Carbohydrate Polymers

Vol. 112

Inducing PLA/starch compatibility through butyl-etherification ofwaxy and high amylose starch

Obiro Cuthbert Wokadalaa,b, Naushad Mohammad Emmambuxc,Suprakas Sinha Raya,b,c,*

aDST/CSIR National Centre for Nanostructured Materials, Council for Scientific and Industrial Research, 1-Meiring Naude Road, Brummeria, Pretoria 0001,South Africa

bDepartment of Applied Chemistry, University of Johannesburg, Doornfontein, Johannesburg 2028, South Africa

cDepartment of Food Science, University of Pretoria, Pretoria, South Africa

Abstract

In this study, waxy and high amylose starches were modified through butyl-etherification to facilitatecompatibility with polylactide (PLA). Fourier transform infrared spectroscopy, proton nuclear magneticresonance spectroscopy and wettability tests showed that hydrophobic butyl-etherified waxy and highamylose starches were obtained with degree of substitution values of 2.0 and 2.1, respectively. Dif-ferential scanning calorimetry, tensile testing, and scanning electron microscopy (SEM) demonstratedimproved PLA/starch compatibility for both waxy and high amylose starch after butyl-etherification. ThePLA/butyl-etherified waxy and high amylose starch composite films had higher tensile strength and elon-gation at break compared to PLA/non-butyl-etherified composite films. The morphological study usingSEM showed that PLA/butyl-etherified high amylose starch composites had a more homogenous microstructurecompared to PLA/butyl-etherified high amylose starch during showed that PLA/starch composite thermal stability decreased with starch butyl-etherification for both waxy and high amylose starches. This study mainly demonstrates that PLA/starch compatibility can be improved through starch butyl-etherification.