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Abstract—Rhino poaching in South Africa is leading to a
catastrophic reduction in the rhino population. In this paper a
Bayesian network causal model is proposed to model the under-
lying (causal) relationships that lead to rhino poaching events.
The model may be used to fuse a collection of heterogeneous
information sources. If a game reserve is partitioned into several
geographical areas or cells, the model may perform inference
for each of these cells separately, and give a relative predictive
distribution of poaching events over the game reserve. After an
overview of the current problem definition and a brief overview
of similar modelling approaches, the Bayesian network model
is presented. The developed Bayesian network based model is
an initial attempt at proposing a sensible modelling approach
for this problem. Some of the complexities of the approach are
discussed, before considering how the model may be validated at
a later stage.

I. INTRODUCTION

Statistics show a startling increase in the number of rhino
poaching attacks since 2008. There were 83 rhinos poached in
2008, and the number has grown to 1004 in 2013 [1], [2]. Thus
far, 376 rhinos have been poached in South Africa between 1
January 2014 and 15 May 2014 [2]. The increase in poaching
attacks in recent years can be seen in Figure 1.

Rhinos Poached
1200
1000

800

600
400 g T T
2008 2009 2010 2011 2012 2013

Fig. 1. Rhinos Poached between 2008 and 2013

The Kruger National Park (KNP) is home to the largest
number of white rhinos, and second largest number of black
rhinos, in the world [3], and has been hit the hardest by
poaching attacks as shown in Figure 2. During 2012 and

2013 the KNP suffered approximately 60% of the annual rhino
poaching losses (calculated from numbers obtained from [2]).
Another reason for the high poaching incidence in the KNP
is the fact that it is located on the border between South
Africa, Zimbabwe, and Mozambique. The Great Limpopo
Transfrontier Park is being established which connects all the
large game reserves meeting at the borders of South Africa,
Zimbabwe, and Mozambique [4]. Parts of the fence already
came down a decade ago, giving the animals free reign to
roam the fields that were once closed to them [4]. However,
there still exists political boundaries which the rangers are not
allowed to cross.
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Fig. 2. Distribution of poached rhinos in 2013

In many countries, rhino horn is believed to have significant
medicinal benefits [5], even though there have been numerous
scientific studies proving otherwise [6]. Rhino horn demand
increased when stories were aired claiming that ground up
rhino horn could cure cancer [5]. Rhino horn is seen as a
commodity, and exporting it has become a lucrative business.
Many of the poachers (the so-called “foot soldiers”) come from
poverty, and even a single rhino poaching success could elevate
their status in the community to that of middle class [7], [8].

Another reason for the boom in rhino poaching is the fact
that it is not seen as a serious crime [8]. A poacher is arrested
and then usually given a fine before being released. In more



recent cases poachers started receiving heavy jail sentences,
but in most cases they only spend the night in prison and are
then let go with a fine. Rhino poaching is, for the most part,
a low-danger high-reward crime.

By current calculations and poaching trends, it is estimated
that the rhino population in the wild will be extinct by 2026.
The year 2014 might also be the year that rhino poaching
exceeds rhino births. The time to combat this problem is now.

Game reserves and agencies have tried various methods
to mitigate the situation ranging from injecting rhino horns
with a substance that makes the consumer very ill [9], [10];
to employing the military in the park [11]; to spending big
sums of money on developing new technology [12], with little
success. Wardens and caretakers are considering mathematics,
science and technology to assist in the fight against rhino
poaching. A framework is presented in this paper that fuses
a “current perspective” Bayesian network (BN) model with
expert knowledge and historic data to present a rich representa-
tion of the rhino poaching problem. To the authors’ knowledge,
this application is the first of its kind. BN applications in the
ecological environment are on the rise [13], [14], and this work
investigates the suitability of a causal network framework to
mitigate rhino poaching problems.

In Section II a comparison to similar works is given, which
is followed by an outline of the fusion framework in Section
III that illustrates the novelty of this work. An overview
of BNs is given in Section IV, and the model is presented
in Section V. Sections VI and VII discuss the challenges,
expected difficulties, validation, and evaluation of the model.
The paper is concluded with Section VIII.

II. COMPARISON TO SIMILAR WORK

Bayesian networks (BNs) are well established and popular
as a modelling tool in the context of environmental and
resource management with a wide range of documented case
studies [15], [16], [17], [18], [19]. BNs are particularly useful
for modelling complex and multi-faceted environmental prob-
lem areas, and arguments supporting this statement have been
documented widely [20], [21], [13]. Diispohl et al. [21] argue
that in order to understand complex human-environment sys-
tems, integration of system, target and transformation knowl-
edge is needed. Generation of these three types of knowledge
is often referred to as transdisciplinary science. In order
to support transdisciplinary research, a modelling approach
should 1) represent and integrate knowledge from the diverse
disciplines, 2) explicitly support stakeholder knowledge and
perspective through participation in a real-world problem, and
3) handle uncertainty. Given these three requirements, BNs are
ideal as an integrative modelling tool (Diispohl et al.). Case
studies that highlight the approach include [22], [17], [18] and
[21] cite no less than 30.

Except for modelling scenarios where the structure and
probability tables can be learned from data, models are con-
structed with stakeholder involvement in one or more of the
modelling stages, referred to as “participatory modelling”.
Bromley [23] identified seven stages of participatory BN
modelling. The stages are 1) defining the problem, context
and stakeholder engagement, 2) identify variables, actions and
indicators, 3) construct the pilot network, 4) collect data, 5)

define states of variables, 6) construct conditional probability
tables, and 7) test the network, collect feedback from stake-
holders, and make final modelling decisions. Johnson et al.
[15] suggested that during a core process stages 1 — 3 are
performed with stakeholder participation and stages 4 — 7 are
performed in an iterative process. Processes and frameworks
are documented to provide guidance on how to interact with
these experts and how to elicit the knowledge in the correct
way [24], [14]. Typically, experts and stakeholders are involved
in the initial stages of model development which involves the
identification of variables and the construction of the pilot
network [15], [19], [21].

An important feature of BN is its ability to combine differ-
ent information sources [13] such as empirical data, literature
information, and expert knowledge, making it an excellent
integrative modelling technique. Many examples showcase this
integrative capability of BNs. In particular, the combination
of Geographic Information System (GIS) data and other data
sources are of special interest to us as it displays the model’s
ability to integrate knowledge on different levels of abstraction
[14], [16] in a space and/or time dimension. Johnson et al. [24]
discuss different techniques to integrate BNs and GIS. They
considered four methods: 1) GIS input to BN, 2) GIS input to,
and from BN, 3) complex interactions between BN and GIS,
and 4) BNs and GIS within a larger framework.

All of the above-mentioned case studies focus on the use
of BNs as a decision support system. In other words, potential
actions serve as variables somewhere in the network. The
network can then be used in several modes: 1) predictive mode
(top-down), 2) prescriptive mode (best state of variables if
other variables are specified) and 3) diagnostic mode (bottom-
up, what-if analysis) [19]. All three these modes are extremely
useful in understanding and reasoning about the transdisci-
plinary system - as Diispohl [21] stated: An important goal of
transdisciplinary research is social learning of the participants
of the joint research process.

The related work discussed here puts our contribution
into context in the following way: Firstly, we work in a
complex environment with three actors: the rhino (fauna and
flora in an environmental context), the poachers (and their
resources and techniques), and the rangers (resources). This
necessitates the need for a modelling technique that can handle
the transdisciplinary character of the problem context, but also
integrate different levels of abstraction. Secondly, we deviate
from the modelling process in the sense that we involve the
stakeholder at a later stage in model development. We already
constructed a pilot network internally and will present the pilot
network to stakeholders at the first meeting. The reason for
this is that, apart from high costs to involve stakeholders, it is
almost impossible to get a core group together in a workshop
fashion for more than two days. We hope that this approach
will be more effective and will report on the lessons learnt
in a follow-up article. Thirdly, we introduce a type of mixed-
mode Gaussian mixture model (GMM) [25] as a technique to
incorporate GIS information in the BN instead of raw GIS
information. Finally, we use the model to generate a level
of certainty (chance) of a poaching taking place, and we do
not consider management intervention. Although reasoning in
the three modes is very valuable to understand the human-
environment complexities and intervention, the main mode of



this network will be predictive.

III. FuSION FRAMEWORK

One of the main goals of this project is to fuse together
different aspects of the rhino poaching problem. Figure 3
shows a simplified view of the fusion framework for this
problem.
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Fig. 3. Fusion Framework

The BN is developed by the researchers and uses GIS map
data. The model inputs a mixed-mode GMM [25] as a prior
distribution. Expert knowledge is used to populate the BN and
to compute the conditional probabilities. The output of the BN
is a posterior probability and answers operational questions
such as, “What is the possibility of a poaching attack occurring
within a specified region?” and “What is the possibility of
finding a poacher within a specified region?”. A complex
model is developed containing everything we know about the
problem. This comprehensive model may in future be used to
assist with decision support to the safeguarding unit protecting
the rhinos.

The motivation behind using BN is the fact that these types
of networks can capture the causal relationships which are
inherent to the problem. Continuous GIS data can be converted
such that it can be used in a discrete BN. The model can be
updated as poaching event reports become available, and BNs
can be used effectively using expert knowledge when data is
scarce [15], [26].

The modelling process allows for the identification of
relevant variables which can be included when future data
is captured. Formerly, expert workshops have been attempted
with no prior considerations - the ‘“clean slate” approach
such as was used in [15]. One of the outcomes of this
work will be to assess whether the building of a “current
perspective” model beforehand will accelerate the workshop
process without biasing the outcome.

The diagram in Figure 4 illustrates the design process of
the BN. The researchers start off with a “current perspective”
BN based on their own ideas and expertise obtained over the
period of working with this problem. The next step is to have
a workshop with experts to populate the BN, and even to
change the network architecture, in order to have a refined
model. After that, data of these newly identified variables will
be gathered, and this will further refine the model. The last two
steps could actually become a cycle as the researchers can go
back and refine the experts’ view according to what the data
states.

IV. BAYESIAN NETWORKS

BN are flexible graphical models that consist of nodes and
edges. The nodes depict the variables and the edges depict the
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Fig. 4. Diagram of model design

causal links between them. BNs are directed acyclic graphs
(DAGs) meaning that the edges have direction, and there are no
cycles in the network. The reason BNs were chosen is because
of their flexibility and elegance in handling new information,
and their ability to fuse expert knowledge, domain knowledge,
and data. BNs can also learn with relatively sparse and missing
data [16], an attribute that is greatly valued in real-world
applications where data is more often than not sporadic and
contain missing values.

BN along with other graphical models, provide researchers
with a simple way of planning and constructing models [27].
Inferring model characteristics such as conditional indepen-
dencies between variables is simplified greatly by reading it

off the graph. 1

V. THE MODEL

The likelihood of poaching activities in a specific area
can be estimated by considering different types of correlated
data, i.e. observations of certain events, and phenomena that
take place in a certain time interval (i.e. time slice). Poaching
activities usually cannot be directly observed, but we can
observe phenomena that are related to poaching in different
ways.

Firstly, some observations provide clues about phenomena
that facilitate poaching, such as certain weather conditions, the
moon phase, the presence of rhinos, etcetera. These phenom-
ena represent the context and the preconditions for poaching.
For example, poaching cannot take place at a certain location if
the rhinos are not present, but poaching is also unlikely during
broad daylight in an area with sparse vegetation.

Secondly, there are observations providing clues about
phenomena that are consequences of poaching activities, for
example observations of dead animals. Observation of certain
type of people or behaviour can provide clues about the
presence of poachers, efcetera.

This paper discusses an approach that can systematically
use the above mentioned types of observations to estimate the
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Fig. 5. The Rhino Model

chance of poaching activities, which are events that usually
cannot be directly observed. In principle, the likelihood is
computed with an inference algorithm that (i) takes as input
various observations of related phenomena and (ii) uses a
model describing the correlations between these observations
and the hidden phenomena of interest.

In the poaching case there exists relatively complex re-
lations between multiple types of phenomena. Such relations
can be viewed as causal and stochastic, therefore we develop
a causal probabilistic model shown in Figure 5. This model
relates to a particular geographically bounded area or cell.
Thus consider a map of a reserve or game park partitioned
into i = 1,..., M areas where the ith area is denoted by A;.
For each cell A4;, the model contains different variables which
are defined as follows:

Poaching_event, a binary variable that takes on value
true if poaching takes place at location A;. This is a hidden
variable as it cannot directly be observed.

Rhino_present, a binary variable that takes on value true
if a rhino is present at location A;. This is a hidden variable
as it cannot directly be observed.

Rhino_track, a binary variable that takes on value true
if a rhino tracking system indicates that tracked rhinos are at
location A;. Moreover, as outputs of tracking systems are usu-
ally noisy (associated with uncertainties), the variable is likely
to be instantiated with soft evidence, a binary distribution over
the states true and false.

Rhino_sighted, a binary variable that takes on value true
if a rhino is sighted by rangers or other professionals. This is

Poacher_present

Vegetation

Rhino_present Rhino_sighted

Poaching_event
Ranger_present

Poaching_report

hard evidence, a yes or no answer obtained by asking rangers
at location A; whether the rhinos are present.

Poacher_present, a binary variable that takes on value
true if poachers are present at location A;. This is a hidden
variable as it cannot directly be observed.

Possible_poacher_sighted, a binary variable that in the
simplest case takes on value true if we receive reports that
potential poachers are present at location A;. Such feedback
might also be a result of a more sophisticated inference
system combining various information about the movement of
poachers and observations at A;. The inference would produce
an estimate of the poacher presence in the form of a probability
distribution over the states true and false. In such a case, the
input would be soft evidence.

Ranger_present, a binary variable that takes on value
true if a ranger is present at location A;.

Season, a discrete variable with four states corresponding
to the four seasons.

Moon, a discrete variable with four states corresponding
to the four major moon phases: new moon, first quarter, last
quarter, full moon.

Weather, a discrete variable with n states corresponding
to n weather types.

Vulnerability encodes the knowledge about the vulnera-
bility of rhinos at location A;. This variable encodes knowl-
edge about the environment, roughly the suitability of A; for
poaching. This knowledge is captured by a mixed-mode GMM
extracted from historical data collected via poaching reports.



Water, a binary variable that takes on value true if
location A; is close to water. The value can be derived from
maps.

Vegetation, a binary variable that takes on value true if
suitable vegetation for rhinos is present at location A;. The
value can be derived from maps.

TimeO f Day, a discrete variable with four states: morn-
ing, day, evening, night.

Poaching_report, a binary variable that takes on true if
a poaching report is generated.

The following relations are captured as conditional proba-
bilities by the presented model:

1)  P(Poaching_event|Rhino_present,
Poacher_present, Ranger_present, Vulnerability)
is represented by a Conditional Probability Table
(CPT). This relation captures the fact that poaching
is likely if the poachers and rhinos are present at
location A;. However, if rangers are present, the
likelihood is reduced.

2)  P(Poacher_present| Rhino_present, Season,
TimeO f Day, Weather, Moon) is represented by
a CPT that describes the fact that the presence of
poachers at location A; depends on multiple factors.
Full moon, high tourist season, daylight, and good
weather reduce the likelihood of poaching, as it can
be observed more easily.

3) P(Rhino_present|Vegetation, Water) is repre-
sented by a CPT that describes the fact that the
presence of rhinos at location A; depends on multiple
factors, such as vegetation and water. Lack of suitable
vegetation and water makes the presence of rhinos
unlikely.

4)  P(Possible_poacher_sighted|Poacher_present)
is an observation model represented by a CPT that
describes the chance of getting a yes or no answer
by professionals (e.g. rangers) if they are asked, “Do
you see people that are potential poachers in area
AT

5)  P(Rhinos_sighted|Rhinos_present) is an obser-
vation model represented by a CPT that describes the
chance of getting a yes or no answer by professionals
(e.g. rangers) if they are asked, “Do you see rhinos
in area A;?.

The presented domain model encodes a joint distribution
and is used for the computation of the posterior probability
distribution P(Poaching_event|e), where € denotes the entire
evidence (instantiation of observable variables) collected in a
specific time interval. The full joint distribution is given by

P(V) = P(Season)P(TimeO fDay)P(Weather)
P(Moon)P(Ranger_present)

Water|Season)P(Vegetation|Season)

Rhino_sighted|Rhino_present)
Rhino_track|Rhino_present))
Poacher_present|Moon, Weather,

X X X X X X
aelac i~ Na v R

(
(
(
(Rhino_present|W ater, Vegetation)
(
(
(

... TimeO f Day, Season, Rhino_present)

x  P(Possible_poacher|Poacher_present)

x  P(Vulnerability| M oon, Weather,
TimeO f Day)

x  P(Poaching_report|Poaching_event)

x  P(Poaching_event|Vulnerability,
Poacher_present, Rhino_present,
Ranger_present),

where V = {Season,TimeOfDay, ..., Ranger_present}.
Variables Vulnerability , Season, Moon, Weather, W ater,
and Vegetation are called context variables as they serve as
boundary conditions for the estimated processes; these vari-
ables describe the conditions in which the processes of interest
evolve, such as movement of rhinos, movement of poachers,
poaching actions, and the corresponding observations. Thus,
the context variables do influence the inferred processes while
they are not influenced by these processes.

Variables  Rhino_sighted and  Possible_poacher
_stghted, on the other hand, represent the observable
phenomena influenced by the hidden phenomena and the
context variables. The observations corresponding to the states
of these variables are collected at runtime, in a specific time
interval and within area A;.

Moreover, the presented model is limited in that it does not
capture the temporal aspects of the problem space explicitly.
The model represents snap shots of phenomena that take place
within a specific time interval. The dynamics of the processes
within such a time slice is not explicitly modelled.

VI. CHALLENGES AND EXPECTED PROBLEMS

Three tasks are involved in building BNs, namely: (i) deter-
mine the relevant variables in the domain and their values, (ii)
specify the structure of the model (qualitative knowledge) that
captures the conditional independencies between the variables,
and (iii) specify the parameters of the model (quantitative
knowledge) where for each node in the DAG a conditional
probability distribution (CPD) needs to be specified through
a conditional probability table (CPT). Considering tasks (ii)
and (iii), there are two ways to obtain the structure and/or
parameters of a BN, namely through domain expert elicitation
[28], [29] or through automated knowledge discovery [30],
[31], [32] (or a combination of both). Obtaining the parameters
of a BN through domain expert elicitation can be a daunting
task [33], whereas obtaining the structure of the model is
considered an achievable exercise. Often experts are biased,
disagree with each other, and are not proficient in converting
their domain expertise into numerical probabilistic knowledge
[34]. Several techniques are proposed in the literature that sup-
port the elicitation process, such as transcribing probabilities
and using a scale with both numerical or verbal anchors for
marking assessments [29], [35].

Automated learning of probabilistic models gained much
popularity in recent years. However, automated learning of
models is only a viable option if enough and relevant data is
available. In many domains the amount of data is insufficient,
incomplete, or the data is in such a format that it is not
easily usable. The data generally needs to be preprocessed



before it can be used for automated learning of the model.
Preprocessing data generally comes at significant costs with
respect to resources.

Considering the domain shown in Figure 5 it is unlikely
that data is available for each of the variables shown in the
BN model. Considering the dependence between the variables
Poacher_present and Poaching_event, for example, some
of the data for these variables can be obtained from poaching
reports produced after incidents of poached rhinos, and some
from tourist sightings. Since these poaching reports only report
what is seen at the time of a carcass being found, it does not
suggest anything about poacher presence in general. Reports
about poachers’ attempts to poach rhinos are far less common,
unreliable, or non existing. In other words, generic information
about poacher presence might be very difficult to obtain.

Poacher and rhino sightings can be recorded from tourist
or ranger sightings, but these sighting reports are sporadic and
could be inaccurate. Ranger presence will in most cases be
recorded, as they are assigned different locations to patrol.

To guide the parameter elicitation process, sensitivity anal-
ysis [36] is an indispensable and valuable method. Given the
hypothesis variable and the observation variables, the impact
on the posterior of the hypothesis variable can be investigated.
By varying one (or more) specific parameters in the model the
effect on the posterior probability can be computed. Sensitivity
analysis gives the modeller insight into the sensitivity of certain
parameters on the hypothesis variable. The elicitation process
can be geared towards the most influential parameters when
the sensitivity of the parameters on the posterior of the hy-
pothesis variable is known. Sensitivity analysis is also a known
BN evaluation technique. Other evaluation considerations are
discussed in the next section.

VII. VALIDATION AND EVALUATION

Many established methods exist to validate and evaluate
BNs. The paper by Marcot [37] provides a detailed exposition
of such methods. These methods are broadly classified as
methods which 1) perform sensitivity analysis, 2) evaluate sce-
narios, 3) depict complexity, 4) assess prediction performance,
and 5) evaluate the uncertainty of model posterior probability
distributions. There are current ongoing efforts by the Evalua-
tion of Technologies for Uncertainty Representation Working
Group (ETURWG) within the fusion community to capture and
organise evaluation methods for fusion systems which perform
reasoning tasks in the presence of uncertainty. These efforts are
part of a continuous refinement process, and the latest results
of these efforts are presented in the Uncertainty Representation
and Reasoning Framework (URREF) ontology [38]. This is in
light of the distributed nature of several previous efforts to
characterise the evaluation of fusion systems [39], [40], [41]
and [42]. A paper which has been submitted in parallel to this
conference [43] attempts to unify the URREF ontology with
traditional BN evaluation methods when used in information
fusion. This is performed using an abstraction of the fusion
reasoning process which is known as the atomic decision
process (ADP) in [44] and [45]. The evaluation of the rhino
poaching BN will be performed mainly using the methods
of [37] while making sure that the uncertainty representation
and the associated reasoning methods are evaluated using the
criteria of the URREF ontology.

VIII. CONCLUSION

Rhino poaching continues to reach alarming levels and the
authors turn to causal models to mitigate this problem. BNs are
enjoying success as a popular modelling tool in the context of
environmental and resource management problems. BNs have
the ability to combine different sources of information, and
can handle sparse or missing data elegantly. Expert knowledge
can also be used to populate the BN when there is a lack of
data. Normally, the experts are given a blank slate and have
to develop and populate their own BN model. In this case,
the authors have already developed the model. BNs also have
the ability to work well with GIS data, which is particularly
important in environmental applications.

A framework is presented to fuse diverse sources of infor-
mation into a single causal network. The authors use a mixed-
mode GMM to incorporate historic poaching information and
fuse this with the obtained expert knowledge in the model.

The authors will face several challenges in obtaining the
expert knowledge. Furthermore, converting non-quantitative
knowledge to probabilities is also an acknowledged challenge.

The model shown in Figure 5 is a static model, i.e. a non-
temporal BN. This means that reasoning is performed in a
definite time frame. In essence this time frame determines
which of the different observations spread over time are fused
together to determine the posterior probability. Determining
the duration of this time frame is often difficult. To relax
this problem somewhat time could be considered explicitly
in the model by using a temporal probabilistic model, such as
dynamic BNs [46]. In such models the posterior for poaching
locations can be computed over time.

ACKNOWLEDGMENT

The authors would like to extend their gratitude to Dr. Henk
Roodt for his review and insights into the paper.

REFERENCES
[1] Unknown, “Rhino poaching statistics,” De-
partment of Environmental Affairs. Available:

https://www.environment.gov.za/sites/default/files/docs/rhinopoaching
_statistics.pdf [Last accessed: 22 May 2014].

[2] A. Modise, “Media release: Rhino  poaching update,”
South  African  National —Parks, 15 May 2014. Available:
http://www.sanparks.co.za/about/news/default.php?id=56069 [Last
accessed: 16 May 2014].

[3] R. Duffy, R. Emslie, and M. Knight, “Rhino poaching: How do we
respond?” Evidence on Demand, Report, 2013.

[4] Unknown, “Great Limpopo Transfrontier Park could be
fenced once again,” Times LIVE, 28 May 2013. Available:
http://www.timeslive.co.za/scitech/2013/05/28/great-limpopo-
transfrontier-park-could-be-fenced-once-again  [Last accessed: 25
February 2014].

[5] R. Ellis, Tiger Bone & Rhino Horn: The Destruction of Wildlife for
Traditional Chinese Medicine. Island Press, 2005.

[6] “Yemen acts to halt rhino horn daggers; scientific tests fail to show rhino

horn effective as medicine,” Environmentalist, vol. 3, no. 2, pp. 153—
153, 1983. [Online]. Available: http://dx.doi.org/10.1007/BF02240165

[77 M. Eustace, “Rhino  poaching: what is the  solu-
tion?”  Business Day Live, 8 August 2012. Available:
www.businessday.co.za/articles/Content.aspx?id=162979 [Last

accessed: 5 February 2014].

[8] C. Eloff, “Rhino poaching in South Africa — is it a losing battle?”
PositionlT, pp. 57-62, 2012.



[9]

[10]

(1]

[12]

[13]

[14]

[15]

[16]

(17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

D. Smith, “South African game reserve poisons rhino’s horns
to prevent poaching,” The Guardian, 4 April 2013. Available:
http://www.theguardian.com/environment/2013/apr/04/rhino-horns-
poisoned-poachers-protect [Last accessed: 25 February 2014].

M. Gosling, “Poison the rhino horn,” Cape Times, 30 November
2012. Available: http://www.iol.co.za/capetimes/poison-the-rhino-horn-
1.1433583 [Last accessed: 25 February 2014].

S. Mouton, “SANParks takes fight to poach-
ers,” Times LIVE, 13 December 2012. Available:
http://www.timeslive.co.za/thetimes/2012/12/13/sanparks-takes-fight-
to-poachers [Last accessed: 22 January 2014].

S. Kings, “Rhino conservation gets record-breaking R232m
boost,” Mail <& Guardian, 5 February 2014. Available:
http://http://mg.co.za/article/2014-02-05-r232-million-for-rhino-
conservation [Last accessed: 26 February 2014].

L. Uusitalo, “Advantages and challenges of Bayesian networks in
environmental modelling,” Ecological Modelling, vol. 203, no. 3-4, pp.
312 — 318, 2007. [Online]. Available: http://www.sciencedirect.com/
science/article/pii/S0304380006006089

S. Johnson, S. Low-Choy, and K. Mengersen, “Integrating Bayesian net-
works and geographic information systems: Good practice examples,”
Integrated environmental assessment and management, vol. 8, no. 3,
pp. 473-479, 2012.

S. Johnson, K. Mengersen, A. de Waal, K. Marnewick, D. Cilliers,
A. M. Houser, and L. Boast, “Modelling cheetah relocation success
in southern Africa using an Iterative Bayesian Network Development
Cycle,” Ecological Modelling, vol. 221, no. 4, pp. 641-651, 2010.

D. Pullar and T. Phan, “Using a Bayesian Network in a GIS to
model relationships and threats to koala populations close to urban
environments,” in MODSIM 2007: Land, water and environmental
management: Integrated systems for sustainability., L. Oxley and D. Ku-
lasiri, Eds., 2007, pp. 1370-1375.

M. E. Borsuk, C. A. Stow, and K. H. Reckhow, “A Bayesian network
of eutrophication models for synthesis, prediction, and uncertainty
analysis,” Ecological Modelling, vol. 173, no. 2, pp. 219-239, 2004.

M. E. Borsuk, P. Reichert, A. Peter, E. Schager, and P. Burkhardt-Holm,
“Assessing the decline of brown trout salmotrutta in Swiss rivers
using a Bayesian probability network,” Ecological Modelling, vol. 192,
no. 1, pp. 224-244, 2006.

A. De Waal and T. Ritchey, “Combining Morphological Analysis and
Bayesian Networks for Strategic Decision Support,” ORiON, vol. 23,
no. 2, pp. 105-121, 2007.

D. N. Barton, S. Kuikka, O. Varis, L. Uusitalo, H. J. Henriksen,
M. Borsuk, A. de la Hera, R. Farmani, S. Johnson, and J. D. Lin-
nell, “Bayesian networks in environmental and resource management,”
Integrated environmental assessment and management, vol. 8, no. 3,
pp. 418429, 2012.

M. Diispohl, S. Frank, and P. Doell, “A Review of Bayesian
Networks as a Participatory Modeling Approach in Support of
Sustainable Environmental Management,” Journal of Sustainable
Development, vol. 5, no. 12, 2012. [Online]. Available: http:
/Iwww.ccsenet.org/journal/index.php/jsd/article/view/20071

S. Johnson, F. Fielding, G. Hamilton, and K. Mengersen, “An Integrated
Bayesian network approach to Lyngbya majuscula bloom initiation,”
Mar Environ Res, vol. 69, pp. 27-37, 2010.

J. Bromley, N. Jackson, O. Clymer, A. Giacomello, and F. Jensen, “The
use of Hugin®to develop Bayesian networks as aid to integrated water
resource planning.” Environ. Model. Software, pp. 231 — 242, 2005.

S. Johnson and K. Mengersen, “Integrated Bayesian network framework
for modeling complex ecological issues,” Integrated environmental
assessment and management, vol. 8, no. 3, pp. 480-490, 2012.

C. Lawrence and W. Krzanowski, “Mixture separation for mixed-mode
data,” Statistics and Computing, vol. 6, no. 1, pp. 85-92, 1996.

S. L. Rinderknecht, M. E. Borsuk, and P. Reichert, “Bridging uncertain
and ambiguous knowledge with imprecise probabilities,” Environmental
Modelling & Software, vol. 36, pp. 122 — 130, 2012, Thematic issue
on Expert Opinion in Environmental Modelling and Management.

C. M. Bishop, Pattern Recognition and Machine Learning (Information
Science and Statistics), 1st ed. Springer, Oct. 2007.

[28]

[29]

[30]

[31]

[32]

(33]

[34]

[35]

[36]

(371

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

F. V. Jensen, Bayesian Networks and Decision Graphs.
Verlag, 2001.

L. C. Van Der Gaag, S. Renooij, C.L.M.Witteman, B. M. P. Aleman,
and B. G. Taal, “How to elicit many probabilities,” in Proceedings of the
Fifteenth Conference on Uncertainty in Artificial Intelligence. Morgan
Kaufmann Publishers, 1999, pp. 647-654.

G. F. Cooper, E. Herskovits, and T. Dietterich, “A Bayesian method
for the induction of probabilistic networks from data,” in Machine
Learning, 1992, pp. 309-347.

P. Spirtes, C. Glymour, and R. Scheines, Causation, Prediction, and
Search, 2nd ed. Cambridge, MA, USA: The MIT Press, Jan. 2001.

W. Buntine, “A guide to the literature on learning probabilistic networks
from data,” 1996.

M. J. Druzdzel and L. C. van der Gaag, “Building probabilistic
networks: ”"Where do the numbers come from?”” Guest editors’ introduc-
tion,” IEEE Transactions on Knowledge and Data Engineering, vol. 12,
no. 4, pp. 481-486, 2000.

G. Gigerenzer and A. Edwards, “Simple tools for understanding risks:
from innumeracy to insight,” BMJ, vol. 327, no. 7417, pp. 741-744, 9
2003.

M. Kruger and L. Ziegler, “User-oriented Bayesian identification and
its configuration,” in Information Fusion, 2008 11th International
Conference on, June 2008, pp. 1-8.

E. Castillo, J. M. Gutiérrez, and A. S. Hadi, “Sensitivity analysis in
discrete Bayesian Networks,” IEEE Transactions on Systems, Man, and
Cybernetics. Part A: Systems and Humans, vol. 27, pp. 412-423, 1997.
B. G. Marcot, “Metrics for evaluating performance and uncertainty
of Bayesian network models,” Ecological Modelling, vol. 230, pp. 50

— 62, 2012. [Online]. Available: http://www.sciencedirect.com/science/
article/pii/S0304380012000245

P. Costa, “URREF Ontology - version 2.0,” Evaluation of Technologies

Springer-

for Uncertainty Representation Working Group (ETURWG). Available:

http://eturwg.c4i.gmu.edu/?q=node/43 [Last accessed: 18 March 2014].

E. Waltz and J. Llinas, Multisensor Data Fusion Systems.  Artech
House, 1990, ch. System modelling and performance evaluation.

R. DeWitt, “Principles for testing a data fusion system,” PSR (Pacific
Sierra Research, Inc), Internal report, March 1998.

H. D. Liggins M.E. and J. Llinas, Handbook of Multisensor Data
Fusion, 2nd ed. ~CRC Press, 2009, ch. Assessing the performance
of multisensor fusion processes, pp. 655-675.

E. Blasch, P. Valin, and . Boss, “Measures of effectiveness for high-level
fusion.” in FUSION. IEEE, 2010, pp. 1-8.

J. de Villiers, G. Pavlin, P. Costa, K. Laskey, and A. Jousselme, “A
URREF interpretation of Bayesian network information fusion,” in
Submitted to Information Fusion (FUSION), 2014 17th International
Conference on. ISIF, July 2014.

A. Jousselme and P. Maupin, “A brief survey of comparative elements
for uncertainty calculi and decision procedures assessment,” in Proc.
of the 15th Int. Conf. on Information Fusion, 2012, panel Uncertainty
Evaluation: Current Status and Major Challenges.

A. L. Jousselme, “Objects under evaluation (evaluation subjects),”
Evaluation of Technologies for Uncertainty Representation Working
Group (ETURWG). Available: http://eturwg.c4i.gmu.edu/?q=t8 [Last
accessed: 18 March 2014].

K. Murphy, “Dynamic Bayesian networks: Representation, inference

and learning,” Ph.D. dissertation, UC Berkeley, Computer Science
Division, Jul. 2002.



