Digitally controlling the 'twist' of light

Angela Dudley¹ and Andrew Forbes¹

¹ CSIR National Laser Centre, Pretoria, South Africa.

Presented at:

Il International Conference on Applications of Optics and Photonics Aveiro, Portugal 29 May 2014

Hopefully, not all the news you hear about South Africa is bad...

The NLC is one of many departments at the CSIR

Mathematical Optics Group:

Azimuthally-phased beams have helical wavefronts and consequently carry OAM

 $u(r,\theta,z) = u_0(r,z) \exp(il\theta)$

1 JUNE 1992

Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes

L. Allen, M. W. Beijersbergen, R. J. C. Spreeuw, and J. P. Woerdman Huygens Laboratory, Leiden University, P.O. Box 9504, 2300 RA Leiden, The Netherlands (Received 6 January 1992)

LAGUERRE-GAUSSIAN BEAM

PHASE SINGULARITY

GAUSSIAN BEAM

Laguerre-Gaussian beams can be used to encode a larger alphabet.

Spin Clockwise: 1 **Spin Anticlockwise:** 0

Message Received: 101110 = A

Laguerre-Gaussian modes are created with digital holograms.

An azimuthally-varying phase (bounded by a ring-slit) placed in the spatial frequency domain produces a higher-order Bessel beam

We can then create superpositions which either do or do not possess a global OAM

We are interested in these beams because their local OAM changes radially across the beam

Field:

Local OAM spectrum:

We can even control these rotation rates

A modal decomposition is used to extract the intensity and phase of an optical field

$$c_n = \rho_n \exp(i\phi_n) = \langle U, \Psi_n \rangle = \int \int U \Psi_n^* dx dy$$
Perform this integral Create these modes

We already know how to create any laser mode with digital holograms

In reverse: we can pass an unknown field through a match filter to find the inner product

Appropriate match filters can also be created to find the modal phases

The measurement requires only a SLM and a lens

An annular ring, restricting the azimuthal match-filter, can be used to perform a scale-independent modal decomposition

An annular ring, restricting the azimuthal match-filter, can be used to perform a scale-independent modal decomposition

Opt. Express 19(18), 16760 (2011).

Assigning each match filter with its own spatial frequency allows a single snapshot measurement

Any field in any basis can be measured

New J. of Phys. **15**, 073025 (2013)

PhD and PostDoc positions are available and visitors are always welcome...

Contact: AForbes1@csir.co.za

