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Abstract: Synoptic scale knowledge of the size structure of phyto-
plankton communities can offer insight in to primary ecosystem diversity
and biogeochemical variability from operational to the decadal scales.
Accordingly, obtaining estimates of size and other phytoplankton functional
type descriptors within known confidence limits from remotely sensed
data has become a major objective to extend the use of ocean colour
data beyond chlorophyll a retrievals. Here, a new forward and inverse
modelling structure is proposed to determine information about the cell
size of phytoplankton communities using Standard size distributions of two
layered spheres to derive a full suite of algal inherent optical properties
for a coupled radiative transfer model. This new capability allows explicit
guantification of the remote sensing reflectance signal attributable to
changes in phytoplankton cell size. Inversion of this model reveals regions
within the parameter space where ambiguity may limit potential of inversion
algorithms. Validation of the algorithm within the Benguela upwelling
system using independent data shows promise for ecosystem applications
and further investigation of the interaction between phytoplankton func-
tional types and optical signals. The results here suggest that the utility
of assemblage related signals in spectral reflectance is highly sensitive to
algal biomass, the presence of other absorbing and scattering constituents
and the resultant constituent-specific inherent optical property budget. As
such, optimal methods for determining phytoplankton size from (in situ or
satellite) ocean colour datawill likely rely on appropriately spectrally dense
and optimised sensors, well characterised measurement errors including
those from atmospheric correction, and an ability to appropriately limit
ambiguity within the context of regional inherent optical properties.
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1. Introduction

The spectral nature of the light emerging from the world’s oceans is intrinsically linked to
the biogeochemical constituents of ocean waters. Ocean colour data (primarily remote sensing
reflectance (Rrs)) thus represents a vast resource of information for scientists through the use
of schemes which relate optical measurements to constituents of interest. Developments in
satellite radiometry over the last twenty years have enabled measurement of ocean colour on
unprecedented spatial and temporal scales, whilst bio-optical modelling and in situ data have
established adetailed understanding of the interactions between ocean constituents and the light
field. Although retrieval of chlorophyll-a concentrations ([Chl a]) from ocean colour data has
been achieved with reasonable successin the open ocean, confident derivation of phytoplankton
functional type indices remains a major challenge, particularly in the coastal ocean.

The southern Benguela offers substantial opportunities to develop and test new bio-optical
methods related to phytoplankton characteristics, thanks to the regular occurrence of high
biomass blooms. These blooms, which can often be harmful [1], are of great interest to the
aquaculture and fisheries industries of the region and additionally provide distinctive signals
and monospecific case studiesfor algorithm devel opment and testing. For Harmful Algal Bloom
(HAB) monitoring, an ability to distinguish between specieson asize or ideally taxonomic level
isvital [1]. Beyond the Benguela, phytoplankton size structure is essential for biogeochemical
model development and validation towards ecosystem and carbon cycling studies[2].

Severa key approaches have been adopted to address the challenge of deriving information
about phytoplankton communities from ocean colour. Abundance approaches draw on ecologi-
cally understood, empirical relationships between ocean colour derived [Chl a] and abundance
of various phytoplankton sizes or functional types [3]. Other approaches have used various
facets of the Rs signal and related these to observed phytoplankton taxonomy [4]. A final set
of approaches begin to use the impacts of the algal and non-algal particle size distribution and
various phytoplankton characteristics on absorption and scattering e.g. [5, 6]. Differences in
approach have complicated direct comparison of agorithm performance [7].

Semi-analytical algorithms apply radiative transfer theory to R;s inversion. However most of
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these do not yet include the causative effects of cell size on ocean optics. Many semi-analytical
reflectance inversions algorithms are based around a simplified reflectance approximation (Eq.

(1), [8)).

L L(0tA)  f o by(d)
"~ Eg(07,4)  Qa(A)+by(2)

Where R is the remote sensing reflectance (sr—1), A denotes wavelength dependence, L, (07)
(uW cm~2 nm~! sr1) is the upwelling radiance leaving the water surface, E4(0%) (uW
cm~2 nm~Y) is the downwelling irradiance just above the water surface, f/Q represents the
bi-directional character of the upwelling radiance [9], by, is the total backscattering coefficient
and a is the total absorption coefficient. In semi-analytical inversion algorithms, R is param-
eterised with respect to inherent optical properties (I0OPs) including the total absorption (a)
and backscattering (by) coefficients which can be further parameterised using additive models
of ocean constituents typically including pure water, algal particles, their detrital break down
products (chromophoric dissolved organic matter (CDOM) or gelbstoff), suspended sediments
and other small particles (e.g. bacteria). Phytoplankton absorption has historically been ex-
pressed as a function of [Chl &], using a wavelength specific phytoplankton absorption coeffi-
cient (a*ph) [5, 10] However, to understand how phytoplankton characteristics influence optical
signals, there is a need for IOP models which can parameterise second order variability related
to broad characteristics of functional types (e.g. size, internal structures, accessory pigments),
in acoupled, causative way.

Size related influences on algal absorption have been redlistically simulated using Mie the-
ory [11, 12]. However, algal backscattering remains comparatively poorly understood and sim-
ulated [12, 13, 14, 15]. Defining parameters which accurately reflect both the diversity of phy-
toplankton communities and represent the effect of this on optical propertiesisdifficult for two
main reasons. Firstly, the particle size distribution can be complex and difficult to represent
simplistically with one variable. Secondly, phytoplankton are not homogenous spheres as de-
fined in Mie theory. Studies show that this assumption may be too simplistic to account for the
influences of internal cellular structure on the light field [12, 16, 17]. Standard size distribu-
tions, summarised through an effective diameter (Def¢), can be used to address the first issue
[18], whilst the use of multi-layered spheres with different refractive indices has shown promise
in simulating the optical influence of intracellular structures[12, 16, 17, 19].

Ambiguity can be a significant problem in ocean colour inversion [20], in that various com-
binations of ocean constituents (and their IOPs) can result in indistinguishable R;s spectra. The
varying proportion and co-variance of different IOPs across the global ocean has lead to the
definition of “case 1" and “ case 2" waters [21]. Coastal ocean (typically “case 2") waters, have
significantly different |OP budgets to open ocean (“case 1”) waters and in these instances multi-
ple competing sources of optical variability, i.e. gelbstoff/non-algal particul ates can enhance the
ambiguity in inversion techniques [20]. A coupled forward model/inversion algorithm frame-
work offersthe ability to quantity the extent of these problemsin avariety of optical water types,
asthe sensitivity of parameter retrieval can be investigated through inversion of forward model
simulated [20] and/or well resolved in situ data. To develop an operationally usable product
using these principles requires consideration of computational efficiency, error estimates and a
comprehensive in situ validation. Presented here isanew algorithm framework - the Equivalent
Algal Population (EAP) inversion algorithm; incorporating inherent optical properties derived
from atwo-layered sphere model of Standard size distributions of algal cells.

An outstanding question in the field of ocean colour research is. how much of the variance
in ocean colour signalsis attributable to changes in various characteristics of the phytoplankton
assemblage? To address this question with regards to cell size, the EAP approach isfirstly used

Res @
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in a forward mode to generate a set of simulated data to encompass a range of optical water
types from phytoplankton dominated “case one” to “case two” where substances other than
phytoplankton are dominant. This simulated data is then evaluated to establish where spectral
sensitivities in remote sensing reflectance (Rys) can be attributed to cell size related effects
and how this sensitivity varies in different optical water types, under competing sources of
bio-optical variability (i.e. biomass levels, presence of gelbstoff/CDOM). The simulated data
is then inverted to assess to what extent this sensitivity can be exploited in a semi-analytical
inversion algorithm to retrieve accurate estimates of cell size. The likely errors under different
bio-optical regimes as a result of inversion ambiguity are quantified. The EAP approach is
then used for two applications to give perspective on issues of interest to the ocean colour
community. Firstly, a further set of simulated data is used to evaluate the extent to which size
related variability in Rs, can account for the second order variability commonly observed in
empirical band ratio algorithms applied to satellite ocean colour data. Secondly, the approach
is applied in the southern Benguela with an in situ validation conducted using data gathered
from field campaigns in the St Helena Bay region. Finally, the future use and limitations of
this approach in algorithm development and understanding how algal characteristics influence
ocean colour is discussed.

2. Methods

2.1. Field measurements

A validation data set was compiled from sampling campaigns undertaken in the southern
Benguela between 2002 and 2005, including shore based field campaigns at Lamberts Bay,
Elands Bay, Saldanha Bay (for full methodological details of data collection see Bernard et al.
[18]) and the Benguela Calibration (BENCAL) cruise report (Barlow et al. [22]. Radiometric
measurements were made using a Hyperspectral Tethered Surface Radiometer Buoy (Hyper-
TSRB S/N 018) manufactured by Satlantic, Inc. Measurements of upwelling spectral radiance
(Lu(2) (z = 0.66 m depth) and above surface downwelling spectral irradiance (Eq(0™)) were
made. Particulate absorption data from the shore-based field campaigns were measured using
the quantitative filter pad technique [23, 24]. Samplesincluded from the BENCAL cruise were
similarly analysed [22]). Chlorophyll-a concentrations were analysed using fluorometric anal-
ysis [25]. Measurements of particle size were made using two particle sizers: a 128 channel
Coulter Multisizer Il with either a50 um or 140 um aperture. In addition to this, samples from
2005 were analysed using an analogous method for a Beckmann Coulter Z2 cell and particle
counter. This methodology allows particles in the range 1 - 70 um to be detected, an ade-
quate range within the ecological context of the southern Benguela, where larger cellstypicaly
dominate. The effective diameters (Dt ) of the algal particle size distributions were cal cul ated
as shown in Eq. (2) [13, 26] where d is the particle diameter and F(d)d(d) is the number of
particles per unit volumein the sizerange d + 1/2d(d).

@

2.2. Optical theory and forward model development

Any analytical derivation of R.s or Ly(z) requires at aminimum, estimates of both total absorp-
tion and backscattering (if not the full volume scattering function). In additive models these
are sub-divided in to the respective absorption and backscattering characteristics of the ocean
congtituents of interest, parameterised through modelled or empirically derived relationships. In
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the Equivalent Algal Population (EAP) inversion algorithm, four major components are consid-
ered: water, phytoplankton, combined gelbstoff and detritus, and non-algal particles. Of these
four components, water and phytoplankton contribute to both absorption and backscattering,
whilst combined gelbstoff and detritus and non-algal particles contribute only to absorption
and backscattering respectively.

To account for absorption by gelbstoff/detritus (agq) in the algorithm, an exponential shape
function is used to represent their combined effect (Eq. (3), [27]). The exponential slope factor
Sis defined as 0.012, a suitable value for the southern Benguela based on observed field data
and modelling studies [28].

agy (A) (M) = agy(400)exp| ~S(A — 400)] 3

Similarly, the effect of backscattering by non-algal particles including detritus, bacterial or
lithogenic particles is represent by a simple power low following a A ~12 relationship [27].
Absorption and backscattering of seawater were accounted for using the data from a number of
sources which is offered as default within Hydrolight 5.0 [29].

To couple the optical influence of second order variability such as cell size and pigment re-
lated featuresto estimation of R;s through 1OPs, the forward model of Bernard et al., 2009 [17],
is used here to generate [Chl a] and size related spectral phytoplankton absorption and back-
scattering vectors. This model makes two assumptions. Firstly, that complex phytoplankton
communities can be feasibly represented using Standard size distributions, providing the effec-
tive diameter and total particle surface area are equivalent [18]. Secondly, that a two-layered
spherical geometry can reasonably represent the absorbing and backscattering properties of di-
verse phytoplankton populations[17, 19]. Diatoms and dinoflagel lates typically dominate algal
assemblages in the Benguela [1]. Absorption spectra are typically relatively coherent across
thisgroup of species[30]. Assuch, the EAP basis vectors are generated based on imaginary re-
fractive indexes representative of the intracellular absorption characteristics of this group [17].
Full details of both the real and imaginary refractive indices, their derivation and use in the
two-layered sphere model can be found in Bernard et al., 2009 [17]. Phytoplankton absorption
(ay) and backscattering (byy) are calculated from the [Chl a] and Dey Specific basis vectors as
per Egs. (4) and (5) where, F*(d) isthe Chl a specific size distribution (Eg. (8)) and ay and b;;¢
arethe [Chl a] specific absorption and backscattering respectively.

ay(4) = [Chla].ay (A,F"(d)); 4
by (4) = [Chial.byy (4, F7(d)); ©)

The particle size distribution (F(d)) associated with F*(d) in Egs. (4) and (5) is given by a
Standard distribution (Eg. (6)) ([17, 18, 26]

dl(1-Nert)Nett] g/ Dgs2
F(d)=ASF3 exp{/( v effﬂ iy

where ASF is an area scaling factor [18] which adjusts the magnitude of the equivalent dis-
tribution to the total projected surface areain the particle size distribution. Vet is the effective
variance which describes the width of the Standard distribution. A constant of 0.6 is used for
Veit, determined as an average of in situ measured distributions and deemed an appropriate
parameterisation for multiple distributions through experiment [18]. To scale thisto a [Chl a]
specific size distribution as required for generation of the basis vectors, the total relative particle
volume of the Standard distribution (V) is calculated:
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V= %/F(d)d3d(d) %
And the Chl a specific size distribution is calculated from this:

F(d)
Vo ®

where ¢; is the intracellular [Chl a]. The phytoplankton absorption and backscattering basis

vectors derived from the two-layered sphere model therefore have several dependencies. Firstly,
the spectral refractive index data, discussed in Bernard et al. [17]. Secondly, asinferred by Eq.
(8), F*d is dependent on the ¢;. A value of 2.5 kg m~3 was used for the diatom/dinoflagellate
group here. In turn, the phytoplankton absorption and backscattering coefficients are also de-
pendent on the [Chl a] and Des 1, as solved for viathe inversion process.

Two methods of radiative transfer calculation were tested; a reflectance approximation
(REFA) approach and the EcoLight-S radiative transfer code [31] (ES). The reflectance approx-
imation (Eq. (1)) represents the bidirectional character of the upwelling light field usingan f /Q
parameter [9]. This parameter is dependent on the inherent optical properties of surface waters,
in particular the phase function and backscattering efficiency [32] and other factors influencing
the angular structure of the light field (e.g. sun zenith and surface roughness). Look-up tables
from Morel et al. [9] are used here. This spectral formulation is explicitly dependent on the
[ChI a] and the solar zenith angle. To adapt these tables for use with the Satlantic radiometry,
the original datafrom seven wavelengths were linearly interpolated at 5 nm resolution. Further,
as the maximum [Chl a] value of 10 mg m~2 used by Morel et al. [9] is often exceeded in the
Benguela, the maximum f /Q datais used at higher [Chl a].

Asin-water measurements must in practice be made at some depth below the surface, a prop-
agation scheme is required to determine water leaving radiance (L,(0")) and remote sensing
reflectance (Rrs) for modelling and satellite validation purposes. In the REFA approach, the
diffuse attenuation coefficient for upwelling radiance (Ky) is parameterised as per the formula-
tion of Albert and Mobley[33] (Eg. (9)), using total absorption and backscattering and the solar
zenith angle (05), derived from the algorithm of Reda and Andreas [34].

Ko = (2t by) {1+( b, )} 3452 (1_ 0.2786> ©

Fr(d) =

a-+ by C0SOs

Thefinal formulation for the REFA method is shown in Eq. (10), where n27 is an assumed
constant for the transmittance of upwelling radiance across the air-sea interface.

% by(d) Eq(1)
Lu(zA) = Q 7 a(A) +by(A) exp(—Ku(2)2)

(10)

The above approach was altered to include EcoLight-S [31] to replace the reflectance approx-
imation and associated parameterisations (f/Q , K etc). As with the REFA approach, L,(-
0.66m) is simulated and used for inversion. EcoLight-S provides an up to 1000 fold increasein
speed compared to Hydrolight within 10% accuracy for Photosynthetic Active Radiation (PAR)
values [31], making it an optimal choice for inversion problems requiring compromise be-
tween accuracy of radiative transfer calculations and computational efficiency. Increased speed
is achieved through several simplifications of the full Hydrolight implementation, including
an azimuthally integrated version of the radiative transfer equation without inelastic scattering
effects [31]. Computational speed can be optimised in a number of ways (discussed fully by
Mobley [31]), dependent on water type and accuracy requirements.
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2.3. Generation of ssmulated data

A parameter space investigation and estimation of minimum inversion method error was made
by forcing the forward model with the ranges of parameters listed in table 1. Values were
selected to encompass both open ocean conditions and the extremes which may be experienced
in highly turbid waters and Harmful Algal Blooms. Values that are ecologically unlikely with
regard to known allometric scaling laws were removed from analysis e.g. a bloom dominated
by 2 um cells at [Chl a] of 100 mg m~3 [40].

Table 1. Summary of parameter ranges used in forward model data simulation

Parameter Range

Chlorophyll 0.1,05,1, 3,5, 10, 15, 20, 30
50, 100, 300 mg m~3

Effective diameter 2,5, 10, 20, 30, 40 um

Combined absorption of gelbstoff + detritus  Low (0.0197) and High(1.97)

(agg) at 400 nm

Non-algal particle backscattering Low(0.0005) and High (0.5147)

(bps) at 550 nm

To contextualise the sensitivity to size seen here, with respect to current ocean colour al-
gorithms and realistic co-variance of 10Ps, a second set of forward model runs (henceforth
referred to as FWDy) were conducted to approximate the Nasa bio-Optical Marine Algorithm
Development (NOMAD) data set [35]. The NOMAD data set has been used in the generation
and eval uation of many ocean colour algorithms. Hence, creating asimilar data set here, allows
for a preliminary investigation of the role of size in second order variability in the context of
both global optical measurements and empirical band ratio algorithms. Compared to the orig-
inal forward model runs above (table 1), more conservative ranges of agq and bps were used,
where agg = 50% (N-) and 400% (N+) of a,(445) and bys(550) = 0.005 (N-) and 0.01 (N+).

24. Inversion approach

The Equivalent Algal Population (EAP) inversion agorithm can be summarised as follows:
Inputs are hyperspectral subsurface radiance (L (-0.66 m),(4)) and above surface downwelling
irradiance (Eq4(0") (1)). There are four solvable unknowns: [Chl a] (mg m~3), algal effective
diameter (Des ¢, um), combined gelbstoff and detrital absorption (e.g agq(400), m~1) and small
particle backscattering (e.g. bps(550), m~1). Algal optical properties are calculated assuming
constant, size independent chloroplast and cytoplasm refractive indices, constant ¢; values and
chloroplast volumes (20% of cell volume). For gelbstoff/detrital absorption and small particle
backscattering a constant spectral shape with variable magnitude is assumed.

To solve for the four unknowns, a Nelder-Mead simplex, non-linear optimisation method
was used [36]. Input in al cases is Ly(-0.66m), simulated from the forward model or from
the Satlantic H-TSRB. The inversion approach was initialised with a constant set of initial
conditions as follows: [Chl a] = 10 mg m~3, Deft =5 um, agq(400) = 0.197 m™2, byg(550)
= 0.0051 m~1. A reduced convergence weighting was applied between 675 and 700 nm to
account for the lack of fluorescence term. Residuals are calculated between the simulated or
measured L, (-0.66m) and that modelled by the EAP approach. Modelled L, (-0.66m) from the
reflectance approximation are then converted to R.s using derived K, for ease of interpretation.
EcoLight-S provides R s as an automatic output. For the in situ validation in St Helena Bay,
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the inversion approach was applied to 75 casts from the Satlantic H-TSRB. Outputs were then
compared to the coincident measured data from the validation set.

3. Resultsand discussion

3.1. Forward model sensitivity to cell size

15 2 15 P 15 ¢

T 445 nm 445 nm 0.1 mgm?
<}lm 500 nm 500 nm 1mgm?®
g 1t 550 nm 1 550 nm 1 10 mgm?
z 710 nm 710 nm 100mgm*®
o« ‘ Y
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Chlorophyll (mg m'3) Chlorophyll (mg m'3) Wavelength (nm)

Fig. 1. Ranges of modelled R;s with variations in size (effective diameter) and biomass
([Chl &]), under low bys and low agg conditions for &) REFA and b) ES methods. Dots
indicate Rys associated with smallest cells. c) Shows example ranges of spectral Rys at
selected [Chl a] across the modelled size range using ES.

Quantifying the range of Rys associated with a range of sizes indicates how much signal is
potentially available to differentiate between these communities regardliess of algorithm tech-
nique. Figures 1(a) and 1(b) shows the range of Rys, at specific wavelengths and [Chl a] as-
sociated with the modelled range of Des¢. In this case, both absorption by gelbstoff/detritus
(aga) and backscattering by non-algal particles (bys) are low, which is typical in the southern
Benguela, where there is little terrigenous input from river outflow. It is apparent that R sen-
sitivity to size related effects, is spectrally variant and biomass dependent. As biomass levels
increase (i.e. above 1-3 mg m~3), the effects of changes in size become most significant in the
green (550 nm) when the effects of a minima in chlorophyll a and size related absorption are
combined with a decrease in backscattering from pure water at these wavelengths. Smallest
cells do not always produce the highest R;s as spectral shape imparted by the combination of
changes in biomass and size in both the absorption and backscattering of phytoplankton cre-
ate the non-linear response at specific [Chl a] and Det+ at the selected wavelengths. As [Chl
a] increases, the position of the phytoplankton absorption minima with respect to that of pure
water absorption shifts from shorter to longer wavelengths [30], resulting in varying locations
of peak Rys. In the two-layered sphere model, the magnitude of phytoplankton backscattering
is enhanced with increasing biomass and smaller cell sizes. Differences between the REFA and
ES approaches shown in Figs. 1(a) and 1(b) respectively, are primarily attributable to the differ-
ent f/Q values used to generate each set of forward data (not shown). The f /Q values derived
from the EcoLight-S show elevated values in the red (particularly around 709 nm), explaining
the features observed at thiswavelength in Fig. 1.

By looking at the R response to size in the forward model under “case two” like condi-
tions, it becomes clear that there are high levels of non-uniqueness in Rqs spectra when highly
backscattering, non-algal particles (at |east as characterised here) are present (Fig. 2). The IOP
budget is dominated by bys under these conditions, and size related effects only become ap-
parent when [Chl a] becomes substantial and the higher absorption by smaller cells becomes
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Fig. 2. Ranges of modelled Rys to variations in Def ¢ and [Chl a], under high byg and high
agq conditions. Note the differencesin scale, where (b - ES) shows much higher Rrs values
than (a- REFA). Dotsindicate Rys associated with smallest cells. c) Shows example ranges
of spectral Rys at selected [Chl a] across the modelled size range using ES.

dominant against non-algal backscattering. Similarly, additional absorption in the presence of
high agq, suppresses size related variability in the blue. In these “case two” type waters, partic-
ularly the highly scattering case, the differences in the two radiative transfer schemes becomes
most pronounced. The R s values generated by ES under high bys (Fig. 2(b)), are significantly
higher than those from the REFA approach. Also, different trends in size related variability
with biomass are observed, particularly in the red, as a result of the propagation of the high
bps influence in to the bidirectional effects, which in the REFA approach are constrained by the
f /Q parameterisation both in terms of magnitude and spectral shape.

In interpreting these results in the context of ocean colour data, it should be noted that the
substantial sensitivity observed in Fig. 1 likely represents a“best case” scenario. The simplified
Size parameterisation may overstate the available signal (see discussion below (section 3.5). It
islikely that 10OP covariance is often more extreme (i.e. high biomass is often associated with
case 2 coastal waters (Fig. 2) and measurement and/or atmospheric correction errors are likely
to add substantial uncertainty.

3.2. Inversionerrorsincell sizeretrievals

Comprehensive discussion and estimation of the ambiguity and minimum errors associated
with the physical problem of ocean colour inversion was conducted by Defoin-Platel and Chami
[20]. An approximation of thisapproach, using the simulated data, can provideinsight in to both
the role of phytoplankton size in this ambiguity, and the minimum errors one may expect from
the inversion approach used here prior to application to in situ data where measurement error
will also factor. In addition to the Nelder-Mead simplex, several mathematical techniques in-
cluding Levenberg-Marquardt optimisation and an evolutionary algorithm were explored, how-
ever the Nelder-Mead simplex provided the most consistent and optimal results for both the
in situ and simulated data inversion.

Figure 3 shows the root mean squared errorsin Des ¢ prediction over the ssmulated data set,
for four generalised conditions: low agg and low bys (“case one’/the “Benguela type” waters
above), high agq and low bys, low agg and high bys, and high agq and high bys (case two/gel bstoff
and sediment influenced waters). Lowest errors occur in the context of Benguela type waters,
with low agq and low bys. High error and substantial scatter in RMSE values across biomass
levelsfor the high bys scenarios suggests significant ambiguity may be introduced under highly
scattering conditions. As a result of this presumably more accurate handling of bidirectional-
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Fig. 4. Errorsin Des ¢ and [Chl a] estimation when inverting simulated data from the for-
ward EAP model for low agq and low by, conditions for @) REFA and b) ES methods.

ity, using the ES approach results in more consistent trends in error reduction with increased
biomass under high bys scenarios (Fig. 3(b)). Figure 4 summarisesthe errorsin Des ¢ estimates,
against errorsin [Chl a] under low agq and low bys conditions. Figure 4 suggests that obtaining
an accurate size estimate is less likely when the [Chl a] is estimated incorrectly and/or [Chl a]
islow (<10 mg m~3, red dots).

3.3. Applications: Cell size related variability in R.s in the context of satellite ocean colour
products

To put these results in to the context of current ocean colour products, Fig. 5 shows an approx-
imation of the maximum band ratio (MBR) approach used in the OC4 algorithm [37] using
forward model output (ES) analogous to the data ranges within the NOMAD data. Firstly,
Fig. 5 suggests that changes in size could be directly responsible for some of the scatter asso-
ciated with MBRs, however the extent of this is influenced by coincident variability in gelb-
stoff/detritus and non-algal particles, as shown by the overlapping rangesin Fig. 5(a). Secondly,
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Fig. 5. @) Size dependent ranges of OC4 maximum band reflectance ratios, versus [Chl a]
from the forward model using EcoLight-S to simulate the range of water types covered
by the NOMAD data set. In all cases larger cells are associated with the higher Ry ratio.
b) Example ranges of spectra from samples with similar (within 10%) R ratios to high-
light the significant ambiguity within a reasonable error that could be associated with Rrs
measurements.

similar changesin ratio can result from changesin [Chl a], size, gel bstoff/detritus and non-algal
particles independently or coincidently, hence the retrieval of variables as distinct from each
other is highly ambiguous (Figs. 5(a) and 5(b)). These results support those of Sauer et al. [41],
suggesting that variability in ay (in our case, coincident with changesin size) may be obscured
by agq, particularly at lower biomass, where the majority of the size related signal occurs in
the blue and MBR approaches are typicaly applied (Fig. 1). Sauer et al., [41] indicate little
influence of total particle backscattering (by,) on MBR approaches in the context of NOMAD.
The data here supports this, and closer examination of the |OP budgets under both this and the
previous forward model scenarios, suggests that by, (and the associated size influence inferred
by the two-layered sphere model) only becomes a dominant contributing factor (versus scat-
tering by water) in the absence of significant contribution from non-algal particles and at [Chl
a] greater than 3-100 depending on the wavelength and size of the assemblage; whilst a, at all
sizes can represent the dominant contribution to total absorption at [Chl a] aslow as 1, at some
wavelengths and when there is minimal influence from agq [43] .

3.4. Applications: Validation in the southern Benguela

A first assessment of the efficacy of the non-linear optimisation approach used in the EAP
inversion algorithmisits ability to closely match modelled and measured radiance spectra. Fig-
ure 6 shows the spectral correlation and root mean squared errors (RM SE) between the output
modelled L,(-0.66 m), and the input H-TSRB derived L,(-0.66 m). Across the spectra there
is a high degree of correlation, accompanied by low RMSE, with several notable exceptions.
Firstly, lower convergence and highest RM SE are seen in the blue, between ~ 400 and 430 nm.
As the Benguela is typically dominated by high biomass, R values in the blue may be com-
paratively weak. The sensitivity study by Defoin-Platel and Chami [20] suggested that highest
ambiguities in ocean colour inversion for total absorption may be found when thisis the case.
The algorithm also applies arelatively simple, constant parameterisation for the absorption of
gelbstoff and detritus (agq). Although agq is a relatively minor constituent in the St Helena
Bay region, any uncertainty in accounting for this would likely manifest in this region of the
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represented by the dot colour (n=75) for a) REFA and b) ES methods.

spectrum. Secondly, convergence decreases in the red, beyond 710 nm. As L, measurements
are low, typically with relatively high noise in the red region of the spectrum, this may not be
unexpected. Finally, alower level of convergence is seen around 675-700 nm. Thisis dueto the
lack of fluorescence term in the model and low convergence weighting set in this range for the
simplex. For the EcoLight-S variant, similar trends are observed with dlightly higher RMSE.
Overall the high levels of correlation and low RM SE and standard error suggest that modelled
Lu(-0.66 m) is converging well across the validation data set using the simplex method.
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Fig. 7. Correlation between spectrophotometer derived (range given by bluefill) and mod-
elled ay. Gray shading denotes standard error and root mean squared errors (RMSE) rep-
resented by the dot colour (n=49) for @) REFA and b) ES methods.

Figure 7 compares the spectral phytoplankton absorption from the in situ validation data set
against that selected by the EAP inversion approach. Again, we see high levels of correlation
and low RM S and standard errors between the measured and modelled spectra, which arein this
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case entirely independent. Highest RM SE are observed in the blue (= 400 - 475 nm), lending
weight to the hypothesis above that high levels of ambiguity in the prediction of total absorption
create larger error in this region of the spectrum. Lower correlation is also observed at red
wavelengths, contributing to an explanation of the lower convergence observed in Fig. 6. The
resultsfrom the EcoLight-S algorithm variant are almost identical, suggesting that the increased
accuracy in calculation of modelled L(-0.66 m) isnot substantially influencing the optimisation
process. Although no suitable data exists for validation of the phytoplankton backscattering for
the Benguela, the high level of convergence in the inversion, combined with the accuracy of
phytoplankton absorption measurements and low levels of contribution from other |OP sources
(i.e. gelbstoff/ non-algal particles) in the Benguela, suggeststhat thereisahigh level of validity
in the phytoplankton backscattering estimates.

Comparing [Chl a] from in situ samples to those predicted using the EAP agorithm yields
r? values of 0.86 and 0.80 (p < 0.001) (REFA and ES respectively), suggesting high predictive
capacity across a range of concentrations (0.86 to 309 mg m~3) (Fig. 8(a)). Effective diam-
eter estimates from the algorithm show significant correlations with Coulter Counter derived
estimates, with r? values of 0.45 (p<0.001) (REFA) and 0.25 (p<0.001) (ES) (Fig. 8(b)).
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Fig. 8. Correlations between measured and algorithm predicted &) [Chl a] (n= 73) and b)
Defs (n=44). Shaded areas show 95% confidence intervals based on linear regression for
each data set. Red and blue dots represent values derived from the REFA and ES approaches
respectively. r2 values for [Chl a] estimation were 0.86 (REFA) and 0.80 (ES), and 0.45
(REFA) and 0.25 (ES) for Def ¢ estimates, with p<0.001 in all cases. Estimates of absolute
percentage error (|y|) and bias () are given as per the method used in [38].

The results above show that the EAP inversion approach has substantial utility for the pre-
diction of [Chl a] associated with both lower biomass waters and Harmful Algal Blooms in
the southern Benguela. Although the coupling of 10P choice to the radiative transfer methods
and ultimate calculation of Ly/R;s prevents application of other algorithms to this data in a
fully independent way, the range successfully retrieved is substantially larger than any offered
by current satellite ocean colour products (see Matthews et al., 2012 for further discussion of
these products in the southern Benguela). The EAP results compare favourably with those of
the Maximum Pesk Height (MPH) agorithm applied in the southern Benguela [39]. Though
direct comparison is not possible in thisinstance asthe MPH is applied to level 1 satellite data,
it appears that the EAP isless prone to overestimation, particularly in high biomass conditions.
The EAP method can also give an indication of the broad size structure of acommunity through
the effective diameter (Des ¢ ) estimates, which are likely most useful for discriminating between
assemblages dominated by smaller or larger cells under bloom scenarios.
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3.5. Uncertaintiesin the |IOP model and inversion method

Whilst the behaviour of the EAP has shown that some second order variability in radiometric
measurements can be attributed to size, other sources of variability may cause additional scat-
ter. The inclusion of additional parameterisations must be balanced against the potential for in-
creased ambiguity (particularly for inverse modelling), so for simplicity, the EAP approach cur-
rently only includes basis vectors for one group of algal species. Additional basis vectors could
be included in an admixture approach, and may allow for great accuracy of modelled variables,
if these basis vectors impart significant optical variability. For example, whilst distinguishing
between dinoflagellates and diatoms would be very useful for understanding HAB develop-
ment, many of these species share very similar absorption spectra [30]. However, it maybe be
possible (and in terms of inversion ambiguity, suitable) to include basis vectors characterising
unique pigments, such as those associated with cryptophytes and cryptophyte endosymbionts
(e.g. Myrionecta rubra [17]), especially at elevated [Chl a] when these spectral signatures can
become unique from those associated with other species[30]. Additionally, several assumptions
inthetwo-layered model may also introduce scatter and explain some sources of ambiguity. The
use of a constant intracellular chlorophyll concentration (c;), whilst a necessary simplification
given the current model and data available, may result in under/over expression of size related,
optical characteristics. The use of avariable ¢;, informed by observations, could be applied at
the basis vector level, with no need for additional parameterisation. Secondly the assumption
of constant Standard size distributions, whilst appropriate for mono-specific blooms, may be
less relevant for samples where a background of smaller cells dominate. Alternative size dis-
tributions could be incorporated on the basis of known ecological context e.g. the dominance
of smaller cellsat lower [Chl a]. Finally, the optical properties of living algae and the extent of
their degradation products are known to be influenced by physiology, life stage, and response to
growth conditions, including the light environment [30]. Though there is currently no accom-
modation for this in the two-layered model, other bio-optical measurements (e.g. fluorescence
products linked to physiology) and ancillary environmental data (e.g. bloom phenology, nutri-
ent levels) could indicate when these factors may play arole in inversion error and ambiguity
[20]. Further constraint of the inversion method with regards to the above factors and |OP co-
variance may reduce the likelihood of finding local as opposed to global minima[20, 42].

3.6. Radiative transfer considerations, application to satellite data and further uses for the
EAP approach in ocean colour research

Assumptions made when solving or approximating solutions to the radiative transfer equation
can introduce significant errors in the radiometric quantities estimated [31]. However, for cou-
pled modelling and inversion approaches, compromises in accuracy must be optimised against
gains in computational efficiency. Here, using EcoLight-S to invert in situ measurements, re-
sults in a substantial increase in computational time (=~ 300 fold), versus using the REFA
method. Whilst for the limited number of measurements in the in situ validation data set here,
thisis not unpractical, scaling up the approach for eventual application to satellite derived time
series of ocean colour datarequiresfurther consideration of the accuracy gained. The sensitivity
study conducted with the forward model, reveals a few significant differences between the two
methods, which may become increasingly important in other water types. It has been suggested
that substantial errors in radiative calculations can arise when assumptions made associated
with single scattering are invalid and/or the single scattering albedo (ratio of scattering to total
attenuation) is greater than 0.6 [44], asin the highly scattering cases here. Comparison of f/Q
values from EcoLight-S to those from Morel et al. [9] suggest that as scattering increases, the
f /Q factors used in the REFA approach, become increasingly inadequate. In highly scattering
waters (e.g. the high bps scenarios above e.g. Fig. 2), these differences are most substantial,
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resulting in significantly different R s responses to size related sensitivity. The sensitivity to
size remains highly ambiguous in both cases. Extension of the existing f /Q tables may further
improve accuracy at higher biomass and small cell sizes in Benguela waters, whilst the use of
radiative transfer models such as EcoLight-S appears particularly prudent in highly scattering
waters such as those dominated by sediments.

4. Conclusions

The EAP approach has substantial utility for detecting the large range of chlorophyll a con-
centrations associated with algal blooms in the southern Benguela. Additionally, the approach
allows for the derivation of size parameter (the effective diameter, Def¢) that is causally linked
to the inherent optical properties (I0Ps) selected by the optimisation approach. However, sub-
stantial errors can occur in the prediction of this parameter in situations where phytoplankton
absorption and scattering do not represent the dominant component of the IOP budget. The
sensitivity of R.s measurements to size related changes in phytoplankton 10Ps has aso be
investigated using the EAP approach in both forward and inverse formats. This alows for a
preliminary understanding of the role that size related optical signals play in ocean colour am-
biguity. Theinitial sensitivity study conducted here suggests a number of key points:

« Sizerelated sensitivity in Res is highly dependent on algal biomass, as determined by the
relative algal contribution to the |OP budget.

» Even under optimal Case 1 conditions, the error associated with radiometrically derived
size retrievals increases substantially below [Chl a] of around 10 mg m~3. This effect is
exacerbated in waters with high non-algal scattering and in the presence of high absorp-
tion from gelbstoff and detritus.

« Radiative transfer techniques able to quantitatively account for phytoplankton spectral
scattering and bidirectionality are needed to propagate assemblage related information
in 10OPs through to Ry, especially in optically complex waters. However, application of
these techniques does not necessarily decrease ambiguity in the inverse problem.
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