decision procedure for SLAP [27] would not notice certain contradictions
which may occur due to such sentences being allowed. In SLAOP, sentences of the
form ¬2Φ are in the language, because the label assignment procedure described
below picks up the contradictions which may occur.

Informally, xmentioned in Γ could represent any one of the worlds inW (Γ, x).
Now suppose (x, Φ), (x′, Φ′) ∈ Γ such that Φ contradicts Φ′ and W (Γ, x) =
{w1, w2} and W (Γ, x′) = {w2, w3}. Assuming that Φ and Φ′ do not involve
the 2 operator, it is conceivable that there exists a structure S such that (i)



S, w1 |= Φ and S, w2 |= Φ′, (ii) S, w1 |= Φ and S, w3 |= Φ′ or (iii) S, w2 |= Φ and
S, w3 |= Φ′. But to have S, w2 |= Φ and S, w2 |= Φ′ is inconceivable. Hence, if it
were the case that, for example, W (Γ, x) = {w2} and W (Γ, x′) = {w2}, then we
would have found a contradiction and Γ should be made closed.

To formalize the process, some more definitions are required:

– SoLA(Γ )
def
= {(0:w1, 1:w2, . . . , x′:wx

′
) | wx ∈ W (Γ, x)}, where 0, 1, . . ., x′

are all the labels mentioned in Γ . We shall call an element of SoLA(Γ ) a
label assignment. LA(Γ ) denotes an element of SoLA(Γ ).

– E(Γ, x)
def
= {(x, Φ) ∈ Γ | Φ is Reward(r) or ¬Reward(r) or Cost(α, c) or

¬Cost(α, c) for some/any constants r and c and some/any action α}.
– E(Γ,LA, w)

def
=

⋃
x:w∈LA(Γ )E(Γ, x).

– F (Γ, α, x)
def
= {[α]qϕ | (x, [α]qϕ) ∈ Γ} ∪ {¬[α]qϕ | (x,¬[α]qϕ) ∈ Γ}.

– F (Γ, α,LA, w)
def
=

⋃
x:w∈LA(Γ ) F (Γ, α, x).

– G(Γ, α, x)
def
= {(ς | α : q) | (x, (ς | α : q)ϕ) ∈ Γ} ∪ {¬(ς | α : q) | (x,¬(ς | α :

q)) ∈ Γ}.
– G(Γ, α,LA, w)

def
=

⋃
x:w∈LA(Γ )G(Γ, α, x).

After the tableau phase has completed, the label assignment phase begins.
For each leaf node Γ jk of an open branch, do the following.

Do the following for every LA ∈ SoLA(Γ jk ). If one of the following three
cases holds, then mark LA as “unsat”.

– For some w ∈W (Γ jk ), E(Γ jk ,LA, w) contains
• Reward(r) and Reward(r′) such that r 6= r′, or
• Reward(r) and ¬Reward(r), or
• Cost(α, c) and Cost(α, c′) (same action α) such that c 6= c′, or
• Cost(α, c) and ¬Cost(α, c) (same action α).

– For some action α ∈ A and some w ∈ W (Γ jk ), Z(F (Γ jk , α,LA, w)) = ∅
or Z(G(Γ jk , α,LA, w)) = ∅.

If every LA ∈ SoLA(Γ jk ) is marked as “unsat”, then create new leaf node

Γ jk+1 = Γ jk ∪ {(0,⊥)}.

That is, if for all logically correct ways of assigning possible worlds to labels
(i.e., for all the label assignments in SoLA(Γ jk )), no assignment (LA) satisfies all

formulae in Γ jk , then Γ jk is unsatisfiable.

Definition 8. A tree is called finished after the label assignment phase is com-
pleted.

Definition 9. If a tree for ¬Ψ is closed, we write ` Ψ . If there is a finished tree
for ¬Ψ with an open branch, we write 6` Ψ .



Theorem 1 (Decidability). Determining whether a sentence is SLAOP-valid
is decidable.

Proof. The proof is sketched; an accompanying technical report [25] presents the
full proof. The proof shows that the decision procedure is sound, complete and
terminating, thus decidable.

Soundness. If ` Ψ then |= Ψ . (Contrapositively, if 6|= Ψ then 6` Ψ .) Let ψ = ¬Ψ .
Then 6` Ψ if and only if the tree for ψ is open. And

6|= Ψ ⇐⇒ not (∀S) S |= Ψ

⇐⇒ not (∀S, w) S, w |= Ψ

⇐⇒ (∃S, w) S, w |= ψ.

For the soundness proof, it thus suffices to show that if there exists a structure
S and w in it such that S, w |= ψ, then the tree rooted at Γ 0

0 = {(0, ψ)} is open.
This is shown using induction on the height of a node in a tableau tree, and
looking at each tableau rule and the label assignment phase.

Completeness. If |= Ψ then ` Ψ . (Contrapositively, if 6` Ψ then 6|= Ψ .) Let
ψ = ¬Ψ . Then 6` Ψ means that there is an open branch of a finished tree for ψ.
And

6|= Ψ ⇐⇒ (∃S) S 6|= Ψ

⇐⇒ (∃S, w) S, w 6|= Ψ

⇐⇒ (∃S, w) S, w |= ψ.

For the completeness proof, it thus suffices to construct for some open branch of
a finished tree for ψ ∈ LSLAOP , a SLAOP structure S = 〈W,R,O,N,Q,U〉 in
which there is a world w ∈W in S such that ψ is satisfied in S at w. That is, we
show (i) how to construct a structure S from the information contained in the
leaf node Γ of any open branch of a finished tree and (ii) that for all (x, Φ) ∈ Γ ,
S, w |= Φ for x:w ∈ LA, for the label assignment LA which is known to exist.
Point (ii) relies on induction on the structure of the formulae in Γ .

Termination. Finally, by showing that all trees will become saturated and that
the label assignment phase always terminates, it follows that the whole proce-
dure terminates. In particular, rule obs cannot cause cycles because 2(δ1 →
(∃vς)¬(vς | α : 0))∨2(δ2 → (∃vς)¬(vς | α : 0))∨· · ·∨2(δn → (∃vς)¬(vς | α : 0))
is not dynamic; it can thus not make rule obs applicable again. That is, rule obs
can only cause other rules to become applicable; rules which add ⊥ to the new
node, and rules with the subformula property.

5 Examples

The following abbreviations for constants will be used: grab := g, weigh := w,
full := f , drank := d, holding := h, obsHeavy := oH, obsMedium := oM and
obsLight := oL.



Γ 0
0 = {(0,

∧
Φ∈BK 2Φ ∧ ¬(¬f ∧ d ∧ ¬h→ [g]0.9(¬f ∧ h))}

(0,¬¬(¬f ∧ d ∧ ¬h) ∧ ¬[g]0.9(¬f ∧ h)) ∈ Γ 0
1

nf

(0,¬¬(¬f ∧ d ∧ ¬h)), (0,¬[g]0.9(¬f ∧ h)) ∈ Γ 0
2

∧

(0,¬f ∧ d ∧ ¬h) ∈ Γ 0
3

¬

(0,¬f), (0, d), (0,¬h) ∈ Γ 0
4

∧

(0,¬(¬f ∧ ¬h) ∨ ([g]0.9h ∧ [g]0.1¬h ∧ [g]¬f)) ∈ Γ 0
5

2

(0, ([g]0.9h ∧ [g]0.1¬h ∧ [g]¬f) ∈ Γ 3
0

∨

(0, [g]0.9h), (0, [g]0.1¬h), (0, [g]¬f) ∈ Γ 3
1

∧

(1, h), (2,¬h), (3,¬f) ∈ Γ 3
2

3ϕ

(1, f ∨ h∨ ([g]0.9h∧ [g]0.1¬h)), (1, f ∨ h∨ [g]¬f), (2, f ∨ h∨ ([g]0.9h∧ [g]0.1¬h)),
(2, f ∨ h ∨ [g]¬f), (3, f ∨ h ∨ ([g]0.9h ∧ [g]0.1¬h)), (3, f ∨ h ∨ [g]¬f) ∈ Γ 3

3

2

(1, [g]0.9h), (1, [g]0.1¬h), (1, [g]¬f), (2, [g]0.9h), (2, [g]0.1¬h), (2, [g]¬f),
(3, [g]0.9h), (3, [g]0.1¬h), (3, [g]¬f) ∈ Γ 8

0

∨

Fig. 1. One branch of a tree for proving that {2Φ | Φ ∈ BK} entails ¬f ∧ d ∧ ¬h →
[g]0.9(¬f ∧ h).

In Figures 1 and 2, the vertices represent nodes and the arcs represent the
application of tableau rules. Arcs are labeled with the rule they represent, except
when branching occurs, in which case, the ∨ rule was applied. The figures show
how the vertices relate to the corresponding nodes. The reader should keep in
mind that the node corresponding to a vertex v contains all the labeled formulae
in vertices above v on the same branch—the vertices show only the elements of
nodes which are ‘added’ to a node due to the application of some rule. An
exception is the top vertex of a tree, which is the trunk and not the result of
any rule application.

In order to show the development of the tree, some liberties were taken with
respect to rule application: In some cases, rule application is not shown, that
is, from parent node to child node, a formula may be ‘processed’ more than is
possible by the application of the rule represented by the arc from parent to
child in the figure. The arc labeled “nf” denotes normal forming : translating
abbreviations into symbols in the language.



Γ 0
0 = {(0,

∧
Φ∈BK 2Φ ∧ ¬((oH | w : 0.1) ∧ d ∧ h→ (oL | w : 0.7)))}

(0, (oH | w : 0.1) ∧ d ∧ h ∧ ¬(oL | w0.7) ∈ Γ 0
1

nf

(0, (oH | w : 0.1)), (0, d), (0, h), (0,¬(oL | w : 0.7) ∈ Γ 0
2

∧

(0,¬f ∧ d ∧ h→ (oL | w : 0.7) ∧ (oH | w : 0.1)) ∈ Γ 0
3

2

(0, (f ∨ ¬d ∨ ¬h) ∨ ((oL | w : 0.7) ∧ (oH | w : 0.1))) ∈ Γ 0
4

nf

(0, f)) ∈ Γ 0
5 (0,¬d)) ∈ Γ 1

0 (0,¬h)) ∈ Γ 2
0 (0, (oL | w : 0.7) ∧ (oH | w : 0.1))) ∈ Γ 3

0

(0,⊥) ∈ Γ 1
1

⊥
(0,⊥) ∈ Γ 2

1

⊥

(0, f ∧ d ∧ h→ (∀vς)(vς | w : 0.3̄)) ∈ Γ 0
6

2

(0, (oL | w : 0.7)), (0, (oH | w : 0.1))) ∈ Γ 3
1

∧

(0,⊥) ∈ Γ 3
2

⊥

(0,¬f ∨ ¬d ∨ ¬h ∨ ((oL | w : 0.3̄) ∧ (oM | w : 0.3̄) ∧ (oH | w : 0.3̄))) ∈ Γ 0
7

nf

(0,¬f) ∈ Γ 0
8 (0,¬d) ∈ Γ 4

0 (0,¬h) ∈ Γ 5
0

(0, (oL | w : 0.3̄)),
(0, (oM | w : 0.3̄)),

(0, (oH | w : 0.3̄)) ∈ Γ 6
0

(0,⊥) ∈ Γ 0
9

⊥
(0,⊥) ∈ Γ 4

1

⊥
(0,⊥) ∈ Γ 5

1

⊥

(0,⊥) ∈ Γ 6
1

label assig. phase

Fig. 2. A tree for proving that {2Φ | Φ ∈ BK} entails (oH | w : 0.1) ∧ d ∧ h → (oL |
w : 0.7).

Suppose the following domain axioms5 are part of the robot’s background
knowledge BK for the oil-drinking scenario.

f ∧ d ∧ h→ (∀vς)(vς | w : 0.3̄)

f ∧ ¬d ∧ h→ (oL | w : 0.1) ∧ (oH | w : 0.7)

((f ∧ ¬d) ∨ (¬f ∧ d)) ∧ h→ (oM | w : 0.2)

¬f ∧ d ∧ h→ (oL | w : 0.7) ∧ (oH | w : 0.1)

¬f ∧ ¬d ∧ h→ (oL | w : 0.5) ∧ (oM | w : 0.3) ∧ (oH | w : 0.2)

¬f ∧ ¬h→ [g]0.9h ∧ [g]0.1¬h ∧ [g]¬f.

For the first example, we claim that {2Φ | Φ ∈ BK} |= ¬f ∧d∧¬h→ [g]0.9(¬f ∧
h). Figure 1 shows only one branch of a tree for∧

Φ∈BK

2Φ ∧ ¬(¬f ∧ d ∧ ¬h→ [g]0.9(¬f ∧ h)). (1)

5 Only the last of these sentences can be expressed in SLAP. Notice the compact rep-
resentation of the perception probabilities in the first sentence, due to quantification.



For the claim to hold, the tree for (1) must close. We’ll only show that the
branch in Figure 1 closes. The leaf node of the branch is open and must thus be
considered in the label assignment phase.

For clarity, denote w1 as 111 where w1 |= f ∧ d ∧ h, w2 as 110 where
w2 |= f ∧ d∧¬h, . . . , w8 as 000 where w8 |= ¬f ∧¬d∧¬h. We shall refer to the
leaf node as Γ . Observe that W (Γ, 0) = {010}, W (Γ, 1) = {111, 101, 011, 001},
W (Γ, 2) = {110, 100, 010, 000} and W (Γ, 3) = {011, 010, 001, 000}, and that
W (Γ ) = {111, 101, 011, 001, 110, 100, 010, 000} = C. Observe that 0:010 is in ev-
ery label assignment in SoLA(Γ ). Note that F (Γ, grab, 0) ⊆ F (Γ, grab,LA, 010)
for all LA ∈ SoLA(Γ ). And note that F (Γ, grab, 0) equals

{[grab]0.9holding, [grab]0.1¬holding, [grab]¬full,¬[grab]0.9(¬full∧holding)}.

The system generated from F (Γ, grab, 0) is

0 + 0 + 0 + 0 + prα5 + 0 + prα7 + 0 = 0.9
0 + prα2 + 0 + prα4 + 0 + prα6 + 0 + prα8 = 0.1
0 + 0 + 0 + 0 + prα5 + prα6 + prα7 + prα8 = 1
prα1 + 0 + prα3 + 0 + prα5 + 0 + prα7 + 0 6= 0.9
prα1 + prα2 + prα3 + prα4 + prα5 + prα6 + prα7 + prα8 = 1.

Due to prα5 +prα6 +prα7 +prα8 = 1 (3rd equation), it must be the case that prα5 +
prα7 6= 0.9 (4th inequation). But it is required by the first equation that prα5 +
prα7 = 0.9, which forms a contradiction. Thus, for every label assignment, there
exists an action and a world w—that is, 010—for which Z(F (Γ, grab,LA, w) = ∅
and the branch closes.

For the second example, we claim that {2Φ | Φ ∈ BK} |= (oH | w : 0.1) ∧
d ∧ h→ (oL | w : 0.7). Figure 2 shows the closed tree for∧

Φ∈BK

2Φ ∧ ¬((oH | w : 0.1) ∧ d ∧ h→ (oL | w : 0.7)).

The arc labelled “label assig. phase” means that for all label assignments, the
SI generated for a set of formulae will include (oH | w : 0.1) and (oH | w : 0.3̄),
which will cause all SIs to be infeasible. Hence, the label assignment phase will
create a new node containing (0,⊥) at the end of the branch.

6 Conclusion

A decidable logic with a semantics closely related to partially observable Markov
decision processes (POMDPs) was presented. The logic a step towards the defi-
nition of a logic for reasoning about an agent’s belief-states and expected future
rewards, where the agent’s actions and observations are stochastic.

Two examples were provided in this paper, which give an indication of how
SLAOP-validity is computed. In a sequent paper, we would like to explain the
formal approach of how SLAOP is used to give a complete specification of a
domain.



Predicate (ς | α : q) is useful for specifying the probability of perceiving
an observation in the ‘current’ world. However, it would be useful to query the
probability q of ending in a ϕ-world after executing action α in the ‘current’
world and then perceiving ς in the ϕ-world. To make such queries possible, one
could add a modal operator with the following definition. S, w |= [α+ς : q]ϕ ⇐⇒∑
w′∈W,S,w′|=ϕRα(w,w′)×Qα(w′, N(ς)) ≥ q.
Informally, sentences of the form [α]qϕ and (ς | α : q) have a meaning ‘prob-

ability is exactly q.’ In future, to make the language more expressive, the syntax
and semantics of these kinds of sentences can be replaced with sentences which
have a meaning ‘probability is less that, less than or equal to, etc. q.’

An important next step for SLAOP would be to add the ability to express
sequences of actions, and then evaluate the part of the sentence occurring after
the sequence.

For specifying a domain in SLAOP, the question of what world an agent is in
does not arise. But due to partial observability, after the agent has executed a
few actions, the agent will only have an (uncertain) belief about which world it is
in, as opposed to (certain) knowledge of where it is. For an agent to reason with
beliefs, the notion of an epistemic or belief state needs to be added to SLAOP.

We would also like to add a notion of the expected value of a sequence of
actions, and then be able to determine whether the expected value is less that,
less than or equal to, etc. some given value. Generating POMDP policies is also
on the cards for the future of SLAOP.

The complexity of the decision procedure has not been analysed. Our focus
for SLAOP is mainly decidability. Evaluation of the systems of equations in the
SI phase has the potential for being very expensive. These are linear systems of
equations; one could thus investigate Linear Programming methods [7, 18, 12] to
optimize the evaluation of the systems.

We feel that presenting a decidability result for a new class of logics is not
trivial. Even though the entailment problem in SLAOP—as presented in this
paper—may be intractable, it is important to have a decision procedure as a
launchpad for tackling the computational complexity. We would like implement
some extended version of SLAOP. Determining the complexity of an optimized
entailment decision procedure may be attempted before an implementation,
though.
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