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In this paper, we explore theoretically and experimentally the laser beam shaping ability resulting from
the coaxial superposition of two coherent Gaussian beams (GBs). This technique is classified under in-
terferometric laser beam shaping techniques contrasting with the usual ones based on diffraction. The
experimental setup does not involve the use of some two-wave interferometer but uses a spatial light
modulator for the generation of the necessary interference term. This allows one to avoid the thermal
drift occurring in interferometers and gives a total flexibility of the key parameter setting the beam
transformation. In particular, we demonstrate the reshaping of a GB into a bottle beam or top-hat beam
in the focal plane of a focusing lens. © 2013 Optical Society of America
OCIS codes: (140.3300) Laser beam shaping; (140.3298) Laser beam combining.
http://dx.doi.org/10.1364/AO.52.005766

1. Introduction

Many commercial laser systems deliver a beam hav-
ing a Gaussian intensity profile; however, numerous
applications require other intensity profiles (top-hat,
hollow beam, Bessel beam) that are in general
obtained by converting the standard Gaussian
beam (GB) through transparent diffractive optical

elements (DOEs). Laser beam shaping by use of
DOEs is a topic that has been intensively developed
over a long time [1,2] whether the DOE is program-
mable or unprogrammable. The first kind of pro-
grammable DOE is based on liquid crystal optical
valves or deformable mirrors, which have the advan-
tage of being very flexible. Unprogrammable DOEs
consist of a transparent material in which an ad-
equate relief is etched giving rise to a desired phase
shift profile where the relief can be continuous or
discrete (32 or 64 phase levels). Our objective in this
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paper is to study a supplementary technique of laser
beam shaping based on the coaxial superposition of
two coherent GBs. This technique is classified under
interferometric laser beam shaping, which contrasts
with the usual one based on diffraction. Interesting
features from laser beam shaping using interfero-
metric techniques have been already demonstrated
in literature. For instance, the generation of a focal
spot having a size smaller than that of a GB has been
proven from the axial superposition of two GBs that
were orthogonally polarized with their beam waist
planes shifted. Since the Gouy phase difference asso-
ciated with the two beams exits only in the vicinity of
the focal plane, it results in a polarization component
having the property of superresolution which im-
proves the longitudinal and transversal resolutions
with a rate of about 30% [3]. Another example of
interferometric beam shaping consists of generating
optical vortices [4–6].

The main contributions in the area of laser beam
shaping based on interferometric techniques are
devoted to the generation of optical bottle beams
(OBBs). This is a concept of a beam that is character-
ized by a dark (minimal intensity) region that is
surrounded by higher intensity light in the three
principal directions. The OBB is very useful for trap-
ping particles having a refractive index lower than
the surrounding medium [7]. Before proceeding, we
consider some experiments described in literature
for generating such OBBs:

(i) An OBB has been generated from the interfer-
ence between Laguerre–Gauss beams LG00 and
LG20. The latter is obtained from a LG00 beam that
is transformed into a LG20 by the use of a computer-
generated hologram [8] external to a laser cavity that
supplied the LG00 beam. It has been found that the
optical barrier along the beam axis is roughly 3 times
higher in the radial direction.
(ii) Another solution is to generate directly inside a

laser made up of a degenerate resonator the family of
transverse modes LGp0 with p � 0; 3; 6;… Since all
these modes have the same frequency, they can inter-
fere and give rise to a bottle beam near the focus of a
converging lens [9,10].
(iii) In [11], the OBB results from the interference of
two Bessel beams that are generated by using a
spatial light modulator (SLM).
(iv) In [12], the OBB is obtained by the destructive
interference of two GBs with different waists but
focused in the same plane where the reshaping is
achieved. The two GBs emerge from a Mach–
Zehnder interferometer with a feedback circuit for
locking the two beams out of phase through the
action of a piezoelectric mirror mounted in one arm.

In this paper, we will consider the spatial proper-
ties of the coaxial superposition of two coherent GBs
having the same width but opposite curvature in the
plane of a focusing lens. In this case the two GBs will
focus in different planes. This is very different
from the case addressed in [12] which considers

the focusing of two GBs of different widths, same
curvatures, and focusing in the same plane. In par-
ticular, in addition to the usual bottle beam we
demonstrate theoretically and experimentally that
it is possible to reshape a GB into a top-hat profile
in the focal plane of a lens.

2. Coaxial Superposition of Two Coherent
Gaussian Beams

Essentially, the coaxial superposition of two coherent
GBs gives rise to a beam that is made up of a certain
adjustable number of rings of light, which is in the
following termed a cosine Gaussian beam (CGB).

The CGB we wish to generate is described by the
following electric field:

u�r� � E0 cos�βr2� exp
�
−

r2

W2

�
; (1)

where β is effectively a quantity inversely propor-
tional to a squared length. Through analogy with
the argument of the Gaussian term in Eq. (1) we
arbitrarily set the following expression for β:

β � 2πK

W2 ; (2)

where W is the GB width and the number K is real
and constitutes the key parameter of the interfero-
metric beam shaping as it will be seen in the follow-
ing. Figure 1 illustrates the intensity distribution of
a CGB, I�r� � ju�r�j2, for K � 2 and W � 1 mm.

The ringed beam described by Eq. (1) contains a
modulating term cos�βr2� having its origin, not in
a planar phase difference between the two GBs,
but in the interference between two spherical
wavefronts with opposite radii of curvature as it will
be shown below. The CGB described by Eq. (1) can
be viewed as the coaxial superposition of two GBs
having the same width W and opposite radii of
curvature (R):
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Fig. 1. Transverse intensity distribution I�ρ� � ju�ρ�j2 of the
CGB u�ρ� defined by Eqs. (1) and (2) for K � 2 and W � 1 mm.
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In these conditions Eq. (3) takes the form of Eq. (1)
provided we set

K

W2 � 1
2λR

: (4)

In the following, we will be interested in the focus-
ing of the CGB by a converging lens. The determina-
tion of the field emerging from the lens can be very
simple if the field u�r� is formulated by Eq. (3) or
more complicated when using Eq. (1). Indeed,
the later case necessitates the numerical calculation
of a Fresnel–Kirchhoff integral, while the use of
Eq. (3) allows one to obtain after the lens, the emerg-
ing field from the complex addition of two GBs. In
addition, considering Eq. (3) makes the interpreta-
tion of the results tremendously easier.

There are two cases that occur simultaneously to
the field u given by Eq. (3) when passed through a
focusing lens of focal length f . Beginning at the exit
plane of the lens, the first case is that one of the GBs
will always focus at some position along the propaga-
tion axis. The second case concerns the second GB
and is comprised of three scenarios, as is illustrated
in Fig. 2:

(i) Scenario No. 1: The beamwill also focus at some
position along the propagation axis, typically after
the focus of the first GB.
(ii) Scenario No. 2: The beam will be collimated

during propagation.
(iii) Scenario No. 3: The beam will diverge during
propagation with a virtual focal point positioned
before the entrance of the lens.

It must be noted that for scenario No. 1, the second
focus will always be larger than the first. Scenario
No. 2 is achieved by equating the curvature of the
field to the focal length of the lens, R � f and from
Eq. (4), we find that this condition equates to

Kc �
W2

2λR
: (5)

This particular value of K given by Eq. (5) is consid-
ered to be the critical value where scenario No. 1 is
achieved for values of K less than Kc, and scenario
No. 3 is achieved for values of K larger than Kc.
In a more practical formulation, this can be summa-
rized as follows:

– For R > f, one observes two focal points.
– For R ≤ f, one observes only one focal point.

Let us consider two GBs having the same width W
and radii of curvature R1 � R and R2 � −R incident
on a focusing lens of focal length f . After the lens, the
radius of curvature becomes

R0
1;2 � f R1;2

f − R1;2
�6�

and the beam waist radius W 0
01 and W 0

02 associated
with the transformed beams are given by

W 0
01;2 � W���������������������������

1�
�

πW2

λR0
1;2

�
2

s : (7)

The locations Z0
01 and Z0

02 of the beam waist planes
are different and given by

Z0
01;2 � R0

1;2

1�
�
λR0

1;2

πW2

�
2 : (8)

The beam waist position of the transformed GB is
beyond (respectively, before the lens) the lens if
the radius of curvature R0 given by Eq. (6) is negative
(respectively, positive).

In the following we will determine the electrical
field after the lens at the position Z, which is written
Z0
1;2 � Z� Z0

01;2 with respect to the beam-waist posi-
tions Z0

01 and Z0
02 of the transformed beams. The ex-

pression of the electrical field u0
1 and u0

2 associated
with the two transformed GBs at position Z after
the lens is given by

u0
1;2 � E0

01;2 ·
W 0

01;2

W 0
1;2

exp
�
−

r2

W 02
1;2

�

× exp
�
−i
�
kZ0

1;2 �
kr2

2R0
1;2

− arctg
�
Z0
1;2

Z0
R1;2

���
; (9)

where
Fig. 2. Three possible scenarios for the behavior of the two GBs
superimposed in the field u.
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�
1�

�
Z0
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1;2

�2�
: (10)

The electric field anywhere after the lens is given
by u0 � u0

1 � u0
2, and the intensity is expressed as

I � ju0j2. Before proceeding, we express the ampli-
tude E0

01 and E0
02 [in Eq. (9)] of the transformed

beams as a function of E0∕2 [Eq. (3)], the amplitude
of the two incident GBs on the lens. By equalizing
the amplitude E0

01 and E0
02 with E0∕2 at the center

of the lens (r � 0), we find

E0
02 � E0

01 ·
W 0

01

W 0
02

: (11)

In order to characterize the beam, after the lens, re-
sulting from the coaxial superposition of two coherent
GBs, we will consider the variations of the on-axis in-
tensity (i.e., for r � 0) and the radial intensity distri-
butions. Thenumerical calculations areperformed for
K � 3, f � 200 mm, W � 2.5 mm, and λ � 1064 nm.
The on-axis intensity distribution plotted in Fig. 3
shows as expected two focal points located before
(Z � 166 mm) and beyond (Z � 250 mm) the focal
plane of the lens (Z � 200 mm) with their respective
transverse intensity profiles in Figs. 4(a) and 4(b).
The pattern in the focal plane of the lens is displayed
in Fig. 4(c) and exhibits a ringed beam (14 rings) with
a central null-intensity region. One observes that the
intensity of the second focal point is smaller than that
of the first focal point owing to its larger diameter, and
subsequently decreases as K increases.

3. Interferometric Beam Shaping

An interesting feature of the CGB is when the param-
eter K is reduced, one observes that the number of

rings shown in Fig. 1 reduces while the on-axis inten-
sity peaks shown inFig. 3 get closer until overlapping.
In the following, it will be shown that the CGB de-
scribed by Eq. (1) allows the possibility of generating:

– a flat-top intensity pattern
– an OBB, that is a three-dimensional region in

which the intensity is low and surrounded by regions
of higher intensity.

Let us now consider the requirements for con-
verting the incident GB into a flat-top distribution
at the focal plane z � f . The results are presented

Fig. 3. On-axis intensity distribution of the focused mixed two
GBs for K � 3 and W � 2.5 mm. The focusing lens has a focal
length f � 200 mm. As parameter K is reduced, one observes that
the two intensity peaks get closer until overlapping.
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Fig. 4. Transverse intensity distribution, for K � 3 and
W � 2.5 mm, in three planes: (a) Z � 166 mm, i.e., the first focus-
ing plane in Fig. 4, (b) Z � 250 mm, i.e., the second focusing plane
in Fig. 4, and (c) Z � f � 200 mm, i.e., the focal plane of the lens.
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in Fig. 5 where the focal plane intensity distributions
are plotted for several values of parameter K. It is
seen that the intensity distribution changes as
parameter K is varied: forK close to zero (not shown)
it is a Gaussian profile, developing into a close replica
of the top-hat profile for K � 0.17, then acquiring a
doughnut profile for K � 0.32, hence becoming a hol-
low beam, as shown in Fig. 4(c) for higher values for
K . It is remarkable to notice that the beam shaping
properties displayed in Fig. 5 are obtained from the
interference of two coherent GBs, which are coaxially
superposed by resorting to a two-wave interferom-
eter or by generating the modulating term cos�βr2�
with a SLM. In the experiment, as it will be shown
below, we have preferred to make the coaxial super-
position of two GBs by using the SLM solution. Doing
so allows some flexibility in the beam shaping since
the reshaped beam pattern can continuously evolve
by adjusting the parameter K. It also results that
the two GBs involved in Eq. (9) have the same phase
on the focusing lens. For doing so, a phase shift Δφ
ranging from 0 to 2π is added, so that u0

1 and u0
2

should be in phase, for instance at the center of
the lens (r � 0). In addition, the SLM solution for
generating the CGB described by Eq. (1) allows
one to avoid the phase shift drift due to vibrations
and thermal effects, which is an inherent limitation
of interferometric devices.

We have found that we are able to produce a bottle
beam from the coaxial superposition of two coherent
GBs straddling the focal plane of a converging lens.
The result is shown in Fig. 6 for K � 0.4, and we can
note that the quality of the OBB is highly satisfying.
Indeed, the optical barrier along the beam axis is
about 3.5 times higher than that in the radial direc-
tion, and this result is comparable to what is
reported in [8]. It is worthwhile to note that the size
of the bottle beam as well as the two surrounding
focal spots can be adjusted by varying the parameter
K . This is easily achievable with a SLM, thus making
the setup very versatile.

4. Experimental Investigation

As pointed out in Section 3 we experimentally gen-
erate the CGB expressed by Eq. (1) by generating
the cos�βr2� term by using a SLM. This has two
advantages:

(i) We avoid all the drawbacks to the phase shift
drift inherent to any interferometer due to thermal
effects and vibrations.
(ii) The flexibility linked to the possible continuous

adjustment of parameter K.

The experimental setup (Fig. 7) consisted of a laser
source operating at 1064 nm with a Gaussian inten-
sity profile as the output. This beam was enlarged
and collimated through a 20× telescope and propa-
gated onto a reflective phase-only liquid crystal on
silicon (SLM: Holoeye Pluto-NIR). The enlarging
and collimating of the laser beam is approximated
as a plane wave on the SLM since the active area
on the SLM is small as compared to the incident
beam size (≈20 mm). The plane of the SLM was
imaged through a 4f system where the higher orders
were spatially filtered at the Fourier plane of the
SLM. The beam profile was then monitored along
the propagation axis with a CCD camera (Thorlabs
cam BC 106-vis).

The incident laser beam on the SLM is required to
be a plane wave since we intended to implement the
transmission function cos�βR2�, Gaussian field to be
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Fig. 5. Transverse intensity distribution, for W � 2.5 mm, in
the focal plane of the focusing lens of focal length f � 125 mm.
For K � 0.17, the incident GB is transformed into a top-hat
profile.

Fig. 6. For K � 0.4 the coaxial superposition of two coherent GBs
is able to produce a bottle beam straddling the focal plane Z � f of
the focusing lens.

Fig. 7. Experimental setup for investigating the behavior of the
superposition of two GBs.

5770 APPLIED OPTICS / Vol. 52, No. 23 / 10 August 2013



addressed to the SLM. This complete information
contains both amplitude and phase and the encoding
of the amplitude and phase is through a technique
developed in [13,14] to address a phase-only SLM.
The complex function T�r� � A�r� exp�iΦ�r�� is en-
coded onto a phase hologram H�r� � exp�iΨ�A;Φ��
with A ∈ �0; 1� and Φ ∈ �−π; π�. From the different ex-
pressions for Ψ�A;Φ� used in literature, we have
chosen Ψ�A;Φ� � f �A� sin�Φ�, where f �A� results
from J1�f �A�� ≈ 0.6A with J1�x� the first-order Bessel
function [13]. In addition, the focusing lens f was also
encoded onto the hologram with a sinusoidal grating
employed as a phase carrier.

This experimental setup was able to exactly repro-
duce the theoretical results given by Fig. 5, as seen in
Fig. 8. The following experimental parameters have
been used to encode the hologram: f � 125 mm,
W � 0.7 mm, z � f , and λ � 1.064 μm. The size of
the beam has been changed just in order to obtain
a sufficiently large picture size on the camera but
it did not affect the obtained beam shaping.

The same setup had also confirmed the ability to
produce an OBB of good quality. The results are
shown in Figs. 9–11, where the behavior of the

reshaped beam can be seen from both sides of the
focal plane.

5. Conclusion

In this paper we have analyzed the spatial properties
of the beam resulting from the coaxial superposition
of two coherent GBs having the same width and op-
posite radii of curvature. The resulting beam is a
CGB expressed by Eq. (1) and we have considered
its focusing by a converging lens. Although this tech-
nique has to be classified under interferometric laser
beam shaping, it has been implemented by a diffrac-
tive technique. Indeed, the generation of the cos�βr2�
term defining the CGB has been directly generated
by a SLM and in doing so, it has at least two advan-
tages. The first one is that the thermal effects and
vibrations do not give rise to phase shift fluctuations
which could have a bad influence on the beam shap-
ing stability. The second one is the simplicity and ver-
satility of the setup since the key parameterK (i.e., β)
of the beam shaping can be continuously adjusted by
the software controlling the SLM. The result should
be an intensity distribution in the focal plane of
the focusing lens, which could be continuously or
abruptly changed from a single-lobed pattern to a

Fig. 8. Experimental beam shaping in the focal plane of the
focusing lens with K � 0.17, K � 0.2, and K � 0.32.

Fig. 9. Experimental beam shaping for K � 0.4 before the focal
plane, i.e., at �z − f �∕f � −0.08.

Fig. 10. Experimental beam shaping for K � 0.4 at the focal
plane, i.e., z � f .

Fig. 11. Experimental beam shaping for K � 0.4 after the focal
plane, i.e., at �z − f �∕f � �0.08.
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hollow beam. This kind of tailored light distribution
could be particularly useful for tweezing and trap-
ping of dielectric micro-sized particles. Indeed,
high-index particles can be trapped andmanipulated
using a trapping beam with a top-hat transverse pro-
file. On the other hand, the annular transverse
profile makes it possible to trap high-index particles
in the doughnut ring and low-index particles in its
dark core.
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