Electrodeposition of Pd based binary catalysts on Carbon paper via surface limited redox-replacement reaction for oxygen reduction reaction

Mmalewane Modibedi mmodibedi@csir.co.za

our future through science

225th ECS Meeting, Orlando, USA, 14 May 2014

Outline of the presentation

- Introduction:
 - Oxygen reduction reaction (ORR)
 - Fuel cells- Direct alcohol fuel cells (DAFC)
- Electrocatalysts:
 - Preparation
 - Characterisation
 - Electrochemical evaluation
- Conclusions
- Future Work

CSIR our future through science

1. Oxygen reduction reaction (ORR)

- ORR is most important reaction in life processes and energy converting systems: Fuel cells, Sensors
- ORR pathways in aqueous acidic solution:

$$O_{2} \xrightarrow{2 e^{-}} H_{2}O_{2} \xrightarrow{2 e^{-}} H_{2}O_{2} \xrightarrow{2 e^{-}} H_{2}O_{2}$$

$$4 e^{-}$$

$$E_{0} = 1.229 V$$

Preferred pathway for FC application: 4e-

1. ORR Catalysts

Oxygen reduction activity on various transition metal electrodes as a function of the oxygen binding energy from DFT calculations.

www.csir.co.za

J.K. Norskov et al. J. Phys. Chem. B 108 (2004) 17886

© CSIR 2013

Direct Alcohol Fuel Cells 2.

CHALLENGES:

- Sluggish reaction: • better performing ORR catalyst
- High cost of catalyst: • reduce amount of Pt, alternative catalysts
- Alcohol crossover: • alcohol tolerant catalyst

www.csir.co.za

3. Electrocatalysts

3.1.1 Electrochemical atomic layer technique

(ECALD):

Definition:

alternated electrodeposition of atomic layers of elements on a substrate, employing under-potential deposition (UPD) in which one element deposits onto another element at a voltage prior to that necessary to deposit the element onto itself

Advantages:

- ambient temperature,
- use small concentrations of precursor solutions,
- optimized solutions and potential separately

Offers atomic layer control- fundamental for controlled growth processes

our future through science

Stickney, J.L., et al., Electrodeposition of Compound Semiconductors by Electrochemical Atomic Layer Epitaxy (EC-ALE), in Encyclopedia of Electrochemistry, A.J. Bard and M. Stratman, Editors. 2002, Wiley-VCH: Weinheim: p. 513-560

Sequential electrodeposition coupled to Surface-limited Redoxreplacement reactions: Synthesis of multilayered Pt electrocatalyst

3.1.1 ECALD cont'd:

Noble-Metal: Pt, Pd (more abundant and cheaper than Pt)

1mM PdCl₂ + Chloride as complexing agent LB Sheridan et al., Langmuir 29 (2013) 1592

Substrate: Fuel Cell Carbon paper - small OPD

Repeat cycles: Optimal 8X- monometal, Pd8Pt8, Pt8Pd8, Pd16Pt16, Pt16Pd16, Pd16Pt8 16 PdPt co-deposition

T.S.Mkwizu, M.K. Mathe, and I. Cukrowski, <u>ECS Trans.</u> 19, 97-113 (2009) T.S.Mkwizu, M.K. Mathe, and I. Cukrowski, <u>Langmuir</u>, 26, 570 - 580 (2010) T.S Mkwizu, M.R. Modibedi, and M. K. Mathe, 219th ECS Meeting (2011) Modibedi et al., ECS Trans. 50 (21) 2013 Modibedi et al., Electrochim.Acta 128 2014

www.csir.co.za

Time-Potential curves

1. Rinse cell with BE at 0.2V,

rinse with Cu²⁺ solution

2. Cu deposition at -0.05V,

rinse with BE at -0.05V

 Rinse with Pd²⁺ solution at OCP, SLRR at OCP

PdPt: Morphology and electrochemical evaluation

PtPd: Morphology and electrochemical evaluation

(ii) 0.1 M HClO4 + O_2

csiR our future through science

(iii) Current-Potential curves

PdPt: Morphology and electrochemical

9.6mm 11:29:16

(i) 0.1 M HClO4 + N_2

(ii) 0.1 M HClO4 + O_2

PtPd: Morphology and electrochemical evaluation

(i) 0.1 M HCIO4 + N₂

Full scale counts: 21288

Pt16Pd16(2)

PdPt: Morphology and electrochemical evaluation

(iii) Current-Potential curves

PtPd: Morphology and electrochemical evaluation

Potential (V) vs Ag/AgCl

0.60

1.10

0.10

-0.40

10µm JEOL 2014/05/06 00 5.0kV SEI LM WD 11.0mm 09:26:42

CSIR

our future through science

Conclusions

Electro-Catalyst	Onset potential	Max. current
	(V) vs Ag/AgCl	(mA/cm ²)
Pd 8x	0.504	0.5415
Pt 8x	0.548	0.2892
Pd8Pt8	0.546	0.6123
Pt8Pd8	0.584	0.6369
Pd16Pt16	0.582	0.8801
Pt16Pd16	0.725	1.3538
Pd16Pt8	0.581	1.2431
16 PdPt* co-deposition	0.566	1.3477

• Different structural shapes were observed - sequence

our future through science

Future Work

- Investigate catalyst tolerance to alcohol (methanol, ethanol)
- Optimization of Pd: Pt ratio that will give same or better performance than Pt
- MEA fabrication and FC testing under active conditions
- Explore the addition of 3rd metal to PdPt catalyst: Ni, Co

Acknowledgements

- Dr Mkhulu MATHE
- Dr Kenneth OZOEMENA
- *Ms. Rapelang MOTSOENENG (MSc student)*
- Dr Lindiwe KHOTSENG (UWC)
- *National Centre for Nanostructured materials (NCNSM)*

Finances:

- CSIR-UWC cooperation fund
- NATIONAL RESEARCH FOUNDATION

THANK YOU

our future through science

© CSIR 2013

www.csir.co.za