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Blind sequence-length estimation of low-SNR

cyclostationary sequences
J.D. Vlok and J.C. Olivier

Abstract—Several existing direct-sequence spread spectrum
(DSSS) detection and estimation algorithms assume prior knowl-
edge of the symbol period or sequence length, although very
few sequence-length estimation techniques are available in the
literature. This paper presents two techniques to estimate the
sequence length of a baseband DSSS signal affected by additive
white Gaussian noise (AWGN). The first technique is based on a
known autocorrelation technique which is used as reference, and
the second technique is based on principal component analysis
(PCA). Theoretical analysis and computer simulation show that
the second technique can correctly estimate the sequence length
at a lower signal-to-noise ratio (SNR) than the first technique.
The techniques presented in this paper can estimate the sequence
length blindly which can then be fed to semi-blind detection and
estimation algorithms.

I. INTRODUCTION

In non-cooperative reception, blind detection and estima-

tion techniques are required as the parameters used by the

communication transmitter are in general not known by the

receiver. The normal approach used in cooperative communi-

cation systems, such as optimal correlation or matched filtering

techniques [1], is therefore not applicable in non-cooperative

communication receiver systems. Typical applications of such

systems are to be found in spectrum surveillance and electronic

interception, but blind estimation techniques are important in

their own right also [2], and hence this paper considers some

aspects of this problem in depth.

Signal detection and parameter estimation are usually per-

formed separately and independently in communication prob-

lems [3]. Detection is performed to determine whether the

signal of interest is present or absent given observed data

that is corrupted by noise. When it has been determined that

the signal of interest is present, estimation is performed to

determine the signal parameter values. This paper is concerned

with blind estimation (assuming the signal is present) of the

period of cyclostationary sequences used in direct-sequence

spread spectrum (DSSS) communication systems.

The spreading codes used in DSSS are cyclostationary, since

the mean and autocorrelation of the transmitted signal are pe-

riodic with the same period [4]. This periodicity distinguishes

the signal from noise and can be exploited to perform detection

and estimation especially when the signals are weak. This

is in fact the case for received DSSS, especially for a non-

cooperative receiver which does not know the spreading code

and cannot therefore take advantage of the processing gain.
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Furthermore, modern communication systems use feedback

to limit transmit power levels. The resultant effect is that

intercepted DSSS signals have very low signal-to-noise ratio

(SNR) levels and sophisticated algorithms are required to

perform detection and estimation reliably.

We wish to emphasise that blind estimation of the sequence

or code length (or symbol period) of hidden DSSS transmis-

sions is essential since semi-blind techniques often assume

knowledge of the sequence length which is generally not

known a priory. Such semi-blind techniques include sequence

estimation techniques [5]–[7] and detection algorithms [8].

A few techniques that may be used to estimate the sequence

length (or related parameters from which the sequence length

can be determined) of DSSS transmissions have been sug-

gested in the literature. These include cyclic-feature analysis to

determine the chip rate through spectral-line regeneration [9],

the related Fourier analysis of cyclic correlation to estimate the

bit rate [6], and higher-order statistical analysis where unique

bispectrum and triple correlation patterns reveal characteristics

of m-sequences that may be used to determine the sequence

length and generator polynomials [10]. These techniques how-

ever require relatively high SNRs to perform parameter esti-

mation. Another technique based on autocorrelation suggested

in [11], [12] has the potential to estimate the sequence length

at lower SNR values.

In this paper, we propose two new methods to estimate

the sequence length of an intercepted DSSS signal at low

SNR, and we present some novel results based on these new

methods. The first method is based on the autocorrelation

technique [11], [12] mentioned above, and the second method

on a principal component analysis (PCA) detection technique

[8]. The two techniques are compared in an additive white

Gaussian noise (AWGN) environment in terms of the proba-

bility of correct estimation of the sequence length.

The paper is organised as follows. Section II presents the

communication and intercept systems, and defines the SNR

regime to which the estimation is applied. The two new

methods are introduced in Sections III and IV. Section V

presents numerical results, and Section VI concludes the paper.

Possible future research areas are identified in Section VII. A

Barker code (length N = 11) and an m-sequence (N = 63)

are considered as test cases throughout the paper.

II. COMMUNICATION AND INTERCEPT SYSTEMS

The target communication system and intercept receiver

platform used in this study are identical to those used in our

previous study [8] and are briefly reviewed here.

The target communication system is a binary phase shift

keying (BPSK) DSSS system employing a length-N spreading
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code, such that the intercepted signal can be written as

y(nTc) = σxd(nTc)c(nTc) + σww(nTc) (1)

with the chip number n = 1, 2, . . . , N and Tc the chip interval.

One sample is used to represent a single chip in the intercept

receiver and therefore the sampling period Ts = Tc. c is the

length-N (N ≫ 1) pseudo-noise code sequence with period

Tsym = NTc and d the data sequence assumed to be invariant

over Tsym. Since the target communication system is a BPSK

DSSS system, both c and d are sequences with values ±1. The

noise sequence is assumed to be a realisation of a standard

normal random variable (RV) represented by w ∼ N (0, 1)
which contains independent and identically distributed (i.i.d.)

samples. The code, data and noise sequences are also assumed

independent of each other. The constants σx and σw are

included to scale the signal and noise sequences respectively

in order to obtain different SNR values, using

SNR =
σ2
x

σ2
w

(2)

which is the SNR before despreading. The SNR at which the

intercept receiver must be able to operate is dictated by the

SNR required by the intended or target DSSS communication

receiver system, which in turn is determined by the maximum

tolerable bit error rate (BER). The error probability or BER

and the SNR are related by [8]

Pe = Q
(

√

Ns SNR
)

(3)

with Ns the number of samples used to represent one trans-

mitted bit. If one spreading sequence chip is represented by

one sample in the receiver, then Ns = N . Fig. 1 shows

the BER curves for the unspreaded BPSK case (N = 1)

and two spreaded cases (N = 11 and N = 63) under

AWGN conditions. Spreading affords a processing gain PG =
10 log10N or SNR advantage to the intended DSSS receiver

over the intercept receiver. For example, the receiver of a

DSSS communication system using N = 63 (PG ≈ 18 dB)

can despread a received signal at SNR = −3 dB to SNR

= 15 dB to achieve Pe ≈ 10−8. An intercept receiver that

does not know the spreading code will have to deal with the

SNR = −3 dB signal, assuming the intended and intercept

receivers lie on a circle with the target transmitter in the centre

with an omnidirectional antenna. Identical channel conditions

between the transmitter and each receiver are also assumed. If

the transmitter uses a directional antenna and/or the intercept

receiver is located at a further distance (which is typical in

electronic interception scenarios), an even lower SNR will

result.

To compete with the target DSSS communication system,

the intercept receiver must be equipped with powerful tech-

niques to detect the signals and estimate their parameter values

at very low SNR levels. The BER that can be tolerated in a

system depends on the application; it has been reported that in

wireless multimedia transmission, voice packets can tolerate

maximum BER levels of 10−3, while data packets require a

BER less than 10−9 [13]. Using Fig. 1, these BER values

translate to minimum SNR levels of approximately −8.2 dB

10-9

10-8

10-7

10-6

10-5

10-4

10-3

10-2

10-1

100

-30 -25 -20 -15 -10 -5  0  5  10  15

B
it 

er
ro

r 
pr

ob
ab

ili
ty

  P
e

SNR, dB

N = 1
N = 11
N = 63

Fig. 1. Bit error probability for unspreaded (N = 1) and spreaded (N = 11

and N = 63) BPSK DSSS in AWGN

Segment 1 Segment 2 Segment M

1 2 3 L 1 2 3 31 2L L

Fig. 2. Segmented section of the intercepted signal consisting of ML samples

(−0.6 dB) for voice and −2.4 dB (5.1 dB) for data if N = 63
(N = 11) is used. The lower the SNR value at which a

detection or estimation technique can function, the larger the

detection range or intercept distance will be. In electronic

intercept applications, SNR values less than the values given

above will typically be required.

III. ESTIMATION TECHNIQUE 1: AUTOCORRELATION

It has been suggested that the time interval between au-

tocorrelation spikes of an intercepted DSSS signal can be

used to estimate the symbol period Tsym [11]. However, this

section proposes a new estimation technique with detailed

mathematical analysis, which is based on the concept that the

correlation can be performed such that the index value of the

first peak corresponds to the sequence length.

A. Mean-square correlation

The intercepted signal of (1) can be expressed as

y = σxdc + σww (4)

with the data bit value d = ±1 constant over a single spreading

code. The first ML samples of y are split into M segments,

such that each segment contains L samples as shown in Fig.

2.

A sliding correlation is then calculated between the mth

(m = 1, 2, . . . ,M ) segment and the neighbouring section to

the right within y using

R(m)
yy (k) =

1√
L

L
∑

n=1

yn yn+k (5)
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Fig. 3. Simulated mean-square correlation sequences for L = N = 11 and
M = 100 for the Barker-11 code

with the time-shift parameter k = 1, 2, . . . ,K and the scale

factor
√
L chosen to simplify the mathematical analysis pre-

sented in Section III-C. The samples of y in (5) are numbered

such that yn is the nth sample of the mth segment in each

case. For example, when calculating R
(1)
yy (k), sample yL+2

will refer to sample 2 of segment 2 in Fig. 2. However, when

calculating R
(2)
yy (k) this same sample will be referred to as y2.

The scalar product of a segment with itself is not needed and

therefore k = 0 is excluded from (5). K is the value of the

maximum time shift and determines the number of samples

required beyond the segmented ML samples.

Using the M correlation sequences defined by (5), the

mean-square correlation sequence can be calculated as

ρ(k) =
1

M

M
∑

m=1

[

R(m)
yy (k)

]2

(6)

which is similar to the correlation estimators of [11]. An

example mean-square correlation sequence for the Barker

N = 11 spreading code is shown in Fig. 3(a) with parameters

K = 39, L = 11, M = 100 and σ2
x = σ2

w = 1 such that the

SNR is 0 dB.

The number of correlation spikes (or peaks) depends on

the maximum time-shift parameter K , while the visibility of

the peaks within the noise (or correlation sidelobe values)

depends on the segment length L, number of segments M ,

the position of spreading sequences within segments, and the

SNR. Assuming the spikes are detectable, there will be at least

one in ρ(k) if K ≥ N , two if K ≥ 2N , three if K ≥ 3N , and

so on. Fig. 3(a) shows three clear spikes since K ≥ 3N and

the SNR of 0 dB is relatively high. For increasing values of M

and SNR, the peak values generally become more visible as

long as L is chosen correctly and a complete spreading code is

located within a segment. Fig. 3(a) was obtained by choosing

Seg 1

1

Seg 2 Seg 3 Seg 4 Seg 5 Seg 6

Bit 1 Bit 2 Bit 3 Bit 4 Bit 5

2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5

(a) L < N , which will produce partial correlation results

Seg 1

1 2 3 4 5

Seg 2 Seg 3 Seg 4 Seg 5

1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5

(b) L = N (ideal case) where segments and sequences are aligned

Seg 1 Seg 2 Seg 3

1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5

(c) Case where N < L < 2N − 1

Seg 1 Seg 2 Seg 3

1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2

(d) Case where L = 2N − 1

Fig. 4. Example of a length N = 5 spreading sequence to illustrate the
effect of the segment length L on the correlation process

the actual spreading sequences as segments, which is the ideal

case for which the correlation peaks will be maximum.

Due to partial correlation, the sum in (5) will produce

smaller correlation peaks if L < N . Similarly, for L > N par-

tial correlation caused by incomplete spreading codes within

each segment will add to or subtract from the correlation

between complete spreading codes, depending on the data bit

values. Also, if L 6= N the spreading codes and segments are

misaligned, such that the starting positions of each spreading

code will differ in neighbouring segments. Even if L > N ,

some segments might not contain a single complete sequence

and smaller correlation peaks than possible with L = N

will be formed. To ensure that a segment will always contain

at least one complete spreading code, either L = N (with

sequences and segments aligned) or L ≥ 2N − 1.

To illustrate the effects of the value of L and the alignment

between segments and spreading sequences on the correlation

process, an example is shown in Fig. 4. The sequence length

N = 5, and the first sample of the first segment is also the

starting position of a spreading code in each of the four cases

shown. Each bit is represented by 5 samples (chips) and has

a unique value (±1) independent of the other bit values.

The case where L < N is shown in Fig. 4(a) where the seg-

ments and sequences are misaligned. Using (5) will therefore

result in partial correlation - and smaller peak values. The ideal

case is shown in Fig. 4(b), where L = N and the alignment

is retained throughout the intercepted signal. When (5) is

applied to this scenario, two complete spreading sequences

will be correlated, producing a large peak for each value of

m. The case where N < L < 2N − 1 is shown in Fig. 4(c).

The first two segments each contains a complete sequence,

which will provide a peak value when (5) is calculated. The

incomplete sequences within these two segments will however

affect this peak value depending on the bit values. Segment 3

in Fig. 4(c) does not contain a complete sequence which will

negatively affect the correlation process. When L ≥ 2N − 1
as illustrated in Fig. 4(d), all segments will however contain

at least one complete spreading sequence. The incomplete
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sequences within each segment will also negatively affect the

correlation peaks for this scenario, and the result will be worse

compared with L = N as in Fig. 4(b).

B. Method of estimation

Fig. 3(a) illustrates that if the parameters are chosen cor-

rectly and the SNR is sufficiently high, all correlation peaks

will be located at index values k, which are equal to multiples

of the code length N . For time shifts k = aN , with a a positive

integer, the spreading code(s) within the mth segment will

align with spreading code(s) in y, irrespective of the starting

position of the spreading code(s) within the segment or y. The

correlation peak values will however depend on the alignment

between segments and sequences as discussed in Section III-A

above. The code length may therefore be determined from the

index values of peaks within ρ(k). In this paper we propose

to use the index of the first peak (a = 1) to determine N .

C. Mathematical analysis

The intercepted signal of (4) can be written in discrete form

as

yn = σxdicn + σwwn (7)

with di = ±1 the ith data bit value and cn the nth

(n = 1, 2, . . . , N ) chip of the spreading code. The ideal case

corresponding to Fig. 4(b) will be analysed here and compared

with simulation results of non-ideal cases in Section V. The

segment size will therefore be chosen as L = N , such that

each segment in Fig. 2 will contain one complete spreading

code. Furthermore, the maximum time shift is assumed to be

bounded according to N ≤ K ≤ 2N − 1, such that a single

correlation peak is produced. Fig. 3(b) shows the resultant

mean-square correlation sequence ρ(k) for K = 2N − 1 and

SNR = {−10,−5, 0} dB with σ2
w = 1. A clear peak value is

shown at k = N if the SNR is sufficiently high.

1) Signal-only analysis: This section will consider the

characteristics of R
(m)
yy (k) and ρ(k) defined respectively in

(5) and (6), using (7) with σw = 0.

a) Peak value:

When k = N , the spreading codes within each segment align,

such that (5) can be written using (7) as

R(m)
yy (N) =

1√
L

L
∑

n=1

yn yn+N

=
1√
L

L
∑

n=1

(σxdmcn) (σxdm+1cn+N ) (8)

where dm = ±1 represents the data bit value associated

with the mth segment. Since cn = cn+N = ±1, (8) can be

simplified as

R(m)
yy (N) = ±σ2

x

√
L (9)

The mean-square correlation peak value can then be expressed

using (6) as

ρ(N) = σ4
xL (10)

b) Sidelobe values:

When k 6= N , the correlation between misaligned spreading

codes can be expressed using (5) and (7) as

R(m)
yy (k) =

σ2
x√
L

L
∑

n=1

(dpcn) (dqcn+k) (11)

with dp and dq antipodal bit values depending on the segment

in which cn and cn+k are respectively located. The correlation

values produced by (11) depend on the specific spreading

code c and the data bit values. If dp = dq, (11) resembles

the periodic autocorrelation function, for which a number of

bounds have been derived [14], which can be used to evaluate

the sidelobe levels.

Barker codes and maximum-length or m-sequences are of

particular interest, since the unscaled periodic autocorrelation

for each time shift (k 6= N ) is ±1. Even when dp 6= dq ,

the sum in (11) equals ±1 if c is a Barker code of length

N = [5, 7, 11, 13]. In these conditions, (11) can be simplified

to

R(m)
yy (k) = ± σ2

x√
L

(12)

such that the mean-square value can be written by substituting

(12) into (6) as

ρ(k) =
σ4
x

L
(13)

Equation (12) will subsequently be used to derive the theoret-

ical performance bound of technique 1.

2) Noise-only analysis: When σx = 0, the correlation

sequence can be written by combining (5) and (7) as

R(m)
ww (k) =

σ2
w√
L

L
∑

n=1

wnwn+k (14)

Since wn ∼ N (0, 1) is a sample within a sequence of i.i.d.

samples, wn and wn+k will be independent when k 6= 0. The

product wnwn+k will therefore have a normal product distribu-

tion [15] with zero mean and unity variance. According to the

central limit theorem [16], the sum in (14) will approach the

normal distribution with zero mean and variance approaching

L, as L increases. R
(m)
ww (k) will therefore approach the normal

distribution with zero mean and variance

var (Rww) =

(

σ2
w√
L

)2

L

= σ4
w (15)

The distribution of the mean-square correlation ρ(k) can then

be obtained by combining (6), (14) and (15) as

ρ(k) =
1

M

M
∑

m=1

[

R(m)
ww (k)

]2

=
1

M

M
∑

m=1

[

σ2
wR̃

(m)
ww (k)

]2

=
σ4
w

M

M
∑

m=1

[

R̃(m)
ww (k)

]2

(16)
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with R̃
(m)
ww (k) normalised such that it has unity variance. The

mean-square correlation can then be written from (16) as

M

σ4
w

ρ(k) =

M
∑

m=1

[

R̃(m)
ww (k)

]2

(17)

which has a central Chi-squared distribution [17] with M

degrees of freedom. Note that, although R̃
(m)
ww (k) contains

correlated samples over k for any given value of m, the sum

in (17) is calculated over m (and not over k) such that the

summands are independent.

It can be confirmed in simulation that (14) and (17)

approach, respectively, a normal distribution (with variance

given by (15)) and a central Chi-squared distribution (with M

degrees of freedom) as L increases.

3) Signal-and-noise analysis: When a signal is present

within the noise, the correlation can be expressed by com-

bining (5) and (7) as

R(m)
yy (k) =

1√
L

L
∑

n=1

{(σxdpcn + σwwn)

× (σxdqcn+k + σwwn+k)} (18)

with dp and dq bit values depending on the value of k as in

(11). Equation (18) can further be developed as

R(m)
yy (k) =

σ2
x√
L

L
∑

n=1

dpdqcncn+k

+
σxσw√

L

L
∑

n=1

dpcnwn+k

+
σxσw√

L

L
∑

n=1

dqcn+kwn

+
σ2
w√
L

L
∑

n=1

wnwn+k (19)

The first term of (19) is non-random while the remaining

terms are random since they contain the noise sample w ∼
N (0, 1). The second and third terms of (19) are both normally

distributed with zero mean and variance

σ2 = σ2
xσ

2
w (20)

since cd = ±1 has no effect on the statistics of each term

separately, and the sum of L i.i.d. standard normal samples

has a variance equal to L. The last term of (19) is the same

as the noise-only scenario described in (14), and is therefore

also normally distributed with zero mean and variance σ4
w as

in (15). By assuming that the terms of (19) are independent,

R
(m)
yy (k) can be described as a normally distributed RV with

mean µ
(m)
R equal to the first term of (19), and variance given

by

σ2
R = 2 σ2

xσ
2
w + σ4

w (21)

which is the sum of the variances of the three random terms

in (19). The independence assumption is based on the fact that

k 6= 0, the noise samples are i.i.d., and the spreading chips

and data bits are independent. (Independence can further be

ensured using a dual-channel receiver structure as in [18].)

By substituting (19) into (6), ρ(k) becomes the sum of

squares of M nonzero-mean Gaussian RVs. The distribution

of ρ(k) can therefore be determined using the non-central Chi-

squared distribution X ′2
M [17]. By normalising the variance of

ρ(k) it can then be shown that

M

σ2
R

ρ(k) ∼ X ′2
M (22)

with non-centrality parameter

pnc =
1

σ2
R

M
∑

m=1

[

µ
(m)
R

]2

(23)

since R
(m)
yy (k) must be divided by σR to normalise the

variance.

a) Peak value:

When the spreading sequences align, the first term of (19)

equals (8), and the mean value µ
(m)
R therefore equals (9). Us-

ing (9) as the mean value in (23), the non-centrality parameter

can then be determined as

pnc =
σ4
xLM

σ2
R

(24)

It can be confirmed in simulation that the peak value ρ(k = N)
scaled according to (22) will have a non-central Chi-squared

distribution with non-centrality parameter given in (24).

b) Sidelobe values:

When the spreading sequences are misaligned, the first term

of (19) equals (11), and the mean value µ
(m)
R therefore equals

(12). Using (12) and (23), the non-centrality parameter can

therefore be calculated as

pnc =
σ4
xM

σ2
RL

(25)

It can also be confirmed in simulation that the sidelobe values

ρ(k 6= N) scaled according to (22) will have a non-central

Chi-squared distribution with non-centrality parameter given

in (25).

D. Estimation performance bound

Estimation algorithm 1 takes the index k of the maximum

value of the mean-square correlation sequence ρ(k) as the

estimated sequence length Nest. The sequence length will

therefore be estimated correctly if the peak of ρ(k) is located at

k = N . The estimation performance bound will be expressed

in terms of the probability of correct estimation Pce, which is

the probability that the value ρ(k) located at k = N exceeds

all other values located at k 6= N , defined as

Pce = p {ρ(k = N) > ρ(k 6= N)} (26)

with k = 1, 2, . . . ,K chosen such that a single distinct peak

will be present within ρ(k), assuming the SNR is sufficiently

high as in Fig. 3(b). By defining the RVs ρpeak = ρ(k = N)
and the largest sidelobe contender ρmax = max[ρ(k 6= N)],
the performance bound can further be developed from (26) as

Pce = p (ρpeak − ρmax > 0)

=

∫ ∞

0

fdiff(z) dz (27)
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with fdiff(z) the probability density function (PDF) of the RV

difference ρpeak − ρmax, which can be calculated using [16]

fdiff(z) =

∫ ∞

−∞
fpeak(z + v) fmax(v) dv (28)

which is simply the convolution between fpeak(z) and

fmax(z), respectively the PDFs of ρpeak and ρmax. fpeak(z) is

the non-central Chi-squared PDF with non-centrality parame-

ter given in (24), and fmax(z) is the PDF of the maximum of

the K − 1 sidelobe values, where each one has a non-central

Chi-squared PDF with non-centrality parameter given in (25).

fmax(z) can therefore be expressed as [16]

fmax(z) = (K − 1)fside(z) [Fside(z)]
K−2

(29)

with fside(z) and Fside(z) respectively the PDF and cu-

mulative distribution function (CDF) of each of the i.i.d.

sidelobe values. By evaluating (27) to (29) numerically, the

performance bound in terms of Pce over a range of SNR values

(with L and M fixed) can be obtained as is done in Section

V.

E. Choice of parameter values

It is important to note that the bound derived in Section

III-D is the optimal estimation performance for technique 1.

The bound is a function of the parameter values K (or range

of k), L, M and the SNR, under the assumptions that the

segments and sequences align as in Fig. 4(b), and that a single

correlation peak is present as in Fig. 3(b).

The actual estimation performance depends on the choice

or assumptions made regarding these parameter values. The

range of k constrains the estimated sequence length Nest, and

technique 1 can therefore only provide the correct answer as

long as k = N is considered within the range of k. The

positions of segments within the intercepted signal and the

value of L will also influence the performance as described in

Section III-A (see Fig. 4). The number of segments M required

to estimate N depends on the SNR, although the number of

segments available may be less than required, depending on the

number of samples (containing the DSSS signal) intercepted.

It can be shown that a lower SNR value will require more

segments to maintain a given Pce value, as more segments

will be required to reduce or average out the noise.

Although the estimation technique presented here is blind,

parameter values for K , L and M must be chosen correctly

in order to determine N . The ranges of k and L may

be set up according to known or expected DSSS sequence

lengths or an exhaustive search may be required to find an

autocorrelation peak. Although real-time application of the

algorithm is possible in high-SNR scenarios, the typical low-

SNR scenario considered in this paper will necessitate off-line

analysis on a high-performance computing (HPC) platform as

large values of M (and large ranges of k and L) would be

required to perform estimation.

IV. ESTIMATION TECHNIQUE 2: EIGEN ANALYSIS

Eigenvalues are used in several signal analysis techniques,

including signal detection and parameter estimation. PCA [19]

and singular value decomposition (SVD) [20] are two such

related approaches where the principal components (dominant

eigenvectors) or singular values (square roots of eigenvalues)

are extracted from a matrix constructed from the intercepted

signal. An example PCA technique to estimate spreading

sequences by concatenating the first two eigenvectors of the

covariance matrix of the intercepted signal is presented in

[21]. Several SVD methods used to estimate the parameters of

sinusoids in noise are available in the literature. Examples in-

clude estimation of signal parameters via rotational invariance

techniques (ESPRIT) [22] and matrix pencil algorithms [23],

where generalised eigenvalues of matrix pencils are extracted

to estimate the parameters of interest [24].

More recently, eigenvalue techniques have been suggested to

perform spectrum sensing in cognitive radio applications [25].

The presence of a primary user can be detected by using test

statistics based on eigenvalues of a fusion matrix constructed

from signal samples collected cooperatively from distributed

sensors [26]. A similar DSSS detection technique that uses the

largest eigenvalue of the covariance matrix of the intercepted

signal as test statistic is presented in [8].

In this section we wish to show that the detection technique

described in [8] can be adapted to determine the sequence

length of a hidden DSSS transmission. Subsequently, the

portion of the technique presented in [8] which is required

to develop the sequence estimation algorithm is reviewed, and

the estimation technique itself is then presented.

A. Largest eigenvalue sequence

The detection technique of [8] consists of two stages. During

the first stage, the baseband intercepted signal of (1) is divided

into non-overlapping segments containing D samples each,

and the segments are then stacked to form the D×D detection

matrix given by

Y = σxX + σwW (30)

with X the data matrix (containing the spreaded data) and W

the AWGN matrix with i.i.d. elements.

During the second stage, the largest eigenvalue λY,1 of the

sample covariance matrix (SCM) of Y, denoted as [19]

R(Y) =
YT Y

D
(31)

is calculated. A sequence of largest eigenvalues of R(Y) is

then formed by cyclically shifting the elements of Y to the left

and upwards, such that the first element in each row moves

to the last element of the row above it. The top left element

of Y is removed, and the lower right element takes on a new

sample value. For each cyclic or time shift τ of Y, the largest

eigenvalue is calculated, to form a sequence λY,1(τ).

Fig. 5 shows the largest eigenvalue sequences formed when

the Barker-11 code is considered for different values of D, for

the signal-only scenario (σx = 1 and σw = 0 in (30)). Clearly,

when D = N = 11, the eigenvalue sequence exhibits a more

regular pattern and has a larger mean (and variance) compared

with the other values.
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Fig. 5. Simulated largest eigenvalue sequences for the Barker-11 code for
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matrix dimension D for SNR = {−10,−5, 0} dB

B. Method of estimation

The sequence length can be determined by analysing the

mean of the largest eigenvalue sequence λY,1(τ) over a range

of values of D as shown in Fig. 6(a). Similar to Fig. 3(a), the

mean of λY,1(τ) exhibits peak values at integer multiples of

the spreading sequence length N .

The sequence length can therefore be determined by iden-

tifying the index of the peak in the graph shown in Fig.

6(a). Since the mean value increases along with D, the peak

will be located at N only if the SNR is sufficiently high.

The peak value can therefore be determined more reliably

by identifying a decrease (or negative slope) within the mean

value graph across the range of D. The technique presented

here is therefore to estimate the sequence length using the

minimum value of the derivative of the mean, shown in Fig.

6(b).

C. Mathematical analysis

Though it is possible to develop an analytic expression for

the largest eigenvalue sequence, such an expression will be

intractable since λX,1 depends on all the elements of c and

d in (1). Instead, bounds on the variation of λY,1(τ) will be

developed in this section in order to describe its behaviour. The

performance of the estimation technique will then be obtained

through simulation which is presented in Section V.

1) Signal-only analysis: If the square matrix dimension D

matches the spreading code length N , and σw = 0 in (30),

the SCM

R(Y) = σ2
xR(X) (32)

from (31) has a maximum rank of two, such that its eigen-

values are the roots of a quadratic polynomial, which can be

expressed in the form [8]

λX =
N2 ±

√
∆

2N
σ2
x (33)

since the spreading code and data bits have values ±1. Also

note that both eigenvalues will be nonnegative, as the SCM

R(·) is positive semidefinite [17]. As illustrated in Fig. 5 for

D = N , λX,1(τ) exhibits a pattern with period N as X is

cyclically shifted. By considering all possible combinations

of code and data values for any cyclic shift of X, it can be

shown that the discriminant in (33) has ranges

∆ ∈







[

0, N4
]

(N even)

[

2N2 − 1, N4
]

(N odd)
(34)

and the largest eigenvalue sequence is therefore bounded

according to

λX,1 ∈











[

N
2 , N

]

σ2
x (N even)

[

N2+
√
2N2−1

2N , N
]

σ2
x (N odd)

(35)

which are the bounds shown (for N odd) in Fig. 5.

2) Noise-only analysis: If σx = 0 in (30) such that Y =
σwW, the SCM

R(Y) = σ2
wR(W) (36)

from (31) is a Wishart matrix [27]. The distribution of the

largest eigenvalue of a Wishart matrix can be described using

the Tracy-Widom (TW) law [28], which can be approximated

using the Gamma distribution [29]. Using functions of distri-

butions [16], the distribution of the largest eigenvalue λW,1 of

(36) can be expressed using the Gamma PDF, given by [29]

γ(z) =
(z − z0)

α−1

θαΓ(α)
exp

[−(z − z0)

θ

]

(37)
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with Γ(·) the Gamma function, z0 the location parameter, α

the shape, and θ the scale, respectively given by

z0 =
σ2
w (µc − 9.8209 σc)

D
α = 46.5651

θ =
0.1850 σ2

w σc

D

with centre and scaling parameters [27]

µc =
(√

D − 1 +
√
D
)2

σc =
√
µc

(

1√
D − 1

+
1√
D

)
1

3

Furthermore, the support region of (37) can be expressed as

[29]

z ∈ [z0, z0 + 2αθ] (38)

3) Signal-and-noise analysis: When both σx > 0 and σw >

0 in (30), the SCM of (31) can be written as

R(Y) = σ2
xR(X) + σ2

wR(W) + E (39)

with the cross-term or error matrix

E =
σxσw

D

[

XT W + WT X
]

(40)

which is zero under the assumption that the signal and noise

are uncorrelated. Under this assumption, R(Y) is a linear

function of R(X) and R(W) as indicated by (39), although the

eigenvalues of R(Y) are nonlinear functions of the eigenvalues

of R(X) and R(W) [30]. According to the Weyl inequalities

[30]–[32], the largest eigenvalue of R(Y) is however bounded

according to

λmin ≤ λY,1 ≤ λmax (41)

with the upper and lower bounds given by [8]

λmax = [λX,1]max + [λW,1]max (42)

λmin = max
{

[λX,1]min , [λW,1]min

}

(43)

Note that both [λX,1]min and [λW,1]min are less than or equal

to λY,1, though the tightest lower bound is obtained by taking

the maximum of the two. The upper bound can be written

from (42) as [29]

λmax = Nσ2
x + z0 + 2αθ (44)

using the upper bounds given in (35) and (38). The lower

bound can similarly be obtained from (43) using the lower

bounds of (35) and (38). For N odd, the lower bound can

therefore be expressed as

λmin = max

{

N2 +
√
2N2 − 1

2N
σ2
x, z0

}

(45)

from which it can easily be shown that λmin = z0 for small

SNR values.

A simulated example of the largest eigenvalue sequence for

σx = σw = 1 (SNR of 0 dB) is shown in Fig. 7 for the

Barker-11 code for different values of D similar to Fig. 5. The

eigenvalue bounds given in (44) and (45), and the measured
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Fig. 7. Simulated largest eigenvalue sequences for the Barker-11 code for
the signal-and-noise scenario

mean value λµ of λY,1(τ) are also shown. When D = N ,

the mean λµ clearly exceeds the means of the eigenvalue

sequences associated with D 6= N , which is also illustrated in

Fig. 6(a).

D. Choice of parameter values

The discussion of Section III-E is also relevant to technique

2. The range over which the matrix dimension D should be

evaluated and the number of matrices (maximum time shift τ )

to be considered to calculate the average eigenvalue must be

chosen, similar to the suggestions made for the parameters of

technique 1. As the calculation of eigenvalues are computa-

tionally expensive [8], technique 2 will also typically require

off-line analysis.

V. SIMULATION RESULTS

This section provides Monte Carlo simulation results ob-

tained by implementing the communication and intercept

models of Section II in software. The performance of the two

estimation techniques presented in Sections III and IV were

evaluated against a Barker code (N = 11) and m-sequence

(N = 63) with generator polynomial g(X) = X6 + X + 1.

The output of each estimation technique is the estimated

sequence length Nest, which is compared with the actual

sequence length N in order to evaluate the performance of

each estimation technique.

A. Probability of estimation

Fig. 8 shows the probability of estimation Pest obtained over

a range of values for Nest when the Barker-11 code is consid-

ered. Fig. 8(a) shows the results obtained using technique 1

for segment lengths L = {5, 11} and SNR = {−15,−12} dB.

The sidelobe values (for Nest 6= N ) are shown to be uniformly

distributed, while a peak is observable (depending on L and

the SNR) at Nest = N . The peak value increases while the

sidelobe values decrease, as the SNR increases. Furthermore,
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Fig. 8. Normalised histograms to indicate Pest for both estimation techniques
against the Barker-11 code

the value at Nest = N is the highest for L = N , provided

that the SNR is sufficiently high.

Similarly, Fig. 8(b) shows the results obtained using tech-

nique 2 for different SNR values. The distribution of the

sidelobe values can be explained from Fig. 6; the derivative

of the mean of λY,1(τ) is positive for small values of the

square matrix dimension D, and decreases as D increases.

The minimum value of the derivative will therefore typically

(depending on the SNR) be located at Nest ≥ N . As the SNR

increases, the probability that Nest = N will also increase.

B. Probability of correct estimation

As discussed in Section III-D, the performance of the esti-

mation techniques can be evaluated in terms of the probability

of correct estimation Pce, which is the probability that Nest

will equal N . Fig. 9 shows the simulated Pce over a range

of SNR values for the two estimation techniques against the

Barker-11 code.

For technique 1, 105 runs of M = 1000 segments (of length

L each) were simulated for each SNR point shown, with the

maximum time shift K = 2L− 1. Different segment sizes L

were considered, and when L matches N = 11, the best per-

formance is obtained. When L < N , the performance degrades

due to partial correlation of incomplete spreading sequences

as explained in Section III-A. When L > N , the performance

improves since some segments contain complete spreading

codes, though the performance is still worse compared with

L = N , since fragments of spreading codes within segments

reduce the correlation peaks (also due to partial correlation).

The theoretical bound for technique 1 given by (27) is also

shown, which is nearly attained by the L = 11 curve. (The

L = 11 curve does not match the theoretical curve exactly

since L or N is not sufficiently long.)

For technique 2, the mean of the largest eigenvalue sequence

λµ was calculated by shifting 1000 bits through the detection
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Fig. 9. Estimation performance of the two techniques against the Barker-11
code

matrix Y as explained in Section IV. The same data sequence

was used to calculate λµ for a single simulation run, during

which the range of matrix dimensions D = 1, . . . , 2N−1 were

evaluated for each SNR point. A total of 104 simulation runs

was completed per SNR value. Fig. 9 indicates that technique

2 outperforms the best possible performance of technique 1

for SNR values exceeding approximately −11 dB. When the

segment size of technique 1 is chosen as L = 5, technique 2

outperforms technique 1 by up to 4 dB.

Similar to Fig. 9, the simulated Pce performances of the

two estimation techniques against the length-63 m-sequence

are shown in Fig. 10. The theoretical performance bound for

technique 1 predicted in (27) is approached for L = N , and

worse performances are shown for both L < N and L >

N as in Fig. 9. Furthermore, technique 2 exceeds the best

possible performance of technique 1 by approximately 4 dB.

By comparing Figs. 9 and 10, it is clear that the estimation

performance improves for a larger value of N .

Figs. 9 and 10 also indicate that both techniques 1 and

2 will be able to correctly estimate the sequence lengths

(with Pce = 1) of DSSS transmissions at the SNR levels

given in terms of the maximum tolerable BER and channel

requirements described in Section II.

VI. CONCLUSION

Two novel techniques based on autocorrelation and PCA

were presented to blindly estimate the sequence length N

of an intercepted DSSS transmission hidden within noise.

Mathematical analyses and results of a simulation study for

each technique were given.

The autocorrelation technique computes the mean-square

correlation between segments of the intercepted signal and

takes the index value of the first peak as the sequence length.

The performance of this technique depends on the choice

of the segment length L, with best performance if L = N .

Furthermore, the range of k over which the correlation peak
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is searched must include k = N and the number of segments

M must be sufficient to suppress the noise. This technique is

similar to the correlation spike spacing estimation algorithm

suggested in [11], and was used to establish a reference

performance in terms of probability of correct estimation Pce

over SNR.

The eigen-analysis technique computes the mean value λµ

of the largest eigenvalue sequence of the intercepted signal

for a range of square data matrix dimensions D. It was

shown in this paper that λµ is much larger when D equals

the spreading sequence length N . The sequence length can

therefore be determined as the value of D at which λµ versus

D has a peak value. The eigen-analysis technique, adapted

from the detection technique of [8], was also shown to have

superior estimation performance compared with the reference

autocorrelation technique.

VII. FUTURE WORK

In this paper it was assumed that the signal of interest was

detected first such that the estimation algorithm was applied

to a signal that is surely present within noise. However, it

cannot always be ascertained that the signal of interest is

present before attempting to perform estimation. In certain

applications, detection and estimation can be formulated as

a single problem which can provide improved results [33].

The estimation techniques presented in this paper can be

adapted to function as detection algorithms by using the

estimated parameters as detection test statistics. A confidence

level that the sequence length is estimated correctly can also

be established by evaluating the consistency of the estimated

value.

Furthermore, only spreading codes with noise-like auto-

correlation characteristics, including Barker codes and m-

sequences, were considered in this paper. How to blindly

estimate the sequence length of orthogonal codes, such as

Walsh codes which have multiple sidelobe correlation peaks,

remains an open question.
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