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Abstract:  Spatial light modulators are ubiquitous tools for wavefront
control and laser beam shaping but have traditionally been used with
monochromatic sources due to the inherent wavelength dependence of the
calibration process and subsequent phase manipulation. In this work we
show that such devices can also be used to shape broadband sources without
any wavelength dependence on the output beam’s phase. We outline the
principle mathematically and then demonstrate it experimentally using a
supercontinuum source to shape rotating white-light Bessel beams carrying
orbital angular momentum.
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1. Introduction

Spatial light modulators (SLMs) are now standard tools for the shaping and control of light,
having found applications in fields ranging from holographic optical trapping and tweezing
[1-4], laser beam shaping and characterization [5-9] and imaging [10] to name but a few. These
devices are primarily limited in two ways. First, the SLM has a finite range of phase change
which it can introduce. This limit is usually compensated for by calibrating the device for
a specific wavelength and then employing phase wrapping techniques. Second, SLMs cannot
modify all the incident light, the extent of which depends on the type of SLM. This unmodulated
light remains on-axis (at the optical center) and causes unwanted interference. To compensate
for this unmodulated light a blazed grating is usually applied to the phase mask, thereby shifting
the desired beam off-axis to the position of the first diffraction order of the blazed grating.
Both compensation methods use phase wrapping, which is wavelength dependent. As such,
SLMs have traditionally found use in applications where monochromatic sources are used.
Yet spatial and temporal shaping of ultrafast lasers [11-15] and supercontinuum/white light
sources [16-20] has become topical of late due to the numerous applications they have found.
Various approaches have been explored to achieve this, often incorporating specialised optics
such as prisms or diffractive elements [21-24] in conjuction with SLMs.

Here we outline how the aforementioned limitations of SLMs may in fact be used as self-
compensating mechanisms to allow wavefront shaping of broadband light sources. We show
mathematically that when operated in the first diffraction order with a blazed grating present,
the SLM correctly shapes any wavelength of light, albeit at the expense of a reduced efficiency.
We verify our model experimentally with a supercontinuum source before demonstrating the
efficacy of the approach by controlling the rotation of white-light orbital angular momentum
(OAM) carrying Bessel beams. Our results open new possibilities for the control of ultrafast,
supercontinuum and other broadband sources with SLMs. We also offer a cautionary tale in
how SLMs are calibrated as well as their use for temporal shaping of the spectral components
of ultrafast lasers.

2. Mathematical model

In this section the known Fourier transform relations are used to investigate the effect of incor-
rect phase scaling on the SLM. SLMs are pixelated devices that allow one to change the relative
phase of a wave incident at each pixel. For practical purposes the SLM is calibrated at a work-
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ing wavelength (1) such that the device linearly maps intensities selected by gray-levels, L, to
phase shifts,¢, by ¢ (L) = 2zmL /256 where L € [0..255] and m € N. This behaviour constitutes
ideal or correct phase scaling. In order to formalize incorrect phase scaling we define a constant
that denotes the difference between the actual and the ideal phase shift in the form of a ratio
referred to as the difference constant, ky. Incorrect phase scaling can therefore be expressed
as, ¢ (L) = kq(L)2wmL /256 where we have introduced a phase scaling function kq(L) which is
dependent on the selected gray-level, L. Constant incorrect phase scaling (CIPS) refers to the
case where the phase scaling function is independent of the selected gray-level, ky(L) = kg. It
is well-known that as with diffractive optical elements, the phase shift introduced by the SLM
is dependent on wavelength through the dynamic phase shift ®qy, = 2znd/A, where n and
d are the pixel refractive index and depth, respectively. The result is incorrect phase scaling
at wavelengths other than the calibrated wavelength. If we assume the incorrect phase scaling
is constant then kg will only be dependent on wavelength. We will refer to working with a
broadband source or at a different wavelength than the calibration wavelength collectively as
working off-wavelength. Now we recall that the SLM is limited in that only a finite difference
in phase may be applied between any two pixels. To overcome this limitation, phase wrapping
is applied to the phase mask function, usually modulo 27. The results we are about to show
do not alter if another maximum phase value is selected. If working off-wavelength then CIPS
occurs and the wrapping is done about 27ky. The value of kg can easily be determined from
Kd = Omeas/ Dideal Where dmeas and ¢igeal refer to the measured and ideal phase changes, respec-
tively. When a blazed grating is added to the desired phase mask, CIPS affects this mask too.
Here we show, for the first time, that when a blazed grating combined with some desired phase
mask is affected by CIPS, one can use the spatial separation of orders caused by the blazed
grating to compensate for the mismatch in phase, albeit at the expense of amplitude loss.

For the purpose of simplifying the following analysis we will consider only one dimensional
phase mask functions with the understanding that the same principles apply when working in
two dimensions. We begin with a generalized optical field described by,

F) = [f()lexp(io (), @)

which is multiplied by a linear phase gradient g(x) = exp(i%”x) to move the desired field away
from the optical center. The linear phase gradient is chosen such that it would have a pitch p
when wrapped around 27r. One can write an expression for the product u(x) as,

) =109 <9 =1 9lexp i [0 00+ x| ). @

If one considers the effect of CIPS when u(x) is wrapped about 2rcky, then one can show (see
Section 5.1) that the resulting field after wrapping is

b (9 = isinc(n[n—kdmux)exp(in[¢(x>+2§D, ®

N=—oo
where we have substituted m=1 =1 and ®(x) = ¢ (x) + %”x into Eq. 14 (see Section 5.1). The

resultant equation, Eq. 3, can be reorganised more concisely as,

) = Y sinc(n[nkd1>|f<x>|exp<in¢<x>>exp(iz’;”x)7 @)

N=—oo
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which can be Fourier transformed to find the expression in the spatio spectral domain,

Uwr (X) =21 i sinc (m[n—Kkq]) x

S {]t (9] exp (ing (x))} ® & (X—Z’;”). ©)

From Eq. (5) one can make some interesting observations. It is evident that for each na function
exists, | f (x)|exp (ing (X)), where its phase is independent of ky. Further, the Fourier transform
of this function will be shifted due to the applied phase gradient which results in a grating, by

convolution with & ( X — ZLp” , to a spatial position which is dependant on the order n and the

pitch p. It is clear that it is possible to separate the different order functions using a simple spa-
tial filter. It can also be seen that kg will determine the intensity of the diffraction orders accord-
ing to sinc ( [n—ky]). In other words, the holograms can be executed wavelength-independent
if one is prepared to tolerate some intensity loss due to operating off-wavelength.

To illustrate the point, consider the usual case where a spatial filter is used to select only
the first diffraction order, i.e.,, n =1, and Eq. (2) is substituted into Eqg. (5) with Ay =
sinc (m[1 —kq)),

Unr (X) [n=1 = 27TA13{|f(x)exp(i¢(x))}®5(x_2§>
2
= 2nAF (X — p) . (6)

It can be seen that the result is the Fourier transform of the desired (ideal) function but spatially
shifted. We see that CIPS, in the first diffraction order of a blazed grating, does not affect
the desired phase but rather the overall transmission intensity through the factor A;. Note that
the same can be said for higher orders, n > 1, since the phase function for higher orders is

exp(ing (x)).
3. Experimental methodology and results

We demonstrate that it is possible to do wavefront shaping with an SLM on broadband sources
by first illustrating the wavelength dependent phase shift with a two-spot zero-order interfer-
ence experiment. Following this, we show the wavelength independent phase shift with two
additional experiments using the first diffraction order from a blazed grating. The experimen-
tal set-up is depicted in Fig. 1. In all three experiments a variable wavelength laser (Fianium
supercontinuum SC400-4) was expanded through a 3x telescope and directed towards a phase-
only SLM (HoloEye, PLUTO-VIS, with 1920x1080 pixels of pitch 8 um). The SLM was
calibrated for a working wavelength of A = 715 nm. The resulting optical fields, generated by
either the physical mask [Fig. 1(a)] or the encoded holograms [Fig. 1(b) and 1(c)], were relay
imaged through a spatial filtering set-up and then progated through a Fourier lens to observe
the far field. Far field images were recorded with an objective lens and a camera (Logitec).
Single wavelength and multi-wavelength measurements were made with (division 1 in red) and
(division 2 in blue) respectively.

When performing phase measurements at single wavelengths (selected by an acousto-optic
tunable filter within the source), the 4f imaging set-up (division 1) was implemented, while
for the white light experiments this was replaced by the set-up shown in division 2. The latter
was used to compensate for the angular dispersion caused by the blazed grating (since different
wavelengths have a first order at differing angles). The compensation was achieved by encoding
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Fig. 1. Schematic of the experimental set-up [division 1 in red: imaging system for a single
wavelength measurement; division 2 in blue: imaging system for a broadband wavelength
measurement]. L: lens (f1 = 50 mm, f2 = 150 mm, f3 and f4 = 500 mm, f5 = 300 mm);
SLM: spatial light modulator; P: pinhole; M: mirror; CM: curved mirror; KM: knife edge
mirror; O: objective; CCD: camera. (a) The physical mask used to perform the two spot
interference experiment without the blazed grating. The hologram encoded on the SLM
for (b) the digital two spot interference experiment and (c) the annular ring interference
experiment. (d) The holograms shown with the blazed grating encoded on the SLM to
assist division 2 with the compensation of the lateral spatial dispersion for the broadband
source.

identical blazed gratings on the desired hologram and the other half of the SLM, as depicted
in Fig. 1(d). Light from one half of the SLM was relay imaged with a curved mirror (CM1) to
the other half, where the imaging was done in the first diffraction order of the blazed grating.
Thus the light dispersed from the first blazed grating was recombined by the second, such that
the light exiting division 2 propagated in the same direction as that in division 1. In order
to minimize chromatic aberration a curved mirror (CM2) was used to image the output from
division 2 onto the camera. On a technical note we did not use a 90° staggered mirror after
the curved mirror (CM1), and so a slight angular difference between the light coming from
the blazed grating and that focussed back onto the second half of the SLM was observed.
This caused the spectral components to propagate at slightly different angles when exiting the
system, but for the purpose of the experiment this angular difference was deemed small enough
to be acceptable.

3.1. Wavelength dependence

In the first experiment a physical mask, shown in Fig. 1(a), was inserted in the path of the
beam as illustrated. The mask was orientated such that the light passing through each hole
illuminated adjacent sectors of the SLM: one sector was programmed with a static gray-level,
while the other cycled through a sequence of gray-levels from 0 to 255. The light from the
SLM passed through a 4f imaging set-up indicated by division 1, with the pinhole (P) removed.
The interference patterns captured by the camera were analysed to determine the phase shift
introduced by the SLM for each gray-level setting, with the results shown in Fig. 2.

In Fig. 2(a) we see that the measured phase shift scales linearly with the selected gray-level;
therefore CIPS applies and we may use our analysis from Section 2. From this data we find that
the ratio between the selected gray-level and the measured phase shift is independent of the
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Fig. 2. (a) The measured phase shift plotted against the gray-level for different wavelengths
(blue: 475 nm; green: 550 nm; red: 650 nm and black: 775 nm). (b) The ratio between
the measured and ideal phase (kq) plotted against the gray-level. (c) The ratio between the
measured and ideal phase (kq) for various wavelengths for the physical mask and (d) the
two spot hologram in the first diffraction order.

selected gray-level, i.e., kg(L,A) = kg(4), as shown in Fig. 2(b). The wavelength dependence
of kg(A) in the zero diffraction order can clearly be seen in Fig. 2(c). These results confirm the
well-known wavelength dependence of SLMs.

3.2. Wavelength independence

In the second experiment the physical mask was removed and the beam was directed onto the
SLM which was encoded, via complex amplitude modulation [9], with two spots [as shown in
Fig. 1(b)]. One spot was programmed with a static gray-level, while the other cycled through
a sequence of gray-levels from 0 to 255, thus mimicking the physical mask in the previous
experiment, but implemented digitally and with the addition of a blazed grating. The light from
the SLM then passed through a 4f imaging set-up indicated by divisions 1 and 2 in Fig. 1 for
the single and off-wavelength measurements, respectively. By considering the interference of
the two plane waves (assigned by each of the spots) and introducing a phase shift in one of the
waves (due to the gray-level change in the second spot), a shift in the position of the interference
fringes was observed. This shift was measured and is depicted in Figs 3(a) and 3(b) for a single
wavelength (A = 532 nm) and the broadband source, respectively. Accompanying videos of
the interference fringes moving as the gray-level varies are presented as inserts. In Fig. 3(a)
it is evident that the interference fringes shift linearly in agreement with the encoded gray-
level. The measurements for the broadband source, shown in Fig. 3(b), confirms that when a
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blazed grating is added the CIPS due to the hologram (i.e. the two-spot hologram) and the
blazed in combination with wrapping spreads the resultant orders such that no undesired phase
modulation results in the first order as a function of wavelength. Analysis of this data is shown
in Fig. 2(d), alongside the previous data in Fig. 2(c). The results offer compelling evidence that
wavalength independent wavefront control is possible when operating in the first order with a
blazed grating since ky = 1 for all wavelengths.
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Fig. 3. The measured interference fringe shift plotted against the encoded phase difference
for (a) a single wavelength (A = 532 nm) and (b) the broadband source. Corresponding
videos illustrating the shift in the interference pattern can be viewed as (Media 1) and
(Media 2), respectively.

3.3. Rotating white-light Bessel beams

Finally, we apply the concept for the arbitrary shaping of a supercontinuum beam. We repeat
previous experiments that were performed using monochromatic sources with our supercontin-
uum beam. As an example we consider the creation and rotation of superpositions of higher-
order Bessel beams carrying orbital angular momentum [25,26]. This calls for control of the az-
imuthal phase, phase velocity and amplitude distribution of the fields and in this sense is a good
example of a general problem. The required holograms take the form of two ring-slits, each
possessing an azimuthal phase of equal order but opposite handedness (I; = +3 and |, = —3)
as shown in Fig. 1(c). The holograms can be defined by the following transmission function

[ exp(ilg) ifR>r>R-A
tr.¢) = { exp(—il¢)exp(ip) ifR<r<R+A "’ 0

where | is the azimuthal index, ¢ the azimuthal angle, ¢ the phase difference introduced in
the outer ring-slit, R the radius of the two ring-slits and A their widths. The amplitude of the
resulting optical field, observed in the far field, is defined as

ur,9) = J(r)exp(il¢)+J_i(r)exp(—il¢)exp(ip), ®)

where Ji(r) denotes the I-th order Bessel function. When the orders, |l|, of the two azimuthal
phases are equal but of opposite handedness, a “petal” structure is produced, where the number
of petals is denoted by 2|l|. These non-diffracting petal-like modes rotate as they propagate
and have been studied in detail elsewhere [25, 26]. A phase difference between the two an-
nular rings was varied between 0 and 27, resulting in a rotation of the interference (or petal)
pattern, which was measured by observing the angular displacement of the petals. This angu-
lar displacement (or rotation) was measured and is depicted in Figs 4(a) and 4(b) for a single
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wavelength (A = 532 nm) and the broadband source, respectively. Accompanying videos of
the petals rotating as the gray-level varies are presented as inserts. In Fig. 4(a) it is evident
that the petals rotate linearly in agreement with the encoded gray-level. The measurements for
the broadband source contained in Fig. 4(b) also show that the rotation rate is linear in agree-
ment with the encoded gray-level, confirming that no undesired phase modulation occurs as a
function of the wavelength.
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Fig. 4. The measured petal rotation rate plotted against the encoded phase difference for
(@) a single wavelength (A =532 nm) and (b) the broadband source. Corresponding videos
illustrating the rotation in the interference pattern can be viewed as (Media 3) and (Media
4), respectively.

4, Conclusion

We have derived mathematically an expression which describes the decomposition of an in-
put function when CIPS is present. The mathematical model shows that the phase function is
separated into orders, each of which scale linearly by the order number. We have shown ex-
perimentally that the resultant phase function behaves ideally in the first order when working
at wavelengths different to the calibration wavelength. We have shown that broadband spatial
beam shaping is possible if a reduction in efficiency can be tolerated. This result also has impli-
cations for set-ups utilising 2D SLMs to do temporal shaping where the efficiency of the first
order of blazed diffraction gratings are modified to change the amplitude of spectral compo-
nents [15].

There is an important corollary to this work that takes its impact beyond that of shaping
broadband sources: the influence of calibration on SLM performance. Our results suggest that
good results in the first diffraction order do not imply a well calibrated device, since the first
order, when operated with a blazed grating, will always produce the correct results. As an
outlook, we note that these results should extrapolate to any periodic phase grating, which
would imply that if optical efficiency is not a concern, then calibration of the SLM may not
even be necessary.

5. Appendix Mathematical model

In this appendix Fourier transform analysis is used to investigate the effect of phase wrapping
about 2rlky due to CIPS, where | € N. We also show that the general form of the blazed grating
can be decomposed into the sum of weighted linear phase gradients.
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5.1. Constant incorrect phase scaling (CIPS) and phase wrapping

CIPS occurs when one has a constant scaling factor kg which is multiplied by all phase values
in an input phase function. This results in non-ideal phase wrapping. The ideal wrapping value
for a phase mask function is 2zl therefore non-ideal wrapping is done about a phase 27l ky.

Below CIPS is taken into account for any phase function when non-ideal wrapping is applied.
If one considers a complex valued input function as the sum of point sources given by,

f(x) = |f(x1)| € P18 (x—xq) + | f (x2)] €28 (x— xp)

+ | (x3)| 4?35 (x—x3) + ..., 9)
then each point source could be expanded such that it takes the form of a linear phase gradient
as follows,

. ikg®m
|f (xm)|€MPMS (x—xm) = |f (Xm)|e @ *& (X—Xm), where me N. (10)
When wrapping is applied about the position 6 = 2xlky a pitch p can be calculated for the
. . . ika®m,
linear phase gradient given by e' @ *in Eq. 10 as,
27l Xm

= S (11)

Now using the result from section 5.2, Eq. 16, one can express the linear phase for each point
. iK®my . .
source, given by e' xm *in Eq. 10, as a wrapped phase gradient about the point 6 = 27lkg,

g(x,znlkd,zgx’“> = Y sinc(mln—Ikg)e Rax (12)

N=—co

From the above method one can write an expression for the initial function given by Eqg. 9,
when wrapping about 2rlky is applied, by substituting all the phase constants with the wrapped
equation given by Eq. 12 to find the wrapped expression of the function,

fuur (X) = i sinc(n[nflkd])[|f(x1)|ei?‘b16(xfx1)+|f(x2)|ei?‘1’26(x7x2)

N=—oo

+|f(x3)|ei?‘b36(x—x3)+...}, (13)

which one can simplify to,
fr () = 110 S, sinc(xln—lkg)e F). (14)

Thus one can see that the function when wrapped becomes the amplitude of the function multi-
plied by the sum of weighted whole number multiples of the phase of the function and we have
derived a simple way to apply wrapping to any input function.

5.2.  Wrapping of a linear phase gradient.

i 0
Given a linear phase gradient e' * wrapped around a phase of 6 such that the resultant sections
have a pitch p, see Fig. 5, which can be written as a composition of functions,

gx) = eigxrect(ix)@@ i 8 (x—np).

N=—oo
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Fig. 5. Cross-section view of a linear phase gradient wrapped around a phase of 6 with
sections spaced with a pitch p.

p x

The Fourier transform of g(x) can be derived and simplified,
G(X) = 218 (x- 6) @sinc(Bx) <Y (x— 2"”)
P 2/ e P
. p 9]) < ( 27m)
= 2msinc| - [X——| ] x O X———
(2 [ p n:z,w P

_ < p|2zn 6 2ztn
- 2 3 sno(3 |- 5])o (- )
= 2z i sinc <7r {n;)6<ngn> (15)

N=—oo

Using the inverse Fourier transform one can express the resultant equation, Eq. 15, as,

g(x,0,p) = i sinc (n :n— ;D e, (16)

N=—oo
Thus we have shown that,
¢l P¥rect (Zx) ® Y 8(x—np) = Y sinc <7r [n— 6]) e,
p N=—oo N=—oo 2r

which means one can express any wrapped linear phase gradient as the weighted sum of linear
phase gradients.
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