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Abstract. Software interoperability may be achieved by using their re-
spective conceptual data models. However, each model may be repre-
sented in a different conceptual data modelling language for the tool’s
purpose or due to legacy issues. Several translations between small sub-
sets of language features are known, but no unified model exists that
includes all their language features. Aiming toward filling this gap, we
designed a common and unified, ontology-driven, metamodel covering
and unifying EER, UML Class Diagrams v2.4.1, and ORM2. This paper
presents the static, structural, components of the metamodel, highlight-
ing the common entities and summarizing some modelling motivations.

1 Introduction

The need for, and reality of, complex software system design and integration
of information from heterogeneous sources is motivated by upscaling of scien-
tific collaboration in the life sciences [36], e-government initiatives [31], company
mergers [4], and the Semantic Web. Therefore, establishing connections between
multiple conceptual models has become an important task, as the system’s con-
ceptual data models may be available in, mainly, UML, EER and ORM. However,
this capability is not common in traditional information systems development
and management other than at the physical schema layer [6] and for concep-
tual models represented in the same language [2,12]. Subtle representational
and expressive differences (e.g., [17]) in the languages are primarily due to their
different origins and purposes, and makes this task very difficult, and even within
one language family there are differences in meaning of an element [14,24].

The state of the art in this area has only incidentally gone beyond a single
Conceptual Data Modelling (CDM) language and only for UML and ORM (e.g.,
[14,24,25]). It is unclear to what extent the languages agree on their underlying
ontological foundations to model information. This limits mapping and transfor-
mation algorithms for CASE tools to let one work in parallel on conceptual data
models represented in different languages that otherwise could be highly useful in



information integration and complex system development. Moreover, a more de-
tailed insight in the overlap and underlying modelling principles will contribute
to investigating the effect of language features on modelling information.

To solve these issues, it first should be clear what entities and constraints
exist in each language and how the differences can be reconciled without chang-
ing the languages. We achieve this by developing a single integrated metamodel
inclusive of all language features; in particular, we describe in this work such a
unifying metamodel for the static, structural components of UML 2.4.1 class di-
agrams, EER, and ORM2/FBM, which, to the best of our knowledge, is the first
of its kind. We use insights from Ontology and ontologies during the metamodel
development rather than the argument of convenience to fit with an a priori
chosen logic language. The unification brings afore the differences and common-
alities: 1) they agree on Relationship, Role (/association end), and Object type
(/class/entity type), and 2) they differ in coverage of, among others, attributes.
We provide an overview of related works in Section 2, describe the metamodel
in Section 3, and conclude in Section 4.

2 State of the Art

Within CDM and software engineering, CDMs are compared through their meta-
models (in ORM) highlighting their differences in [17], which is useful before uni-
fying them. Most other works take a formal approach only. This can be by means
of a single formalisation in a chosen logic by first formalizing a language (among
others, [1,5,18,21,22,34]), and optionally in the scope of partial unification [8,27].
Perhaps due to this approach, different logics have been used for different CDM
languages, therewith still not providing the sought-after interoperability for ei-
ther of the languages or among each other; e.g., the Description Logic ALUNI
is used for a partial unification [8] but DL-Lite and DLRifd are used for partial
formalisations to stay within the chosen decidable fragment [1,5,23], omitting
features that render the language undecidable [23], so they cannot simply be
linked up and implemented.

Other approaches include [41,6,7,2,3], which are more advanced in the notion
of a common language. Venable and Grundy designed [41] and implemented a
unification [13,42] for a part of ER and a part of NIAM (a precursor to ORM),
omitting, mainly, value types, nested entity types, and composite attributes,
and NIAM is forced to have the attributes as in ER. Bowers and Delcambre [6]
present a framework for representing schema and data information coming from
several data models, mainly relational, XML and RDF. Its main characteristic
is a flat representation of schema and data, and the possibility of establish-
ing different levels of conformance between them. However, its representational
language ULD only includes ordinal, set and union class constructs, and car-
dinality constraints. Boyd and McBrien [7] use a Hypergraph Data Model to
relate schemas represented in ER, relational, UML, and ORM, and includes
transformation rules between them. It has the features inclusion, exclusion and
union class constructs, and mandatory, unique and reflexive constraints, and
various notions of cardinality constraints and keys, but roles, aggregation, and



weak entity types are missing. Atzeni et al [2,3] describe an automatic approach
that translates a schema from one model to another by means of a small set of
“metaconstructs”—entities (called “abstracts”), attributes (called “lexicals”),
relationships, generalization, foreign keys, and complex attributes—that can be
used to characterize different models. Automatic translations between schemas
are produced in Datalog, but translations from a rich representational language
may require a sequence of such basic translations, if possible. Guizzardi [14] pro-
poses a Unifying Foundational Ontology (UFO) which is used to redefine UML
metamodel for structural conceptual modelling concepts.

Our approach is different regarding scope and methodology. We aim to cap-
ture all the languages’ constructs and generalise in an ontology-driven way so
that the integrated metamodel subsumes the static elements of EER, UML Class
Diagrams v2.4.1, and ORM2 without changing the base languages. Methodolog-
ically, our metamodel is ontological rather than formal, compared to all other
known works that present first a formal common language for translations that
leave aside important particular aspects of each language. We first develop a con-
ceptual model of all possible entities and their relations in the selected languages,
and will devise a formalization for their translations afterward. The main benefit
is that it allows one to have a clear comprehension of the meaning(s) of an entity
in each language whilst coping with the broader scope. This is an essential step
towards achieving the full potential of information sharing.

3 Ontology-driven metamodel

The metamodel is a conceptual model about the selected CDM languages that
covers all their native features and is still consistent. Whether a particular fea-
ture is a good feature is beyond the scope, because we aim at representing in a
unified way what is already present in the language. We do, however, use On-
tology (philosophy) and ontologies (artifacts in IT and computing) to enhance
understanding of the features and to unify perceived differences through gener-
alization, and to improve the quality of the metamodel.

The principal entities (cf. constraints) are depicted in Fig. 1 in UML Class
Diagram notation, where a white fill of a class icon indicates that that entity
is not present in either of the three languages, a single diagonal fill that it
is present in one language, a double diagonal that it is present in two, and a
dark fill that it is present in all three groups of languages (EER, UML v2.4.1,
ORM2); naming conventions and terminological differences and similarities of
the entities are listed in the appendix at the end of the paper. Although UML
Class Diagrams have limited expressiveness, we prefer a more widely known
graphical notation for the purpose of communication (it will be formalised in a
suitable logic anyway). The remainder contains explanations of the metamodel
fragments, being roles, relationship, and attributes, class/entity type, nested and
weak entity type, subsumption, and aggregation.
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3.1 Classes, concepts, types

CDMs use terms such as entity type, object type, and class. In philosophy, dis-
tinctions are made between classes, concepts, types, and universals. The meaning
of these terms do not coincide, so in order to be more precise in the character-
isation of these of core entities, we shall first briefly summarise a selection of
the general, mostly agreed-upon, meanings, principally examined in Ontology
(its aim is to clarify some possible terminological confusion and we take them
at face-value, but will not debate which one is ‘better’ or how to formulate their
description more precisely).
– Class is associated with set theory and the extension—a set of actual objects

as members. Two distinct classes must have different extensions.
– Concept generally refers to a mind-dependent entity that may, or may not,

have instances, and where there is not a membership relation between the
individual object and its concept, but an instantiation relation between the
object and the concept it instantiates [11].

– Universals are mind-independent entities, which do have at least one in-
stance, hence, also uses the instantiation relation, not membership [30].

– Properties are “(also called ‘attributes,’ ‘qualities,’ ‘features,’ ‘characteris-
tics,’ ‘types’) are those entities that can be predicated of things or, in other
words, attributed to them.” [39], which can be relational or unary.

– Type denotes a ‘kind’ of thing, and is closely associated with mathematics.
– Unary predicate is used in logic, and may have instances associated to it

through the interpretation function (assuming a model-theoretic semantics).
– Entity means whatever can be deduced from the context in which the term

is used, but such that that thing is a discrete unit, therewith it can refer to
an instance or object, but also to a universal or concept or class.

In contrast to the extensional view and grouping similar things together into a
class or set, concepts and universals concern the intension; informally: they are



the descriptions, or a set of properties, that those entities that instantiate them,
have. For instance, that each Computer has a CPU and memory, and has the
function to compute, or that Apple is a kind of fruit that has a certain shape
and colour. The main philosophical difference lies in the mind (in-)dependence
and, with that, whether there is such thing as reality.

ORM, EER, and UML use different terminology, which might indicate differ-
ent ontological commitments regarding the subject domain we wish to represent
in the conceptual data model. In UML, “The purpose of a class is to specify a
classification of objects and to specify the features that characterize the struc-
ture and behavior of those objects.” (p49) (emphasis added) [32]. For ORM,
the draft ISO standardisation [10] declares that object type is a “concept used
to classify the objects in the universe of discourse into different kinds” (p5),
which is divided into non-lexical object type—an “object type, each of whose
instances are non-lexical objects” (p5)—and lexical object type, which “is a
metaclass each instance of which represents a concept that is used to represent
values” (p12). The original ER diagram uses “entity sets” [9], known as entity
types since soon thereafter [38], into which entities are classified and “we know
that it has the properties common to the other entities in the entity set” (p11)
[9] and “An entity type E defines a collection of entities that have the same
attributes.” (p1004) [38], hence, both extension and intension are considered.
EER generally follows the same line, although it is formulated differently by [40]:
“Entity types conceptualize structuring of things of reality through attributes.”
and “E

.
= (attr(E), ΣE) where E is the entity type defined as a pair – the set

attr(E) of attribute types and the set ΣE of integrity constraints that apply to
E.” (p1084), i.e., definitely the intension, and it comprises both attributes and
constraints explicitly. Despite the differences in formulation, practically, it does
not make a real difference: in the conceptual data model, each one is used to
denote a kind of thing where the relevant aspects of its intension is described,
and will have an extension in the software (e.g., as object in OO software, or
tuples in a database table) and each of those objects represents an instance in
reality. However, one just as well can design a database about [mind-dependent]
deities in the Stone Age. From the ontological viewpoint, we thus can postulate
that the conceptual data models’ entity type or class, is, mostly, a universal,
but sometimes may be a concept and one can let them be subsumed by Entity.
The terminology we use henceforth for those entities in conceptual data models
that describe the intension, is Object type. Although UML is more widely used
than either EER or ORM, hence, the term ‘class’ more familiar, what actually
is being modelled/represented, is the intension with respect to the application
domain, not a placeholder for the extension, and that term does not clash in
intention with terminology in ontology.

Finally, Weak object type is included thanks to ER and EER’s weak entity
type that has an identification that is a combination of one or more of its at-
tributes and the identifier of its related strong entity type. Depending on the
ontological status of weak entity type [14,25], it is possible to approximate its
meaning in UML with the Identifier profile or use ORM’s compound reference
scheme, but there is no icon for it in UML and ORM.
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3.2 Roles and relationships

There are many points that can be discussed about roles and relationship, but we
shall restrict ourselves to their definition, and differences among them and with
a object type, how to deal with the aggregation associations, and subsumption.

Distinguishing roles, relationships, and predicates A relationship, or re-
lational property in ontology [39], is an entity that relates entities, hence, it
requires at least two entities to participate in it. Thus, there are no unary re-
lationships, whereas there can be unary predicates and object types are unary.
Second, a relationship is composed of at least two roles, or: “association ends” or
“member ends” in UML [32], ORM/FBM use “roles” [18,19,10], and EER’s roles
may be called components of a relationship [9,40]. A role is something that an
object plays in a relationship, therewith characterising relationship and commit-
ting to the positionalist ontological commitment of relations and relationships as
to what they are (see also [29,24]). The three CDM languages agree on this and
therefore they appear in the metamodel (recall Fig. 1), including the disjointness
between Relationship, Role, and Entity Type and their interaction is depicted in
Fig. 2. The ternary role playing enforces that each role must have exactly one
entity type with no or one cardinality constraint (the minimum and maximum
cardinality are part of the Cardinality constraint), and each entity type may play
zero or more roles.

ORM’s predicates are an addition to roles and relationships and adheres to
the so-called “standard view” of relations [29]. They have an intricate relation
with roles and relationships: 1) an ordered for between roles, 2) a predicate can
exist only if there is a relation between those roles that compose the relation-
ships, and the relationship that that predicate is an ordering of (i.e., it is a
join-subset), and 3) entities that participate in the predicate must play those
roles that compose the relationship of which that predicate is an ordered version
of.

Nested object types A Nested object type (see Fig. 1) is also called associa-
tion class, associative entity, or objectified fact type. Although documentation
of CDM languages discuss the notion of a “duality” of nested object types as
both being a relationship and an object type, and therewith indicating that one
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property participates only in a part-whole relation if it is part of a composite attribute.

could have multiple inheritance of Nested object type to two supertypes, Rela-
tionship and Object type (e.g., [15]), this is not correct. A nested object type is
composed of a relationship or the outcome of a transformation of or reification of
a relationship, each one of which is certainly distinct from being a relationship.
Therefore, the metamodel relates them through a normal association.

The constraints regarding nested object types are rather basic, which re-
flects the flexibility concerning reification/objectification in UML and ORM. No
restrictions are mentioned in the UML standard regarding objectifying an as-
sociation into an association class [32], and although ORM initially had some
restrictions on when one would be allowed to objectify a fact type [19], these
restrictions have been lifted more recently [16].

Subsumption and aggregation relationships Considering relationships in
more detail, we have to address subsetting relationships versus subtyping, and
aggregation. The two relationships in Fig. 3 are represented twice: once as re-
cursive relationship, and once as being a kind of relationship that has two par-
ticipating entities, each providing a different perspective on the relationship.

Subsumption. Subsumption of entities is included in all languages except ER.
Some argue against allowing multiple inheritance [35,37], but there it is assumed
that there are no real relationships (an OBO-language limitation) and/or that
subtypes must always be disjoint (an Aristotelean left-over), which need not
be the case for some subject domain and, moreover, CDM languages permit it.
Thus, the constraints in the metamodel reflects this.

Subsumption for relationships and roles is more interesting. UML 2.4.1 dis-
tinguishes between subsetting—the association ends and/or participating classes



are sub-ends/sub-classes of those participating in the super-association or indi-
rectly through an association’s attributes—and “specialization” of associations
[32]. Specialization is not set-oriented, but because of the differences in intension
of the association [32], although the UML standard does not describe how that
is supposed to work. The only way to change an association’s intension, is to
restrict the relational properties of an association, as recognised in ontology [26];
e.g., each relationship that is asymmetric is also irreflexive. Only few such sub-
sumptions exists [19], however, and little is known about its practicality other
than the few experiments reported in [26] for ontologies. Nevertheless, it may
become more relevant in the near future, and therefore we keep this option avail-
able. Both ways of relationship subsumption are captured in the metamodel with
the more general Subsumption, and both UML and ORM include subsumption
of roles, therefore, the participating entities for Subsumption are Entity.

Aggregation. Much has been written about UML’s shared and composite ag-
gregation (among many, [14,28,33]), yet the UML standard still does not offer
any more clarity on what they really are. Shared aggregation tends to be mapped
loosely onto parthood and composite aggregation to proper parthood, yet aggre-
gation is also used for meronymic associations in UML Class Diagrams, such as
member-of (see [28] for an overview); hence, one can neither draw a subsump-
tion relation between the aggregations and parthood nor adorn the subsumption
from PartWhole with a disjointness axiom. The UML standard’s description of
shared and composite aggregation also indicates behavioural characteristics or
lifecycle semantics of the part and whole, but its inclusion in the metamodel is
beyond the scope of the static components.

Finally, observe the possible participation of attributes in a PartWhole rela-
tionship, which is added to accommodate ER/EER’s Composite attribute. Given
that the entity that plays the part-role is Attributive property, it entails that it
is still possible to include uncommon representations, such as nested composite
attributes or a composite attribute with a multivalued attribute.

Attributes and value types Ontological aspects of attributes deserve a sep-
arate paper; here we only summarise the outcome. Formally, an attribute (A) is
a binary relationship between a relationship or object type (R ∪ E) and a data
type (D, sometimes called ‘concrete domains’), i.e., A 7→ R ∪ E × D; e.g., an
attribute hasColour 7→ Flower × String.

The different attributes in Fig. 1 reflect their differences in meaning in the
CDM languages and it can be motivated by Ontology and ontologies. An attri-
bution, or quality (in ORM called Value types), such as the Colour of an apple
or its Shape, ‘inheres in’ (needs a) bearer to exist and is formalised as a unary
predicate, not a binary. They differ from what we call here Object Type, and
philosophers agree on this. This distinction is also reflected in the foundational
ontologies; e.g., GFO has Property (the attribution) and Presential/Occurrent
(the object or relation), which is refined into atomic and non-atomic attributes
[20] that resemble EER’s simple and composite attributes.

UML uses the standard definition and meaning of attribute and it is nor-
mally modelled ‘inside’ a class- or association-icon as, e.g., “hasColour:String”,
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although hasColour may be drawn also as an association with at the far end a
class-icon for the data type [32]. ER and EER have partial attributes: no ER or
EER diagram notation lets the modeller specify the data type of an attribute, be-
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even though both can be remodelled as basic attributes.
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ORM is said to be “attribute-free” [19], but it does have attributes in the
strict sense of the meaning. ORM’s value type differs from object type (ORM en-
tity type) in that there is a behind-the-scenes software-generated “mapped to”
relationship [10], being mapped to 7→ ValueType× DataType; e.g., hasColour is
asserted between Flower and Colour, and then a mapped to 7→ Colour × String.
The crucial differences between UML’s and ORM’s attributes, are that ORM
uses three entities with two binary relationships where the unary attribution
(value type) can be reused, whereas UML collapses it all into one binary rela-
tionship and keeps the attribute ‘inside’ the class.

Finally, ORM’s CASE tools lets one specify not only the data type when
declaring a value type, but also, if desired, the dimension of the measurement,
such as cm or day; thus, adding meaning to the values. This has not been specified
in a metamodel or formalised yet. One can model this as a ternary—e.g., as
hasHeight 7→ Flower× Integer× cm—or as three relations between object type,
and value type, value type and data type, and data type and dimension. For
our metamodel, we chose for the more precise ternary relation dimensional value



typing, as shown in Fig. 4. For symmetry, we also added its analogue for attributes
(Fig. 5), although the UML standard does not mention dimensions explicitly.

4 Conclusions

We presented a unifying metamodel capturing ORM, EER, and UML v2.4.1
with respect to their static, structural, entities and their relationships. Strictly,
the only intersection of features among all these CDM languages are role, rela-
tionship (including subsumption), and object type. Attributions are represented
differently, but, ontologically, they aim to represent the same. Several implicit
aspects, such as dimensional attribute and its reusability and relationship versus
predicate, have been made explicit.

The complete metamodel with the section for the constraints has been de-
veloped, but not described here due to space limitations, and likewise for more
detailed justifications for the modeling decisions taken. We will use the meta-
model for the formalisation, where it will aid in the comprehension of differences
between CDM languages and in the development of tools.
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Appendix: naming conventions. The following naming conventions are used,
in the order of Metamodel, UML v2.4.1, EER, ORM/FBM. Where no value is
given, that element is absent.

- Relationship; association, can be 2-ary according to the MOF 2.4.1, but also
>2-ary [32]; relationship, ≥2-ary; atomic/compound fact type, ≥1-ary.

- Predicate; ; ; predicate.
- Role; association end / member end; component of a relationship; role.
- Entity type; classifier; ; object type.
- Object type; class; entity type; non-lexical object type / entity type.
- Attribute; attribute; attribute, but without a data type in the diagram; (rep-

resented differently).
- Dimensional attribute; (no recording of dimension); ; (represented differently).
- Composite attribute; a property can be a composite of another property ;

composite attribute; implicitly present by adding new roles.
- Multivalued attribute; ; multivalued attribute; .
- Value type; ; ; lexical object type / value type, without dimension.
- Dimensional value type; ; ; lexical object type / value type, with dimension.
- Data type; Data type, LiteralSpecification; ; data type.
- Object subtype; subclass; subtype; subtype.
- Sub-relationship; subsetting or subtyping of association; subtyping the rela-

tionship ; subset constraint on fact type.
- Nested object type; association class; associative entity type; objectified fact

type.
- Weak object type; ; weak entity type; .
- Composite aggregate; composite aggregation; ; .
- Shared aggregate; shared aggregation; ; .


