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ABSTRACT 
 
In this paper we experimentally demonstrate a simple laser cavity that produces spatial tuneable laser modes 
from a Gaussian beam to a Flat-top beam and a Donut-beam. The laser cavity contains an opaque ring and an 
adjustable circular aperture that could be varied and thus allows for tuneability of the cavity without it being 
realigned. A digital laser with an intra-cavity spatial light modulator is used to demonstrate and confirm the 
predicated properties of the resonator. 
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1. INTRODUCTION 
 
Flat-top laser beams are very important in many various industrial applications since they provide uniform 
intensity distribution which enables even laser treatment of working surfaces1. There exist many extra-cavity 
techniques2-4 that can generate Flat-top beams with very little power loss, except that they require a fixed input 
Gaussian beam parameter. Intra-cavity generating the Flat-top beam provides a greater advantage of maximizing 
the power extraction from the laser and this has been shown by different techniques which used customised 
optical elements5-15 such as diffractive optical elements and deformable mirrors. 
 
In this work we propose an alternative technique for obtaining a Flat-top (FT) beam as the fundamental output 
of a laser cavity.  Our technique requires only an intra-cavity opaque ring as an amplitude filter in combination 
with a standard circular aperture, in a conventional laser cavity. We show that choosing certain parameters the 
cavity can be made to generate a FT beam or a Gaussian beam or a Donut beam, by merely adjusting the 
circular aperture. The mode tuneability of the cavity is shown to be easy to implement and requires no re-
alignment of the laser cavity, no new specialised optical elements. The generated modes are observed both in the 
near and far field which makes this technique very attractive for many applications since it would simplify the 
delivery of the modes on the working surfaces. We verify our concept and theoretical predictions using a 
“digital laser”16, comprising an intra-cavity spatial light modulator as a rewritable holographic mirror.   
 
 

2. CONCEPT AND SIMUTLATION 
 
It was shown theoretically in17,18 that a combination of two intra-cavity optical elements namely an opaque ring 
and circular aperture could be used to increase the discrimination of the fundamental TEM00 mode and the first 
competing mode.  In this paper we will show the combination of the two optical elements is able to transform 
the fundamental TEM00 mode to be a Flat-top beam or a quasi-Gaussian beam. We will show the transformed 
beams could be obtained by simultaneously varying the normalized radius ௔ܻ = ഐೈೌ   of the opaque ring with 
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Fig. 2. Fox-Li simulation of the far-field intensity profiles of the quasi-Gaussian (Yc = 2), flat-top (Yc = 2.5) and donut beam 
(Yc = 2.6).  The simulations were performed with a normalised ring radius of Ya = 1.5 and a ring width of 100 µm.  The 
parameters of the cavity were selected to match the experiment, namely, R = 500 mm and L = 252 mm for g ~ 0.5 at a 
wavelength of λ = 1064 nm.  
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From the simulations we also notice that the eigenvalue of the desired FT mode depends on the ring radius, its 
thickness, and also the circular aperture radius. For our simulated parameters the desired mode did not always 
have the smallest eigenvalue: for Yc setting of 2.0 (quasi-Gaussian), 2.5 (FT) and 2.6 (donut) the eigenvalue of 
the desired mode suggested that it was in fact the first, second, and third order mode, respectively. 
 
 

3. EXPERIMENTAL SETUP 
 
In order to test the simulated results we used the laser set–up shown in Fig. 3(a).  The cavity was arranged in a 
Z-shape to allow the high power pump (808 nm) to pass through the gain medium (Nd:YAG) without 
interference from the aperture and ring mask. The stable plano-concave cavity had an effective length of 252 
mm, with the circular aperture placed directly in front of the curved (R = 500 mm) output coupler of reflectivity 
80%. The output mode could be measured in both the near field and far field with imaging or Fourier 
transforming optics.  Care was taken to separate the lasing wavelength (1064 nm) from the pump light (808 nm) 
with suitable filters.  
 
 

 
Fig. 3. (a) Schematic setup of an intra-cavity SLM with diagnostic and control equipment. The High Reflectors (HR) were 
used to reflect the 808 nm or 1064 nm wavelengths. (b) SLM phase screen acted as a flat-end mirror containing an opaque 
ring of 100 μm width. 
 
 
An additional novel aspect of this experiment was the use of a “digital laser”16.  One of the cavity mirrors in the 
digital laser setup is a rewritable phase-only spatial light modulator (SLM), forming a holographic end-mirror. 
The SLM was programmed with a digital hologram representing both the flat mirror and the opaque ring, as 
shown in Fig.3 (b).  The digital laser allowed for easy optimisation of the ring radius as well as the ring 
thickness.  To vary these parameters with lithographically produced rings of varying thickness and radius would 
be time consuming and costly, and would require a realignment of the cavity for each setting.  In the digital 
laser, a new ring could be created by merely changing an image on the control PC representing the desired 
digital hologram, without any realignment. The amplitude modulation employed to realise the ring was achieved 
by complex amplitude modulation19,20 using high spatial frequency gratings in the form of so-called “checker 
boxes”. On the other side of the cavity we had a variable circular aperture which was controlled manually in 
order to get desirable parameter of Yc.  This (standard) aperture provided the tuneability of the mode. 
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4. RESULTS 
 
The output from the digital laser is shown in Fig. 4, where the near field and the far field intensity profiles of the 
quasi-Gaussian (a), Flat-top (b) and (c) Donut beams are shown.  In the first six panels (a-c) we have the results 
for a 20 μm width ring, while in the last six panels (e-f) we have the results for a 100 μm width ring.  We note 
that the spatial intensity distributions are in good agreement with the simulated Fox-Li results in Fig. 2. 
Moreover, as predicted by theory, the desired shapes are found in the far field too. The field patterns are also 
found at values of Ya and Yc close to those predicted by theory, differing by less than 10%. The small deviation 
can be attributed to minor mode size errors, e.g., due to small thermal lensing or refractive index errors. 
 

 
Fig. 4. Experimentally obtained near field and far field images of the Gaussian beam, Flat-top beam and Donut beam for ring 
width settings of (a-c): 20 μm and (d-f): 100 μm.  Gaussian beam (a and a*), Flat-top beam (b and b*) and Donut beam (c 
and c*) for Ya = 1.4, a ring width of 20 μm, and Yc = 2.0 (Gaussian), Yc = 2.3 (FT) and Yc = 2.6 (Donut).  Gaussian beam (d 
and d*), Flat-top beam (e and e*) and Donut beam (f and f*) for Ya = 1.4, a ring width of 100 μm, and Yc = 2.0 (Gaussian), 
2.3 (FT) and 2.6 (Donut).  These values are in agreement with theory. 
 
 

5. CONCULSION 
 
In conclusion, we have conceived of and then demonstrated a novel laser cavity that is mode tuneable. We have 
shown that by simply adjusting the diameter of a standard circular aperture in the cavity, the mode can be 
selected from the ubiquitous Gaussian to a Flat-top and a Donut beam. The ring mask was implemented with an 
intra-cavity holographic mirror for the convenience that this allows in testing the design parameters, but a high 
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power version, optimised for power extract, would necessarily be made with standard optics and lithographic 
processing techniques to eliminate the SLM losses. 
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