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Abstract

In this paper we introduce a new multi-vector update quasi-Newton (MVQN) method for implicit coupling of par-
titioned, transient FSI solvers. The new quasi-Newton method facilitates the use of 'black-box' �eld solvers and under
certain circumstances can be demonstrated to provide Newton-like convergence behaviour for strongly coupled FSI
benchmark problems. We demonstrate the superior convergence behaviour and robust nature of the MVQN method
compared to other well known quasi-Newton coupling schemes, including the least squares reduced order modelling
(IBQN-LS) scheme, the classical rank-1 update Broyden's method and �xed point iterations with dynamic relaxation.
The quasi-Newton methods are analysed on a suite of strongly coupled FSI problems, including but not limited to,
internal, incompressible �ow through a �exible tube where the solid density is an order of magnitude lower than the
�uid density.
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1. Introduction

With an ever increasing availability and size of com-
putational resources at the disposal of researchers, multi-
physics simulations are becoming an ever present real-
ity. Fluid-structure interactions (FSI), a subclass of multi-
physics problems, have in particular received much atten-
tion over the past several years. The main reason for this
is the wide range of problems within the �elds of engineer-
ing and life sciences that involve FSI. These problems, to
mention but a few, range from �utter prediction in aero-
elasticity [15, 25], parachute dynamics [26, 28] and blood
�ow through the vascular system [29, 32, 33].

There are two main approaches to solving the FSI prob-
lem, namely the monolithic approach or the partitioned
approach. The monolithic approach is to solve all equa-
tions, including those related to the interface and computa-
tional domains in a single uni�ed solver, typically involving
some variant of Newton's method [4, 21]. Alternatively,
a partitioned solver utilises separate �eld solvers for the
�uid and solid domains, with these separate domains then
coupled along the interface. Partitioned schemes can then
be solved explicitly or allow for sub-iterations or implicit
coupling in order to guarantee satisfaction of the governing
equations along the interface.
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One particular subclass of FSI problems which have
been the focus of large bodies of research is the simula-
tion of incompressible �ows. Incompressible FSI present
a number of numerical challenges, particularly when the
solid and �uid densities are of equal orders of magnitude
(for example the simulation of blood �ow through arter-
ies). In these situations, the numerical coupling between
the solid and �uid domains are non-trivial, leading to what
has been coined as the �added-mass� e�ect [7, 17]. The
general trend in literature, in order to obtain a stable and
robust solution procedure for these class of problems, has
been that monolithic solvers are required [9, 20, 23]. While
there are merits to this argument, it does however remain
di�cult to justify the enormous initial investment required
in developing a monolithic solver. This is especially rel-
evant considering the large availability of optimised �uid
and solid solvers, which the use of monolithic solution pro-
cedures completely preclude. Equally, segregated solvers
allow for the solution of smaller systems as opposed to one
large uni�ed set of equations, which unless properly pre-
conditioned can be very expensive [20]. Partitioned solvers
further allow for each of the sub-domain �elds to be solved
using �eld speci�c discretisation and solution schemes.

Several useful contributions have been made with re-
gards to partitioned incompressible FSI technology, rang-
ing from arti�cial compressibility [22, 11], robin boundary
conditions [2], and computing the exact Jacobians or sen-
sitivities [13, 16] of the cross-coupling terms between the
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�uid and solid domains. While these contributions rep-
resent distinct steps in allowing for the re-use of existing
solvers, they are limited in the sense that they require ac-
cess to the source of one or both of the domain solvers.

In this paper we are interested in the application of FSI
using 'black-box' solvers, where no access to source code
is available. FSI solvers based on black-box solvers mean
that most �uid or solid solvers, including commercially
available solvers can be used. The general understanding
however is that black-box coupling algorithms have only
limited applicability to the range of complexity of problems
to which they can be applied, and are often insu�cient
when dealing with FSI problems where the solid to �uid
mass ratios are close to unity.

Several coupling algorithms have been proposed which
facilitate the use of black-box �eld solvers. They typically
involve �xed point iterations, with augmentations includ-
ing dynamic relaxation or other similar acceleration tech-
niques [23]. For strongly coupled problems the conver-
gence behaviour is often poor, if convergence is obtained
at all. Quasi-Newton methods, whereby the coupling Ja-
cobians are approximated rather than explicitly computed
have shown promising results. Most notably of these is the
use of �nite-di�erencing (FD) to approximate the matrix-
vector product for Newton-Krylov solution methods [24].
While Newton-like convergence behaviour has been ob-
served, the FD methods have been demonstrated to be
sensitive to the choice of step size. They also require sev-
eral solid and �uid solver calls within a given sub-iteration,
often making them too expensive, especially when com-
pared to monolithic solution schemes [23].

In this paper we will introduce a new quasi-Newton
method designed for the coupling of transient, black-box
FSI solvers. The coupling method is based on a multi-
vector iterative updating scheme requiring only observa-
tions of the interface tractions and displacements. It al-
lows for the e�cient and robust solution of strongly cou-
pled transient FSI problems. The new proposed coupling
scheme is heuristic independent and can be applied to a
wide range of complex FSI problems, which can be shown
under certain circumstances to provide Newton-like con-
vergence behaviour.

We will compare the new proposed scheme to the re-
duced order modelling (ROM) scheme introduced by Vieren-
deels et al. [30], one of the more promising black-box cou-
pling schemes. We will illustrate how the ROM coupling
scheme can be viewed as a minimum norm solution scheme.
This provides insights into why the method works com-
paratively well and provides some explanations as to its
behaviour with regards to the number of retained obser-
vations in time. We will further compare these methods
to the classical Broyden's quasi-Newton method and the
popular (though somewhat limited) Aitken's dynamic re-
laxation.

The outline of the remainder of the paper is as follows.
In Section 2 we describe the general black-box FSI problem
within a block-Newton framework. Section 4 introduces

the multi-vector Jacobian update scheme and brie�y out-
lines the other quasi-Newton methods investigated in this
paper. Lastly, the performance of the quasi-Newton meth-
ods is analysed in Section 5 using four popular benchmark
problems covering a wide range of complexity, including in-
compressible �ow through a �exible tube where the solid
density is an order of magnitude lower than the �uid den-
sity.

2. Coupled FSI Problem

In this paper we focus only on FSI coupling using black-
box �eld solvers. We therefore refrain from limiting the
discussion to a given choice of discretised equations, and
rather denote each of the respective �eld solvers as in-
terface operators that map interface displacements and
forces. The �eld solvers operate independently on non-
overlapping �uid and structural domains ΩF and ΩS which
share a common interface Γ. The solid solver is therefore
an interface operator S mapping a given interface force
vector fn+1

Γ to interface displacements

dS,n+1
Γ = S

(
fF,n+1

Γ

)
(1)

where dn+1
Γ is the interface displacement vector at time

step n + 1. Similarly, the �uid �eld solver is represented
by a mapping operator F such that

fF,n+1
Γ = F

(
dS,n+1

Γ

)
. (2)

The �uid �eld operator F denotes both the solution step
of the �uid �eld variables as well as the mesh movement
of the �uid domain nodal coordinates.

It is important to realise here, while we operate un-
der the assumption of 'black-box' �eld solvers, that there
are some important restrictions on the choice of potential
solvers. Both solvers need to allow for full access to inter-
face information as well as the ability to prescribe the rel-
evant interface boundary conditions. For strong coupling
algorithms, where several coupling iterations are required,
it is further necessary that each of the �eld solvers allow
for the primary variables to be reset to the converged so-
lution from the previous time step (while still allowing the
user to prescribe the new boundary conditions). Further-
more, since the focus of this paper is on interface coupling
algorithms only, we assume that each of the �eld solve
mapping operators include the other necessary building
blocks required for successful FSI simulations. In this re-
gard, we refer to interface information transfer schemes
(especially if non-matching meshes along the interface are
employed), mesh deformation schemes and if necessary,
depending on the solver choice, that the �uid �eld solver
incorporates an arbitrary Lagrangian-Eulerian (ALE) for-
mulation accounting for convective velocity relative to the
domain velocity.

For the FSI problem, it is essential that both the kine-
matic and dynamic continuity be satis�ed at all times
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along the interface. In the case of no-slip boundary con-
ditions on the moving interface the kinematic continuity
states that the �uid �ow velocity at the interface equals
the boundary displacement

uΓ =
∂dΓ

∂t
(3)

and dynamic continuity states that the interface stress
states are equal at the interface,

σSΓ · n = σFΓ · n (4)

where n is the respective interface normals.

3. Block-Newton Equations

In order to solve the coupled system de�ned by (1) and
(2), we re-write the equations as a root �nding problem,
such that

rF = F (d (f))− f = 0 (5)

rS = S (f (d))− d = 0 (6)

where the functional dependency of forces on displace-
ments and vice versa is indicated by d (f) and f (d).

The coupled system de�ned by equations (5) and (6)
can then be solved by computing the system Jacobian and
solving for an update in the Newton direction:

[
∂F
∂d

∂d
∂f − I

∂F
∂d

∂S
∂f

∂S
∂f

∂f
∂d − I

]{
∆f
∆d

}
=[

−F (d (f)) + f (d)
−S (f (d)) + d (f)

]
(7)

where the Newton update for coupling iteration k + 1 is
then computed by

fn+1
k+1 = fn+1

k + ∆f (8)

dn+1
k+1 = dn+1

k + ∆d. (9)

However, since we are using partitioned solvers, exe-
cuted in a staggered fashion, we will solve the system of
linear equations in a block-Newton fashion. Following a
call to the �uid solver (that returns an interface traction
f), we update the interface traction iterate

(
∂F

∂d

∂d

∂f
− I

)
∆f = − (F (d (f))− f (d))− ∂F

∂d
∆d.

(10)

Similarly, following a call to the solid solver (that returns
a displacement d), we update this displacement iterate

(
∂S

∂f

∂f

∂d
− I

)
∆d = − (S (f (d))− d (f))− ∂S

∂f
∆f .

(11)
It is important to note here, by recalling equations (5)

and (6), that ∂d
∂f = ∂S

∂f and ∂f
∂d = ∂F

∂d .The main purpose of
the quasi-Newton methods discussed in the latter part of
this paper is thus to obtain approximations to the system
Jacobians Js = ∂S

∂f = ∂d
∂f and JF = ∂F

∂d = ∂f
∂d .

One can alternately set-up a Newton linearised system
for the residual equation de�ned by the di�erence in dis-
placement between the current and previous iterate:

r = dk+1 − dk. (12)

A Newton system based on the residual equation then be-
comes

∂r

∂d
∆d = −r. (13)

The bene�t of the linearised system (13) is that the inverse
approximation of ∂r

∂d can be constructed directly, thereby
negating the necessity for a linear system solve step. The
quasi-Newton methods discussed in this paper are equally
applicable to the residual system, and in general the per-
formance in terms of number of coupling iterations are
comparable, while being somewhat less robust.

4. Quasi-Newton Coupling Algorithms for FSI

Quasi-Newton methods is a class of root �nding al-
gorithms based on Newton's method to solve for a set of
non-linear equations where the system Jacobian is approx-
imated rather than fully computed.

4.1. Multi-vector update method

The requirements for a partitioned coupling algorithm
is that it should be both e�cient and robust across a wide
range of FSI problems. In the context of black-box par-
titioning, we assume that the largest cost with respect to
each of the coupling iterations in a given time step is the
time required by each of the respective �eld solvers. In or-
der to guarantee an e�cient solution procedure it becomes
important to minimise the number of solver calls and hence
the number of coupling iterations. It would further be ideal
if the chosen coupling algorithm can be applied to a wide
range of problems without the need for tuning a set of
problem speci�c heuristics. In this section, we propose a
new, multi-vector update quasi-Newton method (MVQN)
to approximate the system Jacobians, which we believe
satis�es all the expected requirements.

In order to facilitate the discussion, let us assume that
we have completed k FSI coupling iterations within time
step n + 1. We therefore have k interface displacements,
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which transferred to the �uid solver, subsequently pro-
vided k corresponding interface tractions. Using the dis-
placement and traction observations, we can now construct
two di�erencing observations matrices

∆Dn+1
F = [dk − dk−1,dk−1 − dk−2, ...,d2 − d1] (14)

∆F n+1
F =

[
fk − fk−1,fk−1 − fk−2, ...,f2 − f1

]
, (15)

where the subscript F denotes information with regards to
the �uid �eld solver. To simplify notation, the superscript
n+ 1 was dropped from each of the respective observation
vectors. It should be noted here that the order and form
of the di�erencing in (14) and (15) is not important, and
one can just as easily subtract the last observation k from
all previous observations 1, 2, ..., k − 1.

Given the two di�erencing matrices, it is then possible
to construct a generalised secant equation for the �uid
solver

Jn+1
F ∆Dn+1

F = ∆FF
n+1, (16)

where Jn+1
F is the �uid system Jacobian relating a change

in displacement to a change in interface tractions. The
system is however underdetermined, with only k available
observations (with each observation of size m) to describe
the full interface Jacobian of size m ×m, where m is the
total number of interface degrees of freedom (DOFs), with
m� k. As such, there are in�nite possible solutions which
will satisfy (16). One way in which to obtain a uniquely
de�ned system is through the minimum norm solution of
(16), i.e. solving for the minimum ||JF || subject to the
constraint Jn+1

F ∆Dn+1
F = ∆F n+1

F . Solving for Jn+1
F via

a minimum norm solution will add curvature to the ap-
proximation in only the k directions in which information
is available, leaving all other directions within Jn+1

F un-
changed. The minimum norm yields an approximate Ja-
cobian of the following form

Jn+1
F = ∆F F

(
[∆DF ]

T
∆DF

)−1

[∆DF ]
T
, (17)

where the superscript n+ 1 was once again dropped from
the observation matrices in order simplify notation.

The approximate Jacobian given by (17) is now only
based on observations from the current time step. The
approximation can be greatly improved by reusing infor-
mation from previous time steps. One manner in which
to do so, would be to include interface information from
previous time steps in the observation matrices (14) and
(15). Doing so will in fact yield the exact same Jacobian
approximation as provided by the popular least-squares,
reduced order modelling (IBQN-LS) method of Degroote
et al. [10] (discussed in Section 4.3). While the method
has on several occasions been demonstrated to be a capa-

ble coupling method, it does su�er from a very problem
dependent choice of how far in time histories should be re-
tained. We therefore would like a Jacobian approximation
method that can retain information from multiple time
steps without appending additional information.

The MVQN method is therefore based on an iterative
updating scheme. Starting with an initial Jacobian from
the previous time step Jn, we iteratively update the Ja-
cobian based on an update rule of the form

Jn+1
F,k+1 = J̃

n+1

F,k+1 + JnF , (18)

where J̃
n+1

F,k+1 denotes the Jacobian update approximation.

We can then construct a secant equation for J̃
n+1

F,k+1

J̃
n+1

F,k+1∆Dn+1
F =

(
∆F n+1

F − JnF∆Dn+1
F

)
. (19)

Solving for the minimum norm of J̃
n+1

F,k+1 subject to the
constraint of (19) we obtain a new Jacobian update rule:

Jn+1
F,k+1 = JnF +

(
∆F n+1

F − JnF∆Dn+1
F

)
((

∆Dn+1
F

)T
∆Dn+1

F

)−1 (
∆Dn+1

F

)T
. (20)

The update equation (20) bears a marked resemblance
to the classical rank-1 Broyden's update method (discussed
brie�y in Section 4.2). It is possible to reformulate (20)
as the Jacobian update which minimises

∣∣∣∣Jn+1 − Jn
∣∣∣∣,

which closely relates to Broyden's method, where the up-
date is based on minimising the di�erence between two
successive iterates

∣∣∣∣Jn+1
k − Jn+1

k−1

∣∣∣∣.
The primary di�erence between our proposed multi-

vector update and Broyden's update method is the ability
of the multi-vector scheme to exactly reproduce all the in-
formation from the current time step, as opposed to the
last observation of the current time step only. Information
from preceding time steps is then matched in a minimum
norm sense only, and is hence naturally less emphasized in
the approximation. An interesting e�ect thereof is a cer-
tain inherent consistency with Newton's method, where
the non-linear FSI equations are linearised about the cur-
rent time step. Furthermore, if newer information from
the current time step falls along the same directions as
previous information, the older information is replaced,
thereby entirely removing the possibility of contradictory
information.

In a similar fashion, using interface tractions trans-
ferred to the solid solver, we obtain k interface displace-
ments and can therefore construct a similar Jacobian for
the solid solver
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Jn+1
S,k+1 = JnS +

(
∆Dn+1

S − JnS∆F n+1
S

)
((

∆F n+1
S

)T
∆F n+1

S

)−1 (
∆F n+1

S

)T
, (21)

where the subscript S now denotes information with re-
gards to the solid �eld solver.

A brief summary of the method is outlined in Algo-
rithm 1, attached as an appendix. Because the MVQN
method requires that at least two coupling iterations have
been performed in order to construct a Jacobian approxi-
mation, for the �rst iteration of the �rst time step we make
use of a �xed point iteration scheme with relaxation factor
ω:

dS,01 = ωd̃
S,0

1 + (1− ω)dS,00 . (22)

The Jacobian update rule (20) further requires the avail-
ability of JnF . Since we do not have an available starting
Jacobian, we set J0

F = [0] and J0
S = [0] for the �rst iter-

ation in time step 1.
Remark 1 : The convergence tolerance of each of the

�eld solvers should be lower than the FSI coupling toler-
ance. If this is not true, it remains possible for interface
information from the current time step to be contradictory
within �nite precision.

Remark 2: It is advised that the ()
−1

required by the
solution of the Jacobian update equations (20) and (21)
not be solved using matrix inversion but rather through
matrix factorisation. While the DOFs of the matrices(

(∆D)
T

∆D
)
and

(
(∆F )

T
∆F

)
are su�ciently small (of

size [k × k]) to warrant being solved using matrix inversion
it poses the risk of compounding matrix ill-conditioning if
present.

Remark 3 : The number of vectors in ∆D and ∆F
should never exceed the number of interface DOFs. If this
is the case, the secant equation becomes over-determined
for which the minimum norm solution is no longer valid.
The convergence behaviour of the multi-vector update method
is su�ciently good that this should rarely be the case, ex-
cept for systems with very small interface DOFs (for ex-
ample a 1D FSI problem). Should the number of retained
vectors exceed the number of interface DOFs, the Jaco-
bians in (20) and (21) should be updated and the obser-
vation matrices (14) and (15) cleared. The convergence
behaviour will be minimally a�ected if the problem DOFs
are indeed su�ciently small, such that a premature update
is necessary. An alternative (though not implemented for
purposes of this paper) would be to use subspace methods
like proper orthogonal decomposition, or singular value de-
composition to remove the over-de�ned subspace informa-
tion, or solving for the least squares Jacobian.

4.2. Broyden's Method

Broyden's method is a classical rank-1 update quasi-
Newton method. The method was originally developed for

the solutions of systems of non-linear equations for which
the computation of the Jacobian is excessively expensive.
Unlike other popular rank-1 update quasi-Newton meth-
ods (for example DFP, BFGS, SR1 etc.), Broyden's method
places no restrictions on the update to the system Jaco-
bian to be either symmetric or positive de�nite (in the case
of approximating the system Hessian).

To the best of the authors' knowledge, Broyden's method
has not yet been applied to realistic FSI problems. Con-
sidering the widespread application and large body of re-
search focusing on black-box coupling techniques it is per-
haps surprising that Broyden's method or other similar
rank-1 quasi-Newton methods have received little to no at-
tention. One noteworthy exception is the work of Haelter-
man [19] in which the numerical properties of several quasi-
Newton and Krylov methods, including Broyden's method,
were investigated for coupled problems. The numerical ex-
periments were however limited to relatively simple 1D test
cases.

Broyden's method requires that at least two iterations
have been performed. A secant equation can then be con-
structed based on the di�erence between the two iteration
vectors

Jn+1
F,k ∆dn+1

F,k = ∆fn+1
F,k , (23)

where ∆fn+1
F,k = fn+1

F,k − f
n+1
F,k−1 and ∆dn+1

F,k = dn+1
F,k −

dn+1
F,k−1. In Broyden's method [6] the underdetermined sys-

tem with regards to JF,k is solved by minimising ||Jk − Jk−1||
which results in a Jacobian update formula

Jn+1
F,k = Jn+1

F,k−1 +
∆fn+1

F,k − J
n+1
F,k−1∆dn+1

F,k∣∣∣∣∣∣∆dn+1
F,k

∣∣∣∣∣∣2
(

∆dn+1
F,k

)T
.

(24)
As with the MVQN method, because access to an initial
Jacobian is not available, the initial Jacobian is set to zero(
J0
F = [0]

)
for the �rst iteration of the �rst time step.

The solid �eld solver Jacobian may equivalently be ap-
proximated as

Jn+1
S,k = Jn+1

S,k−1 +
∆dn+1

S,k − J
n+1
S,k−1∆fn+1

S,k∣∣∣∣∣∣∆fn+1
S,k

∣∣∣∣∣∣2
(

∆fn+1
S,k

)T
.

(25)

4.3. Least squares, reduced order modelling quasi-Newton
method

One of the more popular black-box quasi-Newton cou-
pling schemes is the 'Interface Block Quasi-Newton with
an approximation for the Jacobians from Least-Squares
models' (IBQN-LS) introduced by Vierendeels et al. [30].
The basic premise is the construction of approximate Ja-
cobians for the block-Newton equations outlined in (10)
and (11) from least squares reduced order models (ROM)
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of interface observations. A similar method, the 'Inverse
approximation of the Jacobian from Least-Squares model'
(IQN-LS) introduced by Degroote et al. [9] follows the
same premise as the IBQN-LS model but only applied to
the interface residual equation (13). There are several pub-
lications available on comparisons of the IBQN-LS and
IQN-LS method [10, 11], including a comparison of the
IQN-LS method to a full monolithic solver [9].

As in Section 4.1, let us consider that we have com-
pleted k coupling FSI iterations, where we can then con-
struct in the same fashion as before a set of di�erencing
observation matrices

∆Dn+1
F = [dk − dk−1,dk−1 − dk−2, ...,d2 − d1] (26)

∆F n+1
F =

[
fk − fk−1,fk−1 − fk−2, ...,f2 − f1

]
. (27)

Based on the work of Vierendeels et al. [30], an approxima-
tion of the interface change in displacement can be written
as a linear combination of previous observations via a set
of linear expansions coe�cients α

∆dF = ∆DFα. (28)

Similarly, via the same linear expansion coe�cients a change
in interface tractions may be approximated as

∆fF = ∆F Fα. (29)

Solving for α via the least squares solution of (28) gives

α =
(

∆DT∆D
)−1

∆DT∆d (30)

which, when inserted into equation (29), results in a rela-
tion between the change in interface tractions to a change
in interface displacements

∆fF = ∆F
(

∆DT∆D
)−1

∆DT∆dF , (31)

where JF = ∆F
(

∆DT∆D
)−1

∆DT can be viewed as

the approximate �uid Jacobian.
The pro�ciency of the least squares quasi-Newton Ja-

cobian can be greatly improved by including historical ob-
servations from previous time steps, as noted by Degroote
et al. [10]. Degroote et al. therefore suggests appending
the converged solution observation matrices from q previ-
ous time steps such that:

∆D =
[
∆Dn+1,∆Dn, ...,∆Dn+1−q] (32)

∆F =
[
∆F n+1,∆Fn, ...,∆F n+1−q] . (33)

The convergence performance of the IBQN-LS method
is however strongly dependent on the choice of how far in
time, q, histories are retained. The choice of q is in fact a

problem dependant heuristic which has to be chosen prior
to runtime, with no a priori way of determining the op-
timal choice of q. Most problems become unstable unless
q is chosen to be small, while other problems may bene�t
from a much larger choice. Degroote et al. [10] attribute
this behaviour to the fact that histories from far back in
time are no longer relevant for newer time steps. While
there is certainly some truth to this, we will show in Sec-
tion 5 via test problems that changing the time step size in
general does not result in the optimal choice of q changing.

A far more complete explanation can be found by refor-
mulating the IBQN-LS method as a quasi-Newton method
where the Jacobian approximation is based on minimis-
ing ||J || subject to the constraints of the secant equation
JF∆DF = ∆FF . Trying to match information from mul-
tiple time steps leads to the possibility of contradicting
information. To put it simply, imagine the �uid solver is
provided with two identical changes in displacement. It is
now possible that for two di�erent time steps, two di�er-
ent changes in interface tractions are observed. Solving for
the minimum norm Jacobian with internally contradicting
information leads to an inability to exactly match either of
these observations, while at least one of these observations
may be pertinent to the current solution space.

An equally relevant problem for minimum norm so-
lutions is linear dependence. Linearly dependent vectors
manifests itself in ill-conditioned matrices which a�ect the
overall solution accuracy and the loss of precision. While
linearly dependent observations remain possible for both
the newly proposed MVQN and Broyden's method, the
probability of obtaining linearly dependent vectors increase
signi�cantly with an increase in the number of appended
(retained) vectors from previous time steps. There are sev-
eral numerical techniques available to minimise the e�ects
of ill-conditioning, see for example [5], where the IBQN-LS
method was augmented through the use of proper orthog-
onal decomposition. While this is potentially bene�cial for
some problems by enabling the method to remain well con-
ditioned and stable for larger choices of q, it signi�cantly
increases the computational complexity while providing no
solution to the problem of contradictory observations.

It is important to note that the set of remarks high-
lighted in Section 4.1 is also in general applicable here for
the IBQN-LS method.

4.4. Aitken's dynamic relaxation

Aitken's ∆2 dynamic relaxation method has attained
a large degree of popularity within the �eld of partitioned
FSI coupling primarily due to its simplicity and relative ef-
�ciency while facilitating the use of black-box �eld solvers.

Fixed point iteration schemes iterate on the �eld oper-
ators until the interface displacement residual drops below
some given tolerance ε where

rn+1
k = dn+1

k − dn+1
k−1 . (34)
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A displacement update including a relaxation factor ω then
becomes

dn+1
k = dn+1

k + ωrn+1
k , (35)

where as before, k indicates the current coupling iteration
and n + 1 the new time step. For complex FSI problems,
for example the class of problems encountered in biomed-
ical problems, �xed relaxation parameters is often insuf-
�cient to obtain convergence. Aitken's method augments
the �xed point iterates using dynamic relaxation, where
the relaxation parameter, ω, is modi�ed at the start of
each iteration using the displacement results from two pre-
ceding coupling iterates:

ωk+1 = −ωk
(rk−1)

T
(rk − rk−1)

(rk − rk−1)
T

(rk − rk−1)
. (36)

We include Aitken's method in our discussion on quasi-
Newton methods by illustrating that Aitken's method is
in fact the simplest form of a quasi-Newton method avail-
able, where the system Jacobian is approximated with the
results from only two coupling iterations. To demonstrate
this, let us return to quasi-Newton residual equation (13)
solving for the updated displacement

dn+1
Γ,k+1 = dn+1

Γ,k −
(
∂r

∂d

)−1

rn+1
Γ,k+1. (37)

Given the results from two previous iterations, we can con-
struct an approximation for the inverse Jacobian via a se-
cant or FD approximation

∆d =

(
∂r

∂d

)−1

∆r, (38)

where ∆r = rΓ,k+1−rΓ,k and ∆d = dΓ,k−dΓ,k−1. Given
the di�erencing vectors we can then compute the minimum∣∣∣∣∣∣( ∂r∂d)−1

∣∣∣∣∣∣ satisfying the secant equation (38) providing a

displacement update of

dn+1
Γ,k+1 = dn+1

Γ,k +(
rn+1
k

)T (
rn+1
k+1 − r

n+1
k

)(
rn+1
k+1 − r

n+1
k

)T (
rn+1
k+1 − r

n+1
k

) (−rn+1
Γ,k+1

)
. (39)

It is easy to show that this yields an identical formulation
to Aitken's method seen by inserting the dynamic relax-
ation parameter from (36) into (35).

While Aitken's method is simple to implement, the lim-
itation of the method stems primarily from its inability
to re-use more iterate data. In contrast, the three other
quasi-Newton methods already discussed allows for the
re-use of some or all interface data acquired through the
course of a simulation.

5. Test Problems

In this section we analyse the quasi-Newton methods
applied to four incompressible �ow benchmark FSI prob-
lems. The problems cover a wide spectrum of problem
classes and are all considered to be strongly coupled FSI
problems, with large added mass ratios requiring the use
of implicit coupling strategies.

The FSI problems are solved using OpenFOAM [1] as
the �uid �eld solver and Calculix [14] for the solid do-
main. While both �eld solvers are open source, and hence
the source code is available, we treat both as black-box
solvers. The focus of the analyses is on the comparison
and computational e�ciencies of the coupling strategies;
issues surrounding solution accuracy and order of tempo-
ral convergence are not investigated. The time integration
used for the �uid solver is an implicit backward-Euler and
generalised alpha for the solid domain. It is therefore to
be expected that the overall coupled FSI system's tempo-
ral solution order be limited by the �uid solver. The �uid
solver is based on the pimpleDyMFoam solver, and can
therefore comfortably handle Courant numbers as high as
2.

The interface load and motion transfer is performed us-
ing radial basis function interpolation. Interface tractions
are transferred in a consistent fashion, thereby guarantee-
ing that a constant stress state (such as encountered in
a constant stress patch test) can be exactly transferred
regardless of the mesh mismatch along the interface.

The approximate Jacobians for both the �uid and solid
�eld solvers are constructed along the solid interface. This
is done since the number of DOFs along the solid interface
is typically smaller; the coupling performance is however
independent of this choice. It is also worth mentioning,
while not documented in the results to follow, that the cou-
pling behaviour of the quasi-Newton methods are largely
independent of the mesh sizes chosen for the discretisation
of each of the domains. The inverse ()−1 computations
required for the MVQN and IBQN-LS methods are solved
using QR factorization. Furthermore, we adopt the no-
tation IBQN-LS(q) to indicate that information from q
previous time steps is retained.

It is often suggested that the interface position be ap-
proximated at the start of each time step via the extrapo-
lation of a higher order polynomial in time (see for example
[9]). In this paper we are primarily interested in the ability
of the quasi-Newton methods to approximate the system
behaviour, including the validity of the Jacobians for reuse
over multiple time steps. For this reason, the interface po-
sition at the start of each time step is not approximated
but set to the converged solution from the previous time
step, dn+1

0 = dn.
The coupling convergence criterion used for all the bench-

mark problems to follow is

|dΓ,k+1 − dΓ,k|√
m

≤ ε, (40)
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where m is the number of DOFs along the interface and is
included to remove the dependency of the solution residual
to the interface mesh size. The choice of ε is varied for the
test problems to illustrate performance dependencies on
convergence tolerance, if any are present. The convergence
criterion is varied from suitable values at which reasonable
results can be obtained to 10−9 across all problems to gain
insights into the asymptotic convergence behaviour. In all
cases the convergence tolerance for each of the separate
�eld solvers is set to at least an order of magnitude lower.
The initial relaxation factor required for the �rst itera-
tion of the �rst time step is set to ω = 0.001 for all test
problems and quasi-Newton methods. Lastly, the time
step sizes chosen for each of the problems are chosen to be
similar to that encountered in literature, where the same
problems were solved using monolithic and/or partitioned
solution schemes with exact Jacobians. We therefore aim
to demonstrate that the approximate Jacobians analysed
in this paper are su�ciently accurate to provide stable so-
lutions despite the comparatively large time steps and �ne
convergence tolerances.

5.1. Flow Induced Oscillating Flexible Beam

The �rst problem we analyse is �ow around a �exi-
ble beam attached to a �xed rigid square. The problem
considers large deformations of the beam induced by oscil-
lating vortices formed by �ow around a square blu� body.
The problem was �rst introduced by Wall [31], and rep-
resents the simplest of the test problems we investigate in
this paper; the solid density of the beam is approximately
two orders of magnitude larger than the �uid density. The
added mass e�ect, while present, is minimal. The oscil-
lating �exible beam problem is an ideal example of where
partitioned solution schemes can be competitive in com-
parison to monolithic procedures.

The problem set-up is depicted in Figure 1. The beam
is 0.06cm thick and 4cm long, with linear elastic material
properties of Young's modulus E = 2.5 × 106g/(cm s2),
density of ρ = 0.1g/cm3 and a Poisson's ratio ν = 0.35.
The material properties result in a fundamental frequency
associated with an oscillation period of approximately 0.33
seconds. The square blu� body has side lengths of 1.0cm,
with a domain inlet velocity of 51.3cm/s. Slip conditions
are applied to the wall boundaries with zero-gradient ve-
locity outlet conditions with the outlet pressure set to 0.
The �uid �ow density is set to ρf = 1.18×10−3g/cm3 with
a viscosity of µ = 1.82× 10−4g/(cm s) as per [31].

The mesh used for the analysis is shown in Figure 2. A
total of 20 quadratic, full integration solid elements along
with 3104 linear triangular �ow elements are employed for
the purposes of the analysis. Mesh movement is performed
using radial basis function interpolation as per [8] where
the entire �uid domain is deformed without any require-
ments for re-meshing. The tip displacement for three time
steps sizes is shown in Figure 3.

A summary of the performance of each of the quasi-
Newton coupling methods is given in Table 1 for di�erent

Figure 1: Flexible tail behind rigid square test problem
set-up.

(a)

(b)

Figure 2: Domain discretisation for the oscillating �exible
tail test problem. Total of 3104 linear, triangular �uid
elements with 20 quadratic, full integration solid elements.
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Figure 3: Beam tip displacement for the �exible tail problem shown for 3 di�erent time step sizes.

time steps sizes and convergence tolerances. The average,
minimum and maximum number of coupling iterations re-
quired for convergence are outlined along with the nor-
malised relative CPU time. For this particular problem all
the methods exhibit similar performance, with the MVQN
being the most e�cient of the four quasi-Newton methods.
All four methods are convergent for large time steps and
small convergence tolerances. Similarly, all the methods
present favourable properties when comparing the mean
number of iterations required to converge for the same
step size for a change in ε from 10−6 to 10−9, on average
requiring between 1 to 2 additional iterations. Speci�cally,
the MVQN requires an additional 1.14 iterations.

The typical convergence rates for the MVQN method
at di�erent times are shown in Figure 4. The bene�t of
additional information is apparent here when comparing
the convergence behaviour of the �rst to later time steps.
Aside from the very �rst time step, the displacement resid-
ual decreases by three orders of magnitude for each addi-
tional iteration (super-linear). Within the limit of rea-
sonable convergence criteria, the quasi-Newton method is
directly comparable (in terms of the required number of
coupling iterations) to a Newton based coupling scheme.

5.2. 1D dynamic piston-channel problem

We analyse here a dynamic 1D piston-channel prob-
lem. The problem layout is described in Figure 5, where
a 10m long �uid domain is forced out of the domain by
the acceleration of a unit by unit solid block. The cou-
pling between the solid and �uid domains is strong, and
requires the use of an implicit coupling scheme. The cou-
pling strength is su�ciently strong that simple iterative
schemes are insu�cient to obtain convergence.

The �uid domain consists of a �uid with density ρ =
1.0kg/m3, with a viscosity of µ = 1.0kg/(m s), all wall
boundaries are no-slip conditions with an exit pressure of
p = 0. In this paper, we make use of a linear elastic,
small strain solid with ρ = 0kg/m3, E = 10Pa and ν = 0,
with a prescribed velocity of u (t) = 0.2t [m/s]. The use

(a)

Figure 4: Typical MVQN convergence rates for �exible tail
problem at di�erent times for ∆t = 0.02s, ε = 10−9.

Figure 5: 1D piston-channel problem set-up.
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Table 1: Comparison of the number of iterations and relative computational time for the �exible tail problem, for
di�erent time steps sizes and convergence criterion ε. The notation IBQN-LS(q) indicates information from q preceding
time steps are retained. If a scheme is non-convergent, the diverging time step as a ratio of the total required time steps
is indicated in the CPU column.

∆t = 0.02, ε = 10−6 ∆t = 0.02, ε = 10−9 ∆t = 0.005, ε = 10−9

Mean Min Max CPU Mean Min Max CPU Mean Min Max CPU
MVQN 3.16 3 5 1.00 4.30 4 6 1.00 4.27 3 5 1.00
Aitken 6.12 5 7 1.89 8.76 7 10 1.96 9.91 9 11 2.25
Broyden 3.34 3 5 1.06 4.66 4 6 1.08 4.70 4 6 1.11

IBQN-LS(0) 3.90 3 5 1.25 5.52 5 6 1.28 5.70 4 6 1.33
IBQN-LS(1) 3.57 3 5 1.12 5.02 4 6 1.17 5.00 3 6 1.17
IBQN-LS(2) 3.84 3 6 1.24 5.48 4 10 1.27 5.27 3 8 1.26
IBQN-LS(3) 4.2 3 7 1.33 5.25 4 7 (5/250) 5.89 3 9 1.41
IBQN-LS(4) 4.50 3 8 1.43 5.25 4 7 (5/250) 6.21 3 16 1.51
IBQN-LS(5) 5.30 3 11 (10/250) 5.25 4 7 (5/250) 6.73 3 29 1.59

of small strain linear elasticity only slightly decreases the
complexity of the problem as opposed to for example [3]
where a hyper-elastic material model is employed, but does
allow for the construction of a simpli�ed expression for
the 1D problem. While the simpli�ed expression does not
constitute an analytical expression it is su�ciently cheap
to be computed to a high degree of accuracy using any
numerical integration scheme with very small time steps.

Following the work of Suliman [27], let us consider the
piston-channel problem as a 1D spring-mass system, where
the piston acts as a linear spring, and the incompressible
�uid as a variable mass system. Based on the balance of
forces along the interface, it is possible to construct an
expression for the interface displacement dΓ and interface
velocity uΓ

∂dΓ

∂t
= uΓ, (41)

∂uΓ

∂t
=

10
(
dΓ − 0.1t2

)
(dΓ − 10)

. (42)

The force of the solid and �uid domains on the interface
can be described by FΓ,s = 10

(
dΓ − 0.1t2

)
and FΓ,f =

(dΓ − 10) respectively.
The results for the FSI simulation for various time

steps, along with the simpli�ed 1D results are shown in
Figure 6. It is important to note that the choice of in-
terface coupling technique does not in�uence the results
themselves. The only impact of the di�erent coupling tech-
niques are whether the problem in fact converges within a
time step, and the number of coupling iterations required
to do so.

As a side note, the problem requires a capable �uid
solver which can handle fairly large Courant numbers. To-
wards the end of the simulation, the �uid domain is com-
pressed to such an extent that the �uid elements become
very small. To illustrate this consider Figure 7 showing
the �uid domain deformation at three di�erent times.

(a)

(b)

Figure 6: Results for 1D piston-channel problem for var-
ious time steps compared to the simpli�ed 1D expression
for interface (a) displacement and (b) velocity.
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(a)

(b) (c)

Figure 7: Domain deformation at simulation time (a) 0s,
(b) 8.85s and (c) 10.0s.

The typical convergence rates for the MVQN method
at multiple time steps are shown in Figure 8. Even though
the interface DOFs are small, the bene�t in retaining infor-
mation from multiple time steps can still be seen, with the
progressive improvement in convergence rates compared
to the �rst time step. Once again, aside from the �rst
time step, super-linear asymptotic convergence rates are
observed.

A summary of the results of the quasi-Newton methods
is shown in Table 2. By comparing the results, it is ap-
parent that the MVQN method provides superior results,
especially in the presence of large time steps and a �ne
convergence tolerance.

Providing an explanation why the other 3 schemes per-
form so poorly is not straight forward. Firstly, the 1D
piston-channel problem is a very strongly coupled prob-
lem. The 1D problem is well known to be more challenging
than the 2D �exible beam problem analysed in Section 5.1
(comparing the results in Table 2 to those in Table 1 con-
�rms this). Due to the complexity of the problem a very
accurate Jacobian approximation is required. In this re-
gard, the approximations provided by both Broyden and
Aitken is simply not accurate enough to provide conver-
gent results for large time steps and very �ne convergence
tolerances.

Explaining why the IBQN-LS method fails is however
slightly more involved. While the method has been demon-
strated in numerous publications to provide su�ciently
accurate Jacobian approximations for most problems, it
clearly struggles in this instance. The reason for this can
be traced back to the minimum norm approximation. While
the problem is 1D in nature, we solve the problem in three
dimensions; along the interface we therefore have 3 DOFs.
If more than 3 observation vectors are used to generate the
Jacobian approximation, the system becomes over-de�ned,
and the minimum norm solution to the secant conditions
become a least squares solution. In other words, neither
of the observations that were used to generate the approx-
imation can be exactly matched, with the end result that
the convergence behaviour deteriorates.

To rectify the over-de�ned problem for the IBQN-LS

(a)

Figure 8: Typical MVQN convergence rates for 1D piston-
channel problem at di�erent times, ∆t = 0.02s, ε = 10−9.

method would require removing vectors from the list of re-
tained observations vectors. Unfortunately, which vectors
to drop is not obvious. Intuition would stipulate dropping
the oldest information. Often however this will result in
dropping information which is critical to the current spa-
tial and temporal location, and again cause a deteriorated
convergence behaviour. On the other hand, the updat-
ing scheme for the MVQN method bypasses this problem.
Whenever the number of observation vectors in the update
approximations in (20) or (21) exceeds the number of in-
terface DOFs, an update can be performed and all retained
vectors be cleared. This e�ectively resets the Jacobian ap-
proximation without loosing any of the information which
has been gained up to that point. For a true 1D prob-
lem (i.e. 1 DOF along ΓFSI) this would render the MVQN
method identical to Broyden's method.

5.3. Flexible Tube, ρs = 1.2g/cm3 and ρf = 1.0g/cm3

Let us now turn our attention to a 3D internal �ow
problem through a �exible tube proposed in [18], which
is inspired by the type of �ow problems encountered in
haemodynamics. The density ratios of the �uid and solid
are near unity, which in conjunction with internal incom-
pressible �ow results in a very strongly coupled FSI prob-
lem. Realistic results can however be obtained for rela-
tively small discretisation DOFs and as a result has gained
a lot of popularity as an FSI benchmark problem.

The �exible tube has a length of l = 5cm, with an in-
ner and outer radius of ri = 0.5cm and r0 = 0.6cm respec-
tively. A hyper-elastic, neo-Hookean material model with
Young's modulus of E = 3 × 106dynes/cm2, densityρ =
1.2g/cm3 and Poisson's ratio of 0.3 is modelled with 96
twenty noded quadratic brick elements with full integra-
tion. The �uid �ow has a density of ρ = 1.0g/cm3 and
viscosity of µ = 0.03P which is modelled using 1600 linear
elements. In order to avoid spurious pressure waves which
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Table 2: Comparison of the number of iterations and relative computational time for the 1D piston-channel problem, for
di�erent time steps and convergence criterion ε. The notation IBQN-LS(q) indicates information from q preceding time
steps are retained. If a scheme is non-convergent, the diverging time step as a ratio of the total required time steps is
indicated in the CPU column.

∆t = 0.02, ε = 10−6 ∆t = 0.02, ε = 10−9 ∆t = 0.01, ε = 10−6

Mean Min Max CPU Mean Min Max CPU Mean Min Max CPU
MVQN 3.00 3 4 1.00 3.53 3 5 1.00 3.00 3 4 1.00
Aitken 16.12 9 67 3.95 � � � (1/500) � � � (1/1000)
Broyden 3.53 3 4 1.20 4.47 3 24 (344/500) 3.01 3 4 1.01

IBQN-LS(0) 3.96 3 4 1.36 4.13 4 5 (170/500) 3.95 3 4 1.31
IBQN-LS(1) 4.33 3 11 (489/500) 6.29 3 32 (473/500) 3.93 3 7 1.29
IBQN-LS(2) 4.32 3 9 (449/500) 6.33 3 28 (498/500) 4.09 3 7 1.35

may occur if a high pressure is applied from the start of
the simulation due to impacting on the solid tube, we ap-

ply a smooth input pressure wave p (t)
[
dynes/cm

2
]
at the

inlet in the form

p (t) =

{
1.3332× 104

(
(sin( 2πt

0.003 + 3
2π)+1)/2

)
if t < 0.003

0 if t ≥ 0.003.

(43)
The time step size for the simulation is ∆t = 0.0001s,
where the convergence behaviour is studied for conver-
gence tolerances ε of 10−7 and 10−9. The pressure pulse
propagation at time steps 0.003s and 0.005s is shown in
Figure 9.

Of the problems analysed thus far, the �exible tube
benchmark represents a problem where the bene�t of re-
taining many observations from multiple time steps is sig-
ni�cant. Consider the summarised results in Table 3. The
IBQN-LS(q) method, while capable of producing good con-
vergence behaviour, now requires the retention of interface
observations from close to q = 30 time steps (in contrast to
approximately only 1 required for the �exible beam and 1D
piston-channel problems). While the performance of the
IBQN-LS(q) method is relatively uniform from a choice of
q = 5 onwards, the performance when compared to the
MVQN method ranges all the way from 15 to 155 percent
more expensive depending on the choice of q.

While retaining more information is bene�cial, retain-
ing too many vectors (as is the case for q = 40 for ∆t =
10−4 and ε = 10−9) results in an ill-conditioned system Ja-
cobian due to linearly dependent vectors. The only reason
the IBQN-LS(q) is capable of providing convergent results
for q ≥ 30 (where the condition number is already very
high) is due to QR factorization. Solving the inverses in
equation (31) using singular value decomposition (SVD) or
proper orthogonal decomposition (POD) would enable the
retention of all the time step information. For the �exi-
ble tube problem, retaining all the information does in
fact provide noticeable bene�t, see for example [5]. While
SVD or POD solves issues surrounding ill-conditioning, it
resolves little of the problems pertaining to an over-de�ned

system or the presence of contradictory information from
multiple time steps (as was encountered in the problems
of Section 5.1 and 5.2).

The convergence rates for the MVQN method is shown
in Figure 10. In the �rst time step, the convergence be-
haviour is not monotonically decreasing. However, as the
Jacobian is trained through the course of the simulation
the convergence behaviour improves considerably and from
time step 2 onwards is comparable to an inexact-Newton
scheme. The convergence behaviour of the MVQN method
can in fact be likened to the typical convergence behaviours
reported by Dettmer et al. [13] when selected chain rule
terms were omitted from the computation of the exact
cross-coupling terms for partitioned FSI problems. This is
especially noteworthy considering the quasi-Newton method(s)
investigated here allow for the re-use of partitioned black-
box �eld solvers and do not require any exact gradient
computations.

5.4. Flexible Tube, ρs = 0.12g/cm3 and ρf = 1.0g/cm3

Let us now reconsider the pressure wave propagation
through the �exible tube described above, where the solid
density is reduced to ρs = 0.12g/cm3. The �uid density
is now almost an order of magnitude higher than the solid
density, with the result that the added mass e�ect is now
substantially increased. A summary of the coupling re-
sults is shown in Table 4. Of the four coupling meth-
ods, only the MVQN and IBQN-LS methods were capable
of producing convergent results, with the MVQN method
again proving to be the most e�cient. Despite the increase
in problem complexity, the MVQN method only requires,
on average, an additional 1.2 iterations for convergence
when compared to the �exible tube with a solid density
of ρs = 1.2g/cm3. If we further compare the typical con-
vergence behaviour for the MVQN method in Figure 11
(for ρs = 0.12g/cm3) to Figure 10 (for ρ = 1.2g/cm3), we
observe that the MVQN approximate Jacobians do take
longer to train. The resulting Jacobians again exhibit
Newton-like convergence behaviour towards the end of the
simulation.

While the solution of this problem does not consti-
tute su�cient proof that the MVQN coupling method can
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Table 3: Comparison of the number of iterations and relative computational time for pressure propagation through
�exible tube where ρs = 1.2g/cm3 and ρf = 1.0g/cm3, for di�erent convergence criterion ε. The notation IBQN-LS(q)
indicates information from q preceding time steps are retained. If a scheme is non-convergent, the diverging time step
as a ratio of the total required time steps is indicated in the CPU column.

∆t = 10−4, ε = 10−7 ∆t = 10−4, ε = 10−9

Mean Min Max CPU Mean Min Max CPU
MVQN 4.13 3 7 1.00 5.34 4 10 1.00
Aitken 35.39 12 51 7.33 51.76 29 74 8.42
Broyden 4.83 4 12 1.15 6.58 5 14 1.22

IBQN-LS(0) 10.4 7 11 2.55 13.75 10 15 2.60
IBQN-LS(1) 8.52 3 10 2.11 11.58 4 13 2.15
IBQN-LS(5) 5.96 3 7 1.44 8.5 4 10 1.57
IBQN-LS(10) 5.08 3 7 1.23 7.2 4 10 1.34
IBQN-LS(20) 4.89 3 10 1.24 6.41 4 10 1.20
IBQN-LS(30) 4.71 3 10 1.15 6.40 4 10 1.26
IBQN-LS(40) 4.98 3 10 1.24 8.35 4 24 (51/100)

Figure 9: Pressure pulse propagation at 0.003 and 0.005
seconds. Wall displacement ampli�ed 10 times.

(a)

Figure 10: Typical MVQN convergence rates for the �exi-
ble tube problem with ρS = 1.2g/cm3 and ρf = 1.0g/cm3

for ∆t = 10−4s and ε = 10−9 at di�erent times.
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(a)

Figure 11: Typical MVQN convergence rates for the �exi-
ble tube problem with ρS = 0.12g/cm3 and ρf = 1.0g/cm3

for ∆t = 10−4s and ε = 10−9 at di�erent times.

be applied to all haemodynamic problems, it does pro-
vide some con�dence in the applicability of the method
to solve strongly coupled FSI problems. It bears further
merit when one considers the possibility of accelerating the
training of the approximate Jacobian in the �rst couple of
time steps using multi-grid like methods [12].

6. Conclusion

In this paper we introduced a new multi-vector quasi-
Newton method for the implicit coupling of partitioned
solvers, which facilitates the use of black-box �eld solvers.
We analysed the method across a wide range of strongly
coupled FSI benchmark problems for which the method
was demonstrated to be both robust and e�cient. The
method outperformed other well known quasi-Newton meth-
ods and can be applied to incompressible FSI problems
with high added mass ratios. We compared the method to
the least squares, reduced order modelling quasi-Newton
method of Vierendeels and Degroote et al. We demon-
strated that the IBQN-LS method can be reformulated
as �nding the minimum norm Jacobian which satis�es
the interface equations. This in turn, to some extent ex-
plains the method's problem dependent behaviour with
regards to the choice of the number of time histories, q,
to be retained. The new MVQN updating scheme outper-
formed the IBQN-LS method for all the problems anal-
ysed as well as Broyden's method, which in turn showed
favourable performance when compared to the IBQN-LS
method; Broyden's method was however unable to obtain
a convergent solution when the solid density was chosen to
be lower than the �uid density. We have further demon-
strated, while �xed point iterations with dynamic relax-
ation is easy to implement, that it is predominantly ill-
suited for the coupling of FSI problems with high added
mass ratios; this con�rms the �ndings of multiple researchers.

Appendix A: MVQN Algorithm

Algorithm 1 MVQN: Multi-vector update quasi-Newton
method applied to the block-Newton equations (10) and
(11).

1: t = 0; n = 0

2: fF,0
1 = F

(
d0
0

)
; fS,0

1 = fF,0
1 ; dS,0

1 = S
(
fS,0

1

)
3: r0

1 = dS,0
1 − d0

0

4: while t < tend do:

5: k = 0

6: while
∣∣∣∣rn+1

k+1

∣∣∣∣ > ε do:

7: if (k = 0 and n = 0) then:

8: J0
F = [0]; J0

S = [0]

9: dS,0
1 = dS,0

1 + ω0r
0
1

10: else:

11: fF,n+1
k+1 = F

(
dF,n+1
k

)
12: if (k > 0) then:

13: compute Jn+1
F using (20)

14: solve for ∆f : equation (10)

i.e. (JFJS − I) ∆f = −
(
fF,n+1
k+1 − fS,n+1

k

)
−

JF

(
dF,n+1
k − dS,n+1

k

)
15: fS,n+1

k+1 = fS,n+1
k + ∆f

16: dS,n+1
k+1 = S

(
fS,n+1

k+1

)
17: if (k > 0) then:

18: compute Jn+1
S using (21)

19: solve for ∆d: equation (11)

i.e. (JSJF − I) ∆d = −
(
dS,n+1
k+1 − dF,n+1

k

)
−

JS

(
fS,n+1
k+1 − fF,n+1

k+1

)
20: dF,n+1

k+1 = dF,n+1
k + ∆d

21: k = k + 1

22: t = t+ ∆t; n = n+ 1
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