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Abstract. This paper describes the generation of optimalto double the number of measurement stations in Australia.
atmospheric measurement networks for determining carbossuming equal data uncertainties for all sites, new stations
dioxide fluxes over Australia using inverse methods. A La-would be mainly located in the northern and eastern part of
grangian particle dispersion model is used in reverse modé¢he continent.

together with a Bayesian inverse modelling framework to
calculate the relationship between weekly surface fluxes,

comprising contributions from the biosphere and fossil fuel1 |ntroduction

combustion, and hourly concentration observations for the

Australian continent. Meteorological driving fields are pro- Inverse modelling has been used extensively over the last 2
vided by the regional version of the Australian Community decades in carbon cycle research to estimate surface fluxes
Climate and Earth System Simulator (ACCESS) at 12 kmof carbon dioxide (C@) on multiple temporal and spatial
resolution at an hourly timescale. Prior uncertainties are descales (i.eEnting and Mansbridgd 989 Rayner et a].1999

rived on a weekly timescale for biosphere fluxes and fos-Rédenbeck et gl.2003 Chevallier et al. 2010, employ-

sil fuel emissions from high-resolution model runs using ing mainly flask and in situ data. These observations include
the Community Atmosphere Biosphere Land Exchange (CA-measurements from surface stations, tall towers, air planes
BLE) model and the Fossil Fuel Data Assimilation Systemand ships. More recently total column data (i.e. from the
(FFDAS) respectively. The influence from outside the mod- Total Carbon Column Observing Network (TCCONYyun-

elled domain is investigated, but proves to be negligible forsch et al.2011) have also been included in inversion studies
the network design. Existing ground-based measurement stgChevallier et al.2011). The main focus in most studies has
tions in Australia are assessed in terms of their ability tobeen on deriving C®fluxes from atmospheric Cconcen-
constrain local flux estimates from the land. We find that thetration observations through the inversion of an atmospheric
six stations that are currently operational are already able teransport model at the global scale for large land regions or
reduce the uncertainties on surface flux estimates by aboui coarse gridReylin et al, 2013.

30%. A candidate list of 59 stations is generated based on A global network of ground-based measurement stations
logistic constraints and an incremental optimisation schemehas been developed over the years to monitor atmospheric
is used to extend the network of existing stations. In orderCO, concentrations. The GLOBALVIEWGLOBALVIEW-

to achieve an uncertainty reduction of about 50 %, we needCO,, 2008 data product, for example, summarises data for
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over 100 stations using mainly flask samples. Flask measuregprovide a continuous evolution of the observation network.
ments can be made with high accuracy and precision, and thBatra and Maksyutof2002 demonstrated that both methods
GLOBALVIEW product states uncertainties of 0.5 to 1 ppm perform equally well using a semi-Lagrangian model at the
depending on the station’s location. However, flask sampleglobal scale with the resolution set thb2x 2.5°. Flux uncer-
are usually only provided weekly or fortnightly, which re- tainties were calculated for 11 ocean and 11 land regions, us-
sults in a poor temporal resolution and sampling selectedng a base network of 115 stations from the GLOBALVIEW
for background conditions. This is partly compensated fordata set and a list of 446 pre-selected potential stations. In-
by continuous in situ measurements, which are becoming ineremental optimisation was also used lbgw et al. (2004
creasingly available from a number of stations worldwide. to identify where sites are best located to minimise the un-
Nevertheless, the sampling network is still too sparse withcertainties on annual mean flux estimates for 12 subregions
many gaps (i.e. in the tropics) to derive €®ources and of Australia. The inversions were performed using response
sinks at a local scale due to the under-determined nature diunctions for 116 regions globally, with the focus on Aus-
the inverse problem (i.e. number of sites is smaller than theralia, represented by 44 grid points which were treated as
number of grid cells){aminski et al, 1999. Many inversion  potential new locations for the network extension.
studies therefore focus on the estimation of fluxes for large In this study we aim to improve the methodology used in
regions of the continental or subcontinental scale. A uniqueLaw et al.(2004) in order to assess how the existing network
solution of the inverse problem can be obtained by includ-of CO,-observing stations in Australia can be extended to
ing prior information on the C®surface fluxes, which can minimise uncertainties in COflux estimates for Australia.
be derived for example from high-resolution model simula- The novelty of our approach is to derive the atmospheric
tions that include the terrestrial biosphere and ocean fluxesransport matrix, which is required to relate surface fluxes to
(Kaminski et al, 1999. concentration observations, from a Lagrangian particle dis-
Another issue that arises from the existing network of sam-persion model (LPDM) run in backward mode. Running the
pling stations is that they are mainly located at remote sitegnodel in backward mode is more efficient in the network de-
away from strong sources and sinks so that they can sansign case because the number of sources exceeds the number
ple clean (well-mixed) air. Key stations such as Mauna Loa,of receptors by far. In addition to the transport matrix, we re-
Hawaii (Keeling et al, 1976, or Cape Grim, Australia, pro- quire only the error statistics of the data but not their actual
vide valuable long-term time series of atmospheric,Con- values, in order to calculate the optimal network. This allows
centrations, which are crucial for monitoring global atmo- us to extend or create a network of stations where no data
spheric trendsHrancey et al.2013, but they are not ideally are available. However, as with all network design methods
placed to detect local changes. In fact, their focus is sambased on inversion modelling, our approach is dependent on
pling under baseline conditions, so that any influence fromspecific choices made in the set-up of the estimation problem
local land sources is minimised. such as the resolution at which fluxes are estimated or how
In order to derive reliable estimates of g@ources and the error statistics are represented. The error statistics are
sinks at a local scale, the existing network of O®easure-  usually provided in the form of a covariance matrix, which
ment stations needs to be extended. Network design studids difficult to obtain, but it has a large impact on the network
focus on optimal extensions of the existing network by con-design Rayner 2004).
sidering potential stations where no data are available yet. When applying our new approach to Australia as a test
The network design is usually performed in two steps: (1)case, we use a list of candidate stations instead of evaluating
running an atmospheric transport model for a given networkoptimal locations on a regular grid. This is more efficient than
in backward mode to evaluate the cost function for the sur-treating every grid point as a potential location. It also has the
face flux inversion and (2) running an optimisation algorithm advantage that we can easily take existing infrastructure into
to minimise the cost function for the network design. account, which will consequently result in a more realistic
One of the first network design studies for £€®as per-  and cost-effective network extension. We explore the regular
formed byRayner et al(1996, where they used Bayesian grid approach in the companion papiidckless et al.2014).
synthesis inversion and simulated annealing to optimise thé\lthough we aim to design a cost-effective network by pre-
location of atmospheric C£ands3C measurements to con- selecting potential stations, we do not intend to perform a
strain the global carbon budget. The network was optimiseccomprehensive economic evaluation of those stations. This
for the uncertainty variance in global ocean uptake usingwould require specific information with regard to actual costs
the GISS tracer transport model at a very coarse resolutioin setting up measurement equipment and in maintaining a
(24x 36 grid points)Rayner et al(1996 also added one sta-  site. Costs may also differ greatly between different sites, and
tion at a time successively placed at every model grid pointa thorough cost analysis would be required, which is beyond
to identify the global minimum for one extra station. This the scope of this paper. However, the approach that we intro-
is known as incremental optimisation, described in detail byduce here for the network design is generic, allowing for the
Patra and Maksyutof2002), who preferred this method over optimisation of a number of properties of the network (in-
simulated annealing for its computational efficiency and tocluding cost efficiency). It is also possible to implement the
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network design in two stages: (1) perform a general searct2.1 Surface flux inversion
based on a regular grid and (2) perform a specific search ac-
counting for the costs associated with setting up new sites. We use a Bayesian synthesis inversion schefaeafitola

In contrast to many previous studies that mainly used flaskl987 Enting 2002 which allows us to infer C@ surface
measurements from GLOBALVIEW, we consider continu- fluxes from CQ measurements. A simple linear expression
ous measurements at an hourly timescale for existing and pacan be used to model the relationship between the surface
tential stations. This allows us to derive €fluxes at a high ~ fluxes and concentrations:
spatial and temporal resolution.

This paper (Part 1) develops the generic framework for themod = ¢mod = Tf, &)
network design and introduces the Lagrangian particle dis- _ i
persion model which we run in backward mode to obtain theWherecmod is the vector of the modelled conc_entratlons and
source—receptor (s—r) relationship. We then apply this conJf the vector of the (unknown) surface fluxdsis the trans-
cept to the Australian continent as a test case. In a first stefPCt Or sensitivity matrix which needs to be determined. At

we evaluate the existing network of G@round-based mea- this stage we do not include any influence from outside the
surement stations in terms of its ability to provide reliable domain and therefore assume that the modelled concentra-

flux estimates. In a second step, we demonstrate how the eflONS €mod) are equal to the concentrationsbg) which are
isting network in Australia can be extended in an optimal d€rived from the surface fluxes only. If we assume a Gaus-
way. sian error distribution for the surface fluxes and concentra-

A companion paper (Part Nickless et al.2014) focuses tions, we can obtain the maximum likelihood estimate for
mainly on sensitivity analysis of parameters and choices?Y Minimising the cost function:
necessary for running the optimal network design and their
consequences on the results. This will be demonstrated foy (f) = > ((cmod— c)TCc‘l(cmod— c) (©)
a South African test case, where the optimal network is cre- _—
ated on a regular grid using continuous measurements from +(f = fo) Cp(f = fo)),
five new instruments.
whereC, is the error covariance matrix of the observations,
vector fo contains prior flux estimates, vectgrrepresents
2 Methodology predicted fluxes an@ ¢, is the prior error covariance matrix
Lo L . of the surface fluxes. The cost function therefore ensures that
The network design is based on a combination of Bayesian : L X
. : . -~ we simultaneously minimise the mismatch between mod-
inverse modelling methodology applied to an atmospheric : ;
27 . elled concentrations and measurements and the mismatch be-
transport model and the optimisation of a cost function. For . ; .
. C tween prior flux estimates and predicted fluxes.
a given network the cost function is calculated from the pos-

4 . : : i The solution of the optimisation problem expressed
terior statistics of an inversion to infer GGQurface fluxes through the cost function in EqB)provides optimal surface
from CQO, concentration measurements. The optimisation 9 P P

will then find the optimal network by minimising the cost fluxes based on the observations provided and also posterior

function through altering the given network by adding or re- u_ncertamyes for the_Cquxes expressed throggh the poste-
. . rior covariance matrixC y. For the network design approach
moving new stations.

. . . we are only inter in the latter raimi fin
The observed concentration) (at a particular station at e are only interested in the latter, because our aim is to find

. . . ? network (set of observations) that minimises the, @Gx
a particular time can be expressed as the sum of differen o . . i
contributions: uncertainties. The posterior covariance matrix can be calcu-

lated by either of the two equivalent expressionarantola

c=ci+cp+ci, (1) 198%7:
-1
wherect is the contribution due to surface fluxes within the C, = (TTc—lT + c*l) (4)
. - . . c fo ’
modelled domairgy the contribution from outside the region )
of interest (boundary inflow) and the contribution from the =Cfo—Cyro T (TCf,TT+C.)  TCys,. (5)

initial conditions. For the network design the initial condi-

tions are neglected because they are very well constrained As noted byHardt and Scherbau1994, the calculation

by the observations and their contribution to the flux uncer-of the posterior flux uncertainties does not depend on a par-
tainty is therefore thought to be small. The contribution from ticular value of the surface fluxes or concentration observa-
the boundaries has to be assessed, and if the influence on tkiens. It only depends on the transport model, the prior flux
flux uncertainties is not negligible, then the boundary condi-uncertainties and observational uncertainties. This has the

tions have to be included in the network design process agdvantage that we can evaluate potential stations for which
well. we do not have real observations yet and without the need to

generate synthetic data.
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2.2 Lagrangian particle dispersion model (LPDM) released during a time interval. Using the number of particles

instead of their mass concentration in Bg), (ve get
The relationship between surface fluxes and atmospheric

concentrations is embodied in the transport makriR com- 9% AT [ N;,

mon approach in deriving is to use a Lagrangian stochastic @ - ,07 <Ntot>.

particle dispersion model. The conventional approach is to

run the model in forward mode, where particles are released Note that our s—r relationship now becomes independent of

at the surface (source) and tracked until they have passed tHbe grid cell volumeV;. The density of air can be calculated

measurement station (receptor), which means that all paras

ticles need to be tracked even if they do not pass through

the receptor. However, if the number of sources exceeds thg;, = —, (10)

number of receptors, then it is more efficient to run the La- §

grangian model in reverse or backward mode, where the pafyhereA P is the pressure difference in the surface layer and

ticles are released at the receptor and tracked backwards ips the gravity of Earth.

time to any potential surface source. The source—receptor re- e also apply a conversion from mass mixing ratio to vol-

lationship can then be used to derive the transport matrix  yme mixing ratio. This is simply done by multiplying with
Here we use a LPDMUliasz 1994, which we runinre-  the ratio of the molecular mass of air to the molecular mass

tion we would like to include in the network design process. the matrixT are now calculated as

Particles are released (from the known or proposed measure-

©)

ment height) every 20s for a total of 4 weeks for different 9x  ATg (N, \ 29 1P 1
seasons of the year, and the particles position is recordedg,, ~— AP \ N/ 12 . (11)

at 15min intervals. Particles that are near the surface are

counted for each grid cell to determine the surface influencavith x expressed in ppm. For the network design we are
or sensitivity. This can be used to generate a footprint forinterested in weekly fluxes of carbon divided into day- and
each station, which shows the area of influence, and also t8ight-time contributions, which reflects the way a flux inver-
calculate the s—r relationship, which forms the transport ma-sion is usually done. This means that we have to provide the
trix T. Here, we followSeibert and Frank2004) to derive  particle countv;, as the sum over 1 week\(" = 1 week for

the elements of that matrix. day and night, divided at 06:00 and 18:00 Australian Eastern
According toSeibert and Franiz004) the s—r relationship ~ Time). Therefore, the mass flux density, in Eq. (11) has
for a point source (one grid cell source) is given as units of kg C nr2week™* (day/night).
_ - We set the surface layer height to 50 m, which corresponds
X _ ATV (Cl_n> (6)  to approximately 600 Pax(P). If we consider well-mixed
dqin ot \ oin )’ conditions, then the s—r relationship should be independent

wherej is a mass mixing ratio (receptor) agg, is a mass Of the thickness of the surface layer as long as the layer is
flux density (source). The abbreviatipm, stands for the to-  not too deepgeibert and Frank004). This is further inves-

tal initial mass released at the receptor in a time integyal,  tigated in the companion papé¥itkless et al.2014.

is the mass concentration apg is the air density. The index
in indicates theth grid element and theth time interval of

length AT'. The overbar indicates temporal averaging %€ The inflow from the boundary can affect the concentrations

the time intervaA T, andV; is the volume of grid element measured at a certain point. These so-called boundary effects
The LPDM output does not provide mass concentrations point y

. : : can be included in our modelling approach in two different
(i.e. ¢ciy) for a grid cell, but the number of particles near the i . . -

. . . . ways: (a) if they are significant, then we have to explicitly
surface. However, the number of particles in a given grid cell

is directly related to their contribution in mass. Therefore, solve for the”?; (t?) If they are small enqugh, we can treat
them as contribution to noise. If we decide to solve for the

we do not need to assign a mass to j[he particles, bl.ﬂ Insteat()joundary concentrations on top of all the surface fluxes, then
we can express the mass of the particles as a function of thﬁ"3 modelled concentrations are given as

number of particles, and after cancelling terms the particle

2.3 Influence from outside the modelled domain

count can be used directly to express the source—receptor M- 4= emo & + Cmods (12)

lationship in the following way: '

Nin  cinVi ) where emog, is the modelled contribution from the bound-
aries.

Niot X ot 8

with N;,, the number of particles in a grid element (source) at
each time intervaA T and Nyt the total number of particles
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The contribution from fluxes outside the modelled domain  The reason for assessing the effects of the boundary condi-
can be treated via their effect on boundary concentrationgions first instead of using Eql®) as a standard case is that,
(c). In order to assess the influence of the boundary concenif we need to include them in the inversion, then we would
trations on the observed concentratiotiswe need to deter- have to solve for the boundary concentratieg)(in addition
mine the strength of the connection between the two. Thigo all the surface fluxes. This not only means that we need to
can be done by calculating the Jacobian, which provides theombine the transport matriXj and the JacobiaMg) into
sensitivities of observed concentrations to boundary concena new expanded transport matrix which has a much larger di-
trations. The boundary contribution can then be written asmension, but we would also need to provide prior estimates
and uncertainties for the boundary concentrations. These are

hard to assign. The optimal network should seek to reduce

¢mod, = MBcB, (13) the uncertainty of the surface fluxes, and the improvement of

) ) ) the tracer transport in the global circulation models should

whereMeg is the Jacobian. Depending on the elements Ofyq |eft a5 a separate problem. Since it is quite challenging
Mg, we might need to include the boundary conditions in ¢, provide sensible estimates for the prior uncertainties of

the network design. the boundary concentrations, we would like to include them

The elements of the Jacobian for the boundary conditiong,y if required (i.e. if it changes the outcome of the network
can be calculated by accounting for the number of partlcle%esign).

that disappear from the model domain during the simulation.
LPD_M can be setupto wpte out the location a}nd time wher_12_4 Network design for Australia
particles leave the domain, and one can decide on a spatial

and temporal resolutiot.guvaux et al.2019). Here, we con- g4 the network design we run LPDM in backward mode for

sider four boundaries (north, south, east and west), and Wgach station that we would like to include in this study. We

calculate the sensitivity of hourly observed concentrationsg; ¢ by assessing the stations in the base network in terms

to weekly boundary concentrations. In this way the Jaco-qt thejr apility to reduce the uncertainties on net O@ix
bian Msg) for each site has 32 columns (4 boundase®  ogtimates. We then add new stations from the candidate list
weeksx 2 (day/night)) and 672 rows (hourly observations (4 the hase network using an optimisation scheme. Finally,

over 4 weeks), with its elements calculated as we compare this optimal network with a network that was
3Cg Ng designed from scratch (i.e. we assume no existing stations).
0Cot  Niot

2.4.1 Ground-based measurement stations

where Ng is the number of particles leaving the domain at

one of the four boundaries during 1 week (day/night) andAustralia has nine established ground-based measurement
Nyt is the total number of particles released during 1 h. Ide-stations (see Figla and Tablel) run by CSIRO or the Uni-

ally, we need to calculatslg for each station and then use versity of Wollongong. We exclude Cape Ferguson and Ot-
a criterion to assess whether or not the boundary conditiongvay because they currently provide only flask data, and we
affect that station. Note that we are neglecting the influencealso exclude Tumbarumba because it is not operational at
of the top boundary of the domain on the observations. Thighis time. The remaining six stations provide continuous CO

is likely to be both small and homogeneous (hence indistin-measurements and form our base network. From the loca-

guishable from the initial condition). tion of the six stations (Figla) it is obvious that Australia
We can use the following simple test to assess the effect ofis a whole is not very well covered since the site locations
the boundary concentrations on the network design: were not determined with the goal of estimating Australian
CO, fluxes. Rather the sites consist of (a) Global Atmosphere
Cb=MgCIME, (15)  watch (GAW) locations, focused on measuring baseline air;

(b) TCCON locations; (c) locations of the institutions run-
whereC; is the identity matrix. The diagonal elements@f  ping the sites; and (d) locations linked to specific projects. In
provide us with the uncertainty contribution of the boundary gder to estimate CHfluxes from the terrestrial biosphere,
concentrations to the uncertainty of the observations. If theye require stations that are able to pick up the signal from
are small compared to the assumed observational uncertaintyy 5| sources. For the existing network this will depend on
then the uncertainty contribution of the boundary concentratne wind direction, and we will show later to what degree the
tions can also be considered small and we do not need tgase network is already able to reduce the uncertainties on
include them explicitly in the network design process. This aoystralian CQ flux estimates.
means that we could use E@) @gain and treat the boundary | order to improve the accuracy of G@ux estimates for
effects as contribution to noise instead. Australia, we need to add new stations to the base network.

The optimal location of new stations is determined by min-

imising a cost function (see Se&.4.3 which is calculated

www.atmos-chem-phys.net/14/9363/2014/ Atmos. Chem. Phys., 14, 933¥8 2014
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Figure 1. Location of the existing greenhouse gas measurement stations in Au@jalied potential sites using the location of the stations
in the Bureau of Meteorology’s National Radar Logy). Station names are provided in Taldléor existing sites and Tabl2 for potential
sites. Existing stations that are not included in the base network are marked in light blue.

Table 1. Location of existing greenhouse gas measurement stations in Australia. Stations that are currently operational and provide in situ
data for CQ are highlighted in bold typeface.

No. Station Location (lat, lon) Operation Period &Measurements
1 Arcturus —23.86, 148.47 2010-present in situ, flask
2  Aspendale —38.01, 145.01 2003—present in situ
3 Cape Ferguson —19.30, 147.10 1991—present flask
4 Cape Grim —40.70, 144.70 1976—present in situ, flask
5 Darwin —12.42,130.89 2005—present in situ, total column
6 Gunn Point —12.20, 131.00 2011-present in situ, flask
7 Otway —38.31, 142.49 2005-2012 in situ, flask, flux
8  Tumbarumba —35.39, 148.09 2004-2008 in situ, flux
9  Wollongong —34.41, 150.88 2008—present in situ, total column

for a number of potential locations. There are several way<2.4.2 Driving data and prior uncertainties
of setting up a list of potential stations or candidate stations.
The simplest way is to assign the stations according to a regt PpM requires meteorological driving fields, which are pro-
ular grid. However, this might lead to a very large number of yided in this study by the regional version of the Australian
potential stations, of which many may be located in inaccesCOmmunity Climate and Earth System Simulator (ACCESS-
sible areas. R) (NMOC, 2013 at 12 km resolution for the Australian re-
To deSign a more realistic and cost-efficient netWOfk, Wegion at an hour|y timescale. Driving data include the 3-D
can include logistic constraints such as the availability ofind field, temperature and turbulent kinetic energy (TKE)
supporting infrastructure as a limiting factor in the selection gt 39 vertical levels up to 18 km in height as well as surface
of stations for the candidate list. For example, one could us§yressure. These fields are provided for one example month
the location of airports or wind farms in Australia. There is (4 weeks) for Southern Hemisphere (SH) winter (July) and
also a large number of telecommunication towers along mairsymmer (January).
roads which could potentially be used. Here, we use the loca- e also need to derive prior surface flux uncertainties for
tion of the Australian Bureau of Meteorology weather watch Aystralia and an estimate of the observational uncertainties
radar stationsNRL, 2014) as potential stations. This guaran- (j.e. accuracy of concentration measurements). In terms of
tees that all stations are accessible by road and maintaineghe prior surface flux uncertainties we consider contributions
The list of all 59 potential stations can be found in TaBle  from the biosphere and from fossil fuel combustion. We as-
with their location shown in Figlb. sume that sources change every week, and flux uncertainties
are therefore calculated on a weekly basis.
The biosphere flux uncertainties (expressed as the stan-
dard deviation) are estimated using the following simple

Atmos. Chem. Phys., 14, 9363378 2014 www.atmos-chem-phys.net/14/9363/2014/
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Figure 2. Net primary productivity for 1 Julfa) and 1 Januaryc) expressed as grams of carbon per square metre per day from BIOS2
model simulations at 0.05esolution, and derived uncertainties (1 standard deviation) for the net ecosystem productivity for the first week
in July (b) and the first week in Januafgl) expressed as grams of carbon per square metre per week aédodution. Note that the week

is divided into day- and night-time. One week contains 84 h daytime or night-time.

relationship Chevallier et al.2010): out” most of the very large fluxes (Fi@c). Consequently,

. _ _ the variation between the 10 realisations of the aggregated
ongp =min(4g C T day™, NPP, (18)  fluxes also becomes smoother, which leads to only small un-
where NEP is the net ecosystem productivity (net carboncertainties (Fig3d). As a result, fossil fuel flux uncertain-
flux) and NPP the net primary productivity. NPP is derived ties are much smaller<0.3g C nT2week 1) than the un-
for the Australian continent from BIOS2 model simulations certainties from the biosphere fluxes, and their influence will
(Haverd et al. 2013 at a daily timescale (Figza and c).  also be small. Figur8b shows the uncertainties for the 10 re-
BIOS2 is a modelling framework that uses the Commu- alisations based on the originall® x 0.1° resolution, which
nity Atmosphere Biosphere Land Exchange (CABLE) modelare much larger for individual grid cells than the uncertain-
(Wang et al. 2010 at 5km resolution (@5° x 0.05°). We ties calculated for the aggregated fluxes. If we performed in-
then aggregate the high-resolution fluxes to the resolutiorversions for only a small region of Australia using a much
that we use for the network designgix 1.8°) and estimate  higher resolution, then the fossil fuel uncertainties would be-
the uncertainties for NEP according to Etg)for eachweek come much more important and, depending on the resolution,
divided into day- and night-time (Fi@b and d). they might even dominate the overall surface flux uncertain-

Fossil fuel uncertainties are derived from the Fossil Fuelties. However, due to computational limitations we decided
Data Assimilation System (FFDASRéyner et al.201Q not to increase the resolution for the network design in this
Asefi-Najafabady et g12014. We use 10 realisations from study. The influence of the spatial surface flux resolution on
FFDAS version Il at Q1° x 0.1°, aggregate them to our net- the outcome of the optimal network design is investigated in
work design resolution and then calculate the uncertaintiedart 2 (ickless et al.2014).
from the 10 realisations. Due to the fact that fossil fuel fluxes Finally, we estimate the prior error covariance matrix of
are derived on the basis of power plant locations and nighthe land surface fluxes as
lights, they are very localised and vary a lot in magnitude
(Fig. 3a). When we aggregate those high-resolution fluxes
to our 18° x 1.8° network design resolution, we “smooth Cp, = diag(lf o (b2 —i—uaz)), (a7)
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Figure 3. One realisation of fossil fuel fluxg®) as obtained from the Fossil Fuel Data Assimilations System (FFDAS) atr@sblution
expressed as grams of carbon per square metre per week. Uncertdihtee calculated as 1 standard deviation from 10 realisations.
Aggregated fluxes (1%8resolution) for 1 realisation are shown (©), and uncertainties for the aggregated fluxes from 10 realisations are
shown in(d) expressed as grams of carbon per square metre per week. Note that the week is divided into day- and night-time. One week
contains 84 h daytime or night-time.

where vectorls contains the land fractions, vectbg. the Observational uncertainties are set to 2 ppm for all existing
variance for the biosphere fluxes and veetgs the variance  and potential stations (except in one sensitivity test). Again,
for the fossil fuel emissions for each grid cell and each weekthe uncertainties are specified in terms of their standard devi-
(separated into day- and night-time). The operator “diag” re-ation, and we assume no correlations among the uncertainties
turns a diagonal matrix with the vector elements as the di-of different observations. In this way, also becomes a di-
agonal, which means that we assume no correlations amonagonal matrix.

different fluxes. The effect of correlation length between dif-

ferent fluxes is investigated in Part Ri¢kless et al.2014.  2.4.3 Cost function for the network design

Multiplying by the land fractions guarantees that the prior o . )

uncertainties for coastal grid cells are scaled accordingly and//€ must optimise some scalar quantity derived from the pos-
ocean-only grid cells are set to 0. This is important becausd€rior covarianceRayner et al(199§ noted the sensitivity

in the network design we want to focus on the reduction ofOf the optimal network to this choice. Common options are
uncertainty for the land fluxes only. Ocean flux uncertaintiest® average uncertainty of individual fluxes (the trace of the
are not considered in this study because they are usually b§oVariance, cost functioricy) or the uncertainty of the inte-

a factor of 10 per unit area smaller than the land flux uncer-9rated flux (the sum of all elements, cost functitse):

tainties Chevallier 2007). Due to the small amount of ocean

grid cells in our modelled domain, the impact of the ocean

flux uncertainties is expected to be small. Nevertheless, the

contribution of the ocean fluxes to the posterior covariance

matrix and the optimal location of stations is investigated in

Part 2 (Nickless et al.2014) for a South African test case.
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Table 2. Location of potential greenhouse gas measurement stations using the location of the Bureau of Meteorology weather watch radar

9371

stations.

No. Station Location (lat,lon) No. Station Location (lat, lon)

10 Adelaide Airport —34.95,138.53 40 Lemon Tree Pass —32.73, 152.03

11  Albany —34.95,117.80 41 Letterbox —34.26, 150.87

12  Alice Springs —23.82,133.90 42 Longreach —23.43, 144.29

13  Berrimah —12.46,130.93 43 Mackay —21.12,149.22

14  Bowen —19.87,148.08 44  Marburg —27.61, 152.54

15 Brisbane Airport —27.39,153.13 45 Melbourne Laverton —37.85, 144.75

16 Broeadmeadows —37.69,144.95 46 Mildura —34.23, 142.08

17 Broome —17.95,122.23 47 Moree —29.50, 149.85

18 Buckland Park —34.62,138.57 48 Mornington Island -16.67, 139.17

19  Cairns Airport —16.88,145.75 49 Mt Gambier —37.75, 140.78

20 Cape Range —22.10,114.00 50 MtKanighan —25.97, 152.58

21  Captains Flat —35.66,149.51 51 Mt Stuart —19.35, 146.78

22 Canarvon —24.88,113.67 52 Perth —31.95, 115.84

23 Ceduna —32.13,133.70 53 PortHedland —20.38, 118.63

24 Charleville —26.42,146.27 54 Rockhampton —23.38, 150.47

25  Coffs Harbour —30.32,153.12 55 Saddle Mtn —16.82, 145.68

26  Dampier —20.65,116.69 56  Sellicks Hill —35.33, 138.50

27  Darwin Airport —12.42,130.87 57  Sydney Airport —33.93, 151.17

28 East Sale —38.12,147.13 58 Tennant Creek —19.63, 134.18

29  Esperance —33.82,121.83 59 Tindal —14.51, 132.45

30 Eucla —31.68,128.89 60  Townsville —19.25, 146.77

31 Geraldton —28.80,114.70 61 Wagga —35.17, 147.47

32 Giles —25.03,128.30 62 Weipa —12.67,141.92

33 Gladstone —23.85,151.27 63  West Takone —41.18, 145.58

34 Gove —12.28,136.82 64  Williamtown —32.80, 151.83

35 Grafton —29.62,152.97 65 Willis Island —16.30, 149.98

36  Halls Creek —18.23,127.66 66 Woomera —31.16, 136.80

37  Hobart Airport —42.83,14751 67 Wyndham —15.45, 128.12

38 Kalgoorlie —30.79,121.45 68 Yarrawonga —36.03, 146.03

39  Kurnell —34.02, 151.23

B station that gives us the smallest cost function value, add it
Joi= Z Ch» (18) to the network and also remove it from the candidate list. We
i=1 than repeat the process until our optimal network has reached
a certain maximum size or the candidate list is empty.
Jeom X": . o (19) We assume that_observations (mncentration measure-
=a v ments) will be available from all stations from the candidate

list and the base network at an hourly timescale. The s—r re-

wheren is the number of elements in the diagonal of the lationship we calculate with LPDM therefore represents the

matrix Cs. In this study we use Eq10) because our focus sensitivity of hourly observations to weekly fluxes.

is on the uncertainty reduction of the total flux estimate. The We evaluate the different networks in terms of the uncer-

impact on the optimal network by using one cost function tainty reduction defined as

over the other is investigated in PartNi¢kless et al.2014). R
If we start the optimisation from the base network, then ,, 1 Jce (20)

the transport matrix always includes the s—r relationship for R—

our six stations in the base network (see TableWe can

then add the s—r relationship for the three remaining existingNhereJAce is the optimal cost function value anf@e prior the

stations and/or for the stations from the candidate list andcost function value based on the prior uncertainties. Instead

constructC,. In order to find the set of stations that min- of Jce priorwe could also uséce pase Which is the cost func-

imises our cost function, we apply the incremental optimisa-tion value for the base network.

tion, where we add only one station at a time from the candi-

date list to the base network and calcul@te. We choose the

Jce prior
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Figure 4. Surface footprint for Cape Grim in Ju() and Januaryb) and for a potential station in Alice Springs in Jg) and Januaryd).
The footprint is the sum over the influence functions for 1 month and shows the number of particles that are in touch with the surface.

3 Results and discussion We then use Eq.J6) to decide whether or not we have to
include the boundary conditions in our inversions explicitly
After running LPDM for all existing and potential stations, or if we can treat them as contribution to noise. In order to
we calculate the influence function or sensitivity matrix for do this, we investigate existing and potential stations close to
each of the stations. We can also sum over the influence funghe north, south, east and west coast of Australia (i.e. Dar-
tions for the whole month, and this provides us with the sur-win, Aspendale, Arcturus and Geraldton respectively). All
face footprint for each station. Figuda and b present the diagonal elements ofy turn out to be small for those sta-
footprint for Cape Grim as an example of an existing stationtions, which means that the uncertainty contribution of the
from the base network for July and January respectively. Ithoundary concentrations to the uncertainty of the observa-
can be seen that the area that is observed by Cape Grim difions can be considered negligible. Therefore, we decided not
fers by a large amount between the two seasons. In SH sump include the boundary concentrations in the network design
mer, Cape Grim samples mainly clean air coming from theprocess. Note that this would change for a smaller domain or

Southern Ocean. The influence from the land is very smallone where the large-scale concentrations were more uncer-
However, in SH winter the dominant wind direction varies, tajn.

and Cape Grim is sampling air that may also be influenced

by surface fluxes from the south-eastern part of Australia3.1 Base network

The surface footprint for a potential station in Alice Springs

is presented in Figdc and d for both seasons. Due to its Currently, there are six ground-based measurement stations

central location, a station in Alice Springs would be able toin Australia that measure GQcontinuously. As discussed

detect the influence of potential surface fluxes from a largeearlier, some of these stations were designed to measure

part of the Australian continent. However, from the surfacewell-mixed air (i.e. Cape Grim) or background concentra-

footprint alone we cannot estimate how much a station at Al-tions for detecting fugitive emissions (i.e. Arcturus). How-

ice Springs would help us to reduce the uncertainties on negver, the surface footprint of Cape Grim, for example, indi-

CO; fluxes. cates that our existing stations are also able to pick up the
influence from the land depending on the dominant wind di-
rection. Here, we test how useful our existing stations are
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Table 3.Ranking and uncertainty reductiobi) for the existing stations in the base network in terms of their ability to reduce the uncertain-
ties on CQ flux estimates for two seasons (SH summer and winter), represented by January and July. The data uncertainty for all stations is
set to 2 ppm. The station number is provided in brackets.

Rank  Station July Ur  Station January Ur Station July+ January UR
1 Darwin (5) 20.04% Aspendale (2) 3.55% Darwin (5) 12.81%
2 Wollongong (9) 31.22%  Wollongong (9) 5.97% Wollongong (9) 20.40%
3 Arcturus (1) 36.42% Arcturus (1) 8.08% Aspendale (2) 24.18%
4 Aspendale (2) 40.02% Darwin (5) 9.14% Arcturus (1) 27.53,%
5 Gunn Point (6) 41.72% Cape Grim (4) 9.82% Cape Grim (4) 28.64%
6 Cape Grim (4) 43.07%  Gunn Point (6) 10.29% Gunn Point (6) 29.66 %

Table 4.Ranking and uncertainty reductiotig) for the existing stations in the base network in terms of their ability to reduce the uncertain-
ties on CQ flux estimates for two seasons (SH summer and winter), represented by January and July. The data uncertainty is set to 1 ppm
for Cape Grim, to 3 ppm for Aspendale and Wollongong and to 2 ppm for all remaining stations. The station number is provided in brackets.

Rank  Station July Ur Station January Ur Station July+ January Ur
1 Darwin (5) 20.04% Cape Grim (4) 2.72% Darwin (5) 12.81%
2 Cape Grim (4) 33.03% Arcturus (1) 5.05% Cape Grim (4) 21.38%
3 Arcturus (1) 38.65% Aspendale (2) 6.44% Arcturus (1) 25.44%
4 Wollongong (9) 40.80% Wollongong (9) 7.65% Wollongong (9) 27.17%
5 Gunn Point (6)  42.53% Darwin (5) 8.71% Gunn Point (6) 28.28%
6 Aspendale (2) 43.18%  GunnPoint (6) 9.18% Aspendale (2) 29.21%

in terms of estimating C®fluxes from CQ concentration ranking as presented in Tab® In fact, Gunn Point alone
measurements. In a first experiment, we assume that all stgrovides about the same reduction in uncertainty as Darwin
tions provide the same quality of measurements, and we sdfl2.47 % vs. 12.81 %) because these two stations are located
the data uncertainty to 2 ppm for each station. In a secondrery close together. Due to the fact that the uncertainty re-
experiment, we assign a lower uncertainty to measurementduction for Darwin is slightly larger than the one obtained
from Cape Grim and a higher uncertainty to measurementsrom Gunn Point, Darwin is added first to the network which
from Aspendale and Wollongong. makes Gunn Point “redundant”. Cape Grim on the other hand
Table 3 shows the ranking and uncertainty reduction for provides the smallest reduction in uncertainty even when as-
the first experiment for all stations in the base network for thesessed on its own in an empty network, because Cape Grim
two seasons individually and together. We ugg as a cost samples the “cleanest” air of all the six stations.
function, which means that we include all elements of the The ranking of the existing stations in the base network
posterior covariance matrix. Incremental optimisation is usedalso depends on the observational error assigned to those
to determine the ranking of the stations and their overall con-stations. As has been noted elsewhere (Rayner et al.
tribution to the uncertainty reduction. We start with an empty 2010, this uncertainty includes not only the error in the ac-
network and then add the station which provides the greateduial measurement but the difficulty in simulating it within the
reduction in uncertainty. We repeat this until all six stations model used in the inversion. In a sensitivity experiment, we
have been added to the network, which then forms the baseet the the observational uncertainty for Cape Grimto 1 ppm,
network. because this is Australia’s primary ground-based measure-
The results vary for the two seasons. We get a larger reducment station and we expect a high accuracy for the data.
tion of uncertainty in SH winter (July) than in SH summer We increase the observational uncertainty for Aspendale and
(January) due to the difference in dominant wind direction Wollongong to 3 ppm, because these two stations are lo-
and due to the fact that the prior biosphere flux uncertaintiesated close to large sources of fossil fuel emissions. We keep
are also larger in July (see Fig). However, for both sea- the uncertainty at 2 ppm for all remaining stations. The new
sons individually and together, Darwin, Wollongong, Arc- ranking of the existing stations can be found in Tablk can
turus and Aspendale rank as the four most important stationbe seen that Cape Grim now becomes one of the most impor-
in our base network. These stations are already able to retant stations in the base network. In contrast, Aspendale and
duce the uncertainties on G@lux estimates by more than Wollongong, which were ranked high in the first experiment,
27 %. Gunn Point and Cape Grim are the least important stabecome less important. This highlights the sensitivity of the
tions. However, this is misleading if one is only assessing thenetwork design to the observational uncertainty assigned to

www.atmos-chem-phys.net/14/9363/2014/ Atmos. Chem. Phys., 14, 933¥8 2014



9374 T. Ziehn et al.: Greenhouse gas network design

Table 5. Ranking and uncertainty reductiot/gg) for the new stations added to the base network for two seasons (SH summer and winter),
represented by January and July. The data uncertainty for all stations is set to 2 ppm. The station number is provided in brackets.

Rank  Station July Ur Station January Ur  Station July- January Ur
1 Longreach (42) 48.28% Moree (47) 17.67% Mornington Island (48) 35.39%
2 Gove (34) 52.03% Mornington Island (48) 24.96 % Moree (47) 40.27%
3 Tennant Creek (58) 55.01% Tumbarumba (8) 31.35% Tumbarumba (8) 43.57%
4 Moree (47) 57.74% Wyndham (67) 35.52% Wyndham (67) 46.79%
5 Geraldton (31) 60.11% Tindal (59) 38.08% Longreach (42) 49.16%
6 Townsville (60) 61.52% Cairns Airport (19)  40.04% Tennant Creek (58) 50.87 %

each station, with consequences for interpreting the resultthird in the optimisation; see Tablg is actually not a new
from the network design. station from the candidate list. Tumbarumba is an established
The small uncertainty reduction that we achieve in SHstation that is currently not operational (see TabhleTum-

summer suggests that the current network is not suitabldarumba used to measure £€dntinuously, and the network

for estimating biosphere fluxes for Australia for that season.design indicates that it has great value for estimating local

Overall, the six existing ground-based measurement stationgnd fluxes.

are able to reduce the uncertainties on,dlDx estimates

for Australia by nearly 30 % in both experiments for the two 3.3 New network

seasons together. This is an interesting result since most sta- ) ) o )

tions were not primarily designed to measure the Cc)mribu_Another_mterestlng scenario is to perf_orm the network design

tions from land fluxes. by starting from an empty network (i.e. assume we do not
have existing ground-based measurement stations). In this

3.2 Extended network way we will be able to create the most efficient network and
be able to compare it with the extended network from the

We extend the base network by one station at a time using thBrevious section that is based on our existing stations.
incremental optimisation for each season individually and for - The ranking of the stations added to the network by the
both seasons together. We add a total of six new stations frorfficremental optimisation is shown in TalieAgain, the net-
the candidate list, and the results are presented in Eable Works vary depending on the season due to the difference
The results show different network extensions for the twoin wind direction and prior biosphere flux uncertainties, but
seasons, with only one station (Moree) in common. The bas@lso show some similarities. Mornington Island and Moree,
network already provides a substantial reduction in flux un-for example, are the highest-ranked stations for each season
certainties for the SH winter season (43 %), and the six newndividually and combined. In the SH summer season Tum-
stations allow for a further 18 %. Stations are mainly addedParumba turns out to be even more important. Stations at
in the northern part of the Australian continent (see Bay. ~ Mornington Island and Moree would be able to reduce the
In the SH summer season, the base network can only provide©z flux uncertainties by more than 27 % (summer and win-
an uncertainty reduction of 10 %, but with the new stationster). In comparison with the base network, we can see that
added we can achieve an additional 30 %. The six new stathese two stations alone would be able to provide the same
tions are mainly added in the north-eastern part of Australig/eéduction in uncertainty as the four highest-ranked existing
(see Fig5b), filling the gaps between existing stations. stations (Darwin, Wollongong, Aspendale and Arcturus) to-
If we focus on the resullts for the network considering both 9ether. If we wanted to achieve the same performance as the
seasons together, the first four stations added to the bag¥xtended network consisting of 12 stations (6 existing sta-
network are the same as for the SH summer case, albeit iOnS plus 6 new stations), we would only require 9 stations
a slightly different order. This is in agreement with the fact When designing the network from scratch. The distribution
that new stations are able to provide a greater reduction ir?f the stations in the new network (which is not based on the
uncertainty for the SH summer than for the SH winter. The €Xisting stations) does not look that much different from the
two additional stations (Longreach and Tennant Creek) in the€xtended network (see Fi§d—f); however the optimisation
extended network for both seasons are located in the centraffas more freedom to place stations closer to regions where
eastern part of the country (see Fig). prior uncertainties are largest.
Adding six new stations to the base network would lead to
a doubling in the number of ground-based measurement sta-
tions in Australia, and we would be able to achieve a reduc-
tion on the prior uncertainties of GOlux estimates of more
than 50 %. It is worth pointing out that Tumbarumba (ranked
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Figure 5. Location of the new stations added to the base network for Jaifapduly (b) and both seasons togett{e}, and location of the
new stations added to an empty network for Jangd)yyJuly (e) and both seasons togett{®r New stations are marked with orange circles,
and existing stations are marked with blue circles.

3.4 Comparison with previous study only 12 subregions for which average annual mean uncer-
tainties are calculated. The base networkamv et al.(2004
In a previous studylaw et al. (2004 found that, if we  consists of only two stations (Cape Grim and Cape Fergu-
wanted to erect a new measurement station in Australia, ikon). In this study the base network comprises six stations,
should ideally be located in the north-west or central part ofwith two stations located in the north of the continent. How-
the continent. This is in contrast to our results, which sug-ever, even if we start the network design from the same base
gest that it would be most beneficial to add a new station innetwork as inLaw et al.(2004), the first station added to the
the north-eastern part of Australia. Both studies use a similanetwork will still be located in the north-east. The largest im-
metric for the optimal network design, namely the reduction pact on the difference in the new stations’ locations might be
in flux uncertainty over the Australian continent, but there due to the formulation of the prior flux uncertainties Liaw
are also many differences in the methodology and set-up beet al. (2004 the prior flux uncertainties are either assumed
tween the two studies. For exampleaw et al. (2004 use  to be constant (i.e. set to 1 kg CHyr—1) for all regions or
response functions for the inversion and divide Australia into
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Table 6. Ranking and uncertainty reductiotg) for the new stations starting from an empty network for two seasons (SH summer and
winter), represented by January and July. The data uncertainty for all stations is set to 2 ppm. The station number is provided in brackets.

Rank  Station July Ur Station January Ur  Station July+ January URr
1 Mornington Island (48) 23.34% Tumbarumba (8) 9.67% Mornington Island (48) 17.37%
2 Moree (47) 34.14% Mornington Island (48) 17.71% Moree (47) 27.50%
3 Longreach (42) 40.29% Moree (47) 25.62% Yarrawonga (68) 33.87%
4 Tennant Creek (58) 45.40% Wyndham (67) 30.39% Wyndham (67) 38.57%
5 Melbourne Laverton (45) 49.56 % Yarrawonga (68) 33.54% Charleville (24) 42.03%
6 Charleville (24) 52.35% Tindal (59) 36.17% Captains Flat (21) 44.41%
7 Geraldton (31) 54.53 % Cairns Airport (19) 38.26% Tennant Creek (58) 46.71%
8 Gove (34) 56.71% West Takone (63) 40.24% Cairns Airport (19) 48.59%
9 Wollongong (9) 58.66 % Alice Springs (12) 42.25% Tindal (59) 50.32%

variable based on the largest monthly flux for each region.be included in the cost function so that one can account for
In both cases, the largest prior flux uncertainties are assignethe exact economic costs. This will be investigated in a future
to the north-west or central part of Australia. It is therefore study.

not surprising that a new station would then also be located
in the same region. In our study, the prior flux uncertainties
are scaled with NPP. The largest uncertainties can be foun

in the productive north-eastern part of the continent, and thiﬁ?unning a Lagrangian particle dispersion model in reverse

IS where we would E.ldd the first new stann._Agam, this high- mode provides an efficient way of obtaining the relationship
I|g_ht5 that the location cho;en for new stat_lons (.O ' net\’vork)between concentration observations (receptor) and ground
cnncqlly depend_s on the prior knowledge (i.e. prior flux un- fluxes (source). Here, we used LPDM and the Bayesian
certainties) provided. framework to obtain the transport matrix (source—receptor re-
lationship) for existing ground-based measurement stations
and a list of candidate stations. An incremental optimisa-
i , o . tion scheme was then used to design an optimal network of
Potential stations in this study were selected based on existyq \nd-hased measurement stations for Australia. Existing
ing locations of stations in the Australian Bureau of Meteo- gainng were assessed and ranked in terms of their ability to
rology National Radar LoofNRL, 2014. Although this en- 04,06 c@ flux uncertainties for the whole continent. New
sures that all potential sites are accessible and maintained, W& < o v ational networks were designed based on existing sta-
cannot differentiate between the sites in terms of actual costions and starting from an empty network

associated in setting up the equipment to measure@0-  \ye found that the influence from outside the domain
centrations. For example, some sites may require the erectio oundary concentrations) has only a small impact on the
of a tall tower, whereas other sites may already have one thgleork design, and we therefore did not include uncertain-
cou_ld p_oFentlaIIy be_usgd for addltlona_l equipment. COSS fOrjaq related to boundary concentrations in this study. In addi-
maintaining a certain site may also differ by a large amountyjq, 14 piosphere flux uncertainties, which were derived from
due.to the site’s dlstgnce away from the nearest major towrhigh-resolution BIOS2 model runs, we also considered un-
or airport or its location being offshore. It is very challeng- ;o ainties for fossil fuel emissions. These uncertainties were
ing _to include aII_th|s |_nformat|0n, Wh'Ch_ might mt even be derived from 10 realisations from FFDAS atl® resolution.
avaHab]e at the time, into the cost function. Weights n_eed toHowever, the fossil fuel fluxes are very localised with a range
,be aSS'Q“e_d fqr all penalty. terms, and that may require tl_mbf many orders of magnitude. When we aggregated those
ing, which is time consuming. One way to circumvent this g, o5 4 the 18° resolution used for the network design, we

pr_oblem would be to ch_ar!ge astatlon’s observational uncerg,athed out most of the large fluxes and their variability
tainty as a proxy for logistical issues. For example, we COUldacross the 10 realisations.

use a smaller observational uncertainty for a station that is The assessment of existing ground-based measurement
easily .acceSS|bIe and cost efﬁugnt to run, and a higher Ob'stations in Australia showed that they would be able to re-
servational uncertainty for a station that is located offshoreduce surface flux uncertainties by about 30 %, which indi-

and does not provide a tall tower already. In this way the e the value of making in situ measurements (taken from

cost function does not need to be changed and we can usg| ing directions) at sites that are designed primarily for
all available information for a potential site by changing only baseline measurements, such as Cape Grim
one quantity. However, if information with regards to costs in '

setting up and maintaining a site is available, then this should

Summary and conclusions

3.5 Logistic constraints for potential stations
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If we want to halve the uncertainties on Australian flux es-
timates, we need to double the number of existing stations
that are currently operational. Assuming all sites give mea-

surements of the same quality and can be modelled equally \ o
dChevalller, F., Deutscher, N. M., Conway, T. J., Ciais, P.,

well, the two most important new stations would be locate
in the north (Mornington Island) and in the east (Moree) of

the continent. This also shows that new stations do not nec-

essarily need to be located far inland in order to pick up the
influence from local sources. In fact, a new station at Morn-
ington Island would be located offshore, but still be able to
observe the influence from the Australian biosphere. Itis also
worth noting that Tumbarumba, an existing station that is
currently not operational, has great value for the estimation
of local sources. In terms of costs associated with erecting

9377

Wofsy, S., and Worthy, D.: C®surface fluxes at grid point
scale estimated from a global 21 year reanalysis of at-
mospheric measurements, J. Geophys. Res., 115, D21307,
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Ciattaglia, L., Dohe, S., Frohlich, M., Gomez-Pelaez, A. J.,
Griffith, D., Hase, F., Haszpra, L., Krummel, P., Kyrd, E.,
Labuschagne, C., Langenfelds, R., Machida, T., Maignan, F.,
Matsueda, H., Morino, I., Notholt, J., Ramonet, M., Sawa, Y.,
Schmidt, M., Sherlock, V., Steele, P., Strong, K., Suss-
mann, R., Wennberg, P., Wofsy, S., Worthy, D., Wunch, D.,
and Zimnoch, M.: Global C@ fluxes inferred from sur-
face air-sample measurements and from TCCON retrievals
of the CQ total column, Geophys. Res. Lett., 38, L24810,
doi:10.1029/2011GL049892011.

ing site back into operation.
Although we included logistic constraints in setting up the
candidate list of stations, we did not include actual costs (i.e.

port, Cambridge Univ. Press, New York, 2002.

Enting, I. G., and Mansbridge, J. V.: Seasonal sources and sinks of

atmospheric C@: direct inversion of filtered data, Tellus B, 41,
111-126, 1989.

t(_) erect the_statlon or for maintenance) in the network (_je-Francey’ R. J., Trudinger, C. M., van der Schoot, M., Law, R. M.,
sign. A relative measure of the ease of taking and modelling Krummel, P. B., Langenfelds, R. L., Steele, P. L., Allison, C. E.,
measurements at any given location can be accounted for in stavert, A. R., Andres, R. J., and Rodenbeck, C.: Atmospheric

the network design through using a variable data uncertainty verification of anthropogenic GQemission trends, Nature Clim.

across measurement locations. This would be a valuable ex-

Change, 3, 520-524, 2013.

tension to this study, given the sensitivity found in the one GLOBALVIEW-CO,: Cooperative Atmospheric Data Integration
test case undertaken in which data uncertainties were modi- Project — Carbon Dioxide [CD-ROM], NOAA, Boulder, CO,
fied. We also plan to extend the study to optimise a network 2008

for estimating both C@and CH; fluxes since some in situ
instruments are designed to measure both species.
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