
Cluster-based tangible programming

Andrew Cyrus Smith

CSIR Meraka Institute and University of South Africa

Pretoria, South Africa

acsmith@csir.co.za

Abstract—Clustering is the act of grouping items that belong

together. In this paper we explore clustering as a means to

construct tangible program logic, and specifically as a means to

use multiple tangible objects collectively as a single tangible

program parameter. We introduce T-logo, a simple tangible

programming environment developed to test the concept of

cluster-based programming. Although the principle of cluster-

based programming is technology agnostic, we describe it here by

means of a vision-based system. We further introduce the

concepts of Cluster Marker, Cluster Marker Position, and

Cluster Marker Zone to describe the principles on which cluster-

based programming is based.

Keywords—construct, physical program logic, intangible

program logic, tangible program logic, free-form construction,

cluster.

I. INTRODUCTION

T-Logo is based on the Logo [1] programming language
and serves as a vehicle to test the tangible clustering concept.
Although T-logo makes use of the reacTIVision framework
[3], many other position and orientation mechanisms could be
used with adaptation, for instance the Microsoft Surface [2].

To construct tangible program logic, a tangible object with
a fiducial attached to its underside is placed on a construction
surface. A camera is located below the construction surface,
pointing up towards the surface and detects the fiducial through
the translucent glass. Images captured by this camera are
relayed by the camera control software to the reacTIVision
image analysis software where the position and orientation of
the fiducial are determined. The position and orientation of all
the fiducials visible to the camera are then sent by means of the
TUIO [3] protocol for processing by the T-Logo application
software.

This paper’s main contribution is an alternative physical
programming mechanism based on clusters of objects
positioned on a flat surface.

This paper is structured as follows. Section II briefly lists
some tangible programming systems and their dimensionality.
Section III is an overview of the methodology we followed in
our research project. Section IV provides a high-level overview
of the project. Section V describes the concept of clustering
and the associated technical terminology. In section VI we
describe T-logo and its implementation and an example of how
it is used. Section VII describes the modes of the T-logo
programming environment. Section VIII gives an overview of
our tests. Section IX gives our initial observations of this
project, and Section X concludes.

II. RELATED TANGIBLE PROGRAMMING SYSTEMS

Tangible program logic can be classified along many lines.
Here we have classified them according to the number of
Cartesian dimensions in which the logic is interpreted. In order
to provide context, we give examples of intangible program
logic for the one and two-dimensional cases.

A. One Cartesian dimension (one-dimensional)

Intangible textual program logic, such as constructed using
the C-language, is one-dimensional. Examples of one-
dimensional tangible program logic are those constructed using
programming environments such as TORTIS – slot machine
[4], GameBlocks [5], T-Maze [6], Electronic blocks [7],
Navigational Blocks [8], and Robo-Blocks [9].

B. Two Cartesian dimensions (two-dimensional)

Two-dimensional intangible program logic can be
constructed in graphic form using for example the Pd
programming environment. Two-dimensional tangible logic
can be created with programming environments such as
Algoblocks [10], Flow blocks [11], Questzal [12], Tern [13],
SmartTiles [14], QuiltSnaps [15], Tangible Programming Brick
[16], reacTable [17], and Turtan [18]. reacTable and Turtan are
interactive programming systems in which the results of
program changes are immediately visible to the user.

C. Three Cartesian dimensions (three-dimensional)

Three-dimensional tangible program logic can be created
using roBlocks [19].

All the above examples seem to interpret each tangible
object as an independent entity. What is missing is a
mechanism that can interpret a cluster of similar tangible
objects as a single entity.

III. METHODOLOGY

We followed a design research approach in reaching our
research objective. Our first design was influenced by the
‘maker’ community in developing regions. This design was
evaluated and followed by additional iterations. The current
iteration as discussed here is the result of learning from prior
iterations and the researchers’ subsequent exposure to
contemporary positioning mechanisms.

A number of iterations were initiated, with some
completed, and others abandoned or adapted prior to

completion, before we have reached the current design as de-
scribed here.

IV. TANGIBLE PROGRAM LOGIC AND EXECUTION: T-LOGO

In describing T-logo we use expressions based on human
language studies. For what is usually described as commands
in ‘traditional’ programming languages, we use the term verb.
The object on which the verb acts is called a noun. If needed,
an adverb optionally describes a verb and fulfills a role similar
to the parameter used in traditional programming languages. In
this paper we limit our discussion to verbs and nouns.

In this section we describe the design principles and the
derived engineering requirements that were applied in reaching
our research goal of the current T-logo tangible programming
and execution environment.

A. T-Logo Design Principles

T-logo was designed to simplify programming for the
novice artist. Our approach to simplification was to reduce the
T-logo ‘instruction set’. Because our target group is the artist
who is looking for a tool to support her creativity as supposed
to a novice whose aim is to become a professional
programmer, the justification of this constraint can be argued.

This target group would very likely not have had prior
programming experience or exposure to a programming
environment. This afforded us an opportunity to experiment
with mechanisms that deviate significantly from existing
programming approaches. Design principles were specifically
developed to suit this target group:

1) Clustering
Cluster concepts in a way similar to how physical items in the
real world would are clustered; items that belong together are
placed together. It appears that people experience it as ‘natural’
to put things together that ‘belong’ together. For example,
when clearing one’s office desk the pens and pencils are kept
together but separate from the piles of printed journal pages.

2) “Soft” Failure
Syntax errors should not prevent the program from executing.
Consider for example how a paint-by-numbers painting can be
completed and viewed even when the incorrect color/number
mapping has been used at places.

3) Tangible Artifacts
Combinations of tangible artifacts represent the logic of the
computer program instead of intangible symbols on a two-
dimensional computer screen.

B. T-logo Engineering Requirements

Once we had established the design principles we derived
engineering requirements that would adhere to these principles.
We next describe the resulting engineering requirements that
address each of the three design principles.

1) Clustering
Assuming that the programmer clusters objects as they are

perceived to belong together, we designed the programming
environment that uses a marker to denote a cluster. We call this
the “cluster marker” (CM). Around this marker a circular
region of a fixed radius is identified. This circular region is
also called the “zone of influence”. Our algorithm assumes that
all objects located within this circular region are to be
“associated” with each other, and any object beyond this
circular region not to be associated with the objects inside this
region.

2) Soft Error Handling
 We engineered recovery from anticipated errors by

assigning fixed default values for adverbs if they are not
explicitly present in the tangible pro-gram logic. Conversely,
in the case when no verb is present and only adverbs given,
then such a cluster is simply ignored and not interpreted
further.

3) Physical Artifacts
 Our design makes use of three-dimensional objects which

the user places on a two-dimensional construction surface.
Underneath each physical artifact is attached an optical marker
(fiducial) whose value and position is detected and stored when
the object is placed onto the construction surface. Depending
on its intended function in the program logic, a physical object
may represent either a verb or an adverb.

V. CLUSTERING

Clustering is a method of grouping tangible objects that
seemingly belong with each other (Fig. 1).

Fiducials attached to the physical objects identify the
tangible objects to the computer process tasked to cluster
objects. Each fiducial is distinguished from others by its
identification number (ID), its orientation, and its two
dimensional position on the construction surface.

A. Cluster Marker, Position, and Zone

Clustering is achieved by first identifying all fiducials with
ID = 0. This specific ID number is reserved for this purpose
only. We call a tangible object with this associated ID a Cluster
Marker (CM). The positions of the remainder fiducials are in
turn compared with the position of each CM.

The position of each CM is mapped to a plane in the digital
domain and we call this position the Cluster Marker Position
(CMP) (Fig. 2, Fig. 3, and Fig. 4). We name the area with

Fig. 1. For humans, it’s a simple task to cluster kitchen items (left) and

smaller objects (right).

radius R around the CMP the Cluster Marker Zone (CMZ). The
CMZ specifies the CMP’s ‘area of influence’.

Another tangible object, with an attached fiducial, may be
placed in close proximity to the CM. If this object falls within
the CMZ then it is assumed to be associated with the CMP.

Fig. 2. A CMZ with a radius of R is centred on the CMP (diagram design

based on [20]).

Fig. 3. A tangible construction and equivalent digital instruction (diagram

design based on [20]).

Fig. 4. The tangible construction is replicated in the digital domain.

VI. T-LOGO

The T-logo system consists of tangible objects with
attached fiducials, the construction surface, a light source, a
web camera, camera control software, image analysis software,
and a display.

Clusters consist of at least one tangible object, called an
element. A single element can either represent an action or a
numerical value. Tangible objects are identified by their
fiducial identity (ID) and a look-up table is maintained in
computer memory which maps multiple fiducials to multiple
verbs or values. Mapping makes provision for multiple ID’s to
be mapped to the same action or value.

Clusters are sorted according to a top-bottom, left-right
sequence. Fig. 5 illustrates the top left to bottom right scanning
sequence used for detecting CMP’s in the source image. In Fig.
5, the order in which the CM’s are processed is first CM #1,
then CM #2, and then CM #3.

Fig. 5. The scanning and processing sequence.

The compilation process consists of four steps. (1) A
predefined code template is written to the target file. (2) For
each sorted Cluster, the elements contained are evaluated (Fig.
6, right) in sequence. (3) When multiple numerical values are
present in one Cluster, the values are summed and the
numerical result used in further operations. Fig. 6 shows an
example of where 90 and 30 are added to produce the result of
120. (4) A line of text code is sent to the target file for each
action type detected, along with the numerical summed value if
required (Fig. 6, left). Values are simply ignored when none are
required.

Fig. 6. Clusters (right) are interpreted and text added to a program file (left).

Fig. 7. The resultant display after repeatedly executing the five instructions in

Fig. 6.

Fig. 8. Tangible objects and what they represent.

Fig. 9. Tangible program logic and intangible result.

VII. T-LOGO MODES

The T-Logo software executes in three modes: mapping,
construction, and execution. We describe these modes next.

A. Mapping Mode

Clusters consist of at least one tangible object, called an
element. A single element can either represent a verb or a
numerical value that elaborates a verb. When the T-logo
software operates in mapping mode, a tangible object is bound
to a predefined program action or numerical value.

Tangible objects are identified by their fiducial identity
(ID) and a look-up table is maintained in computer memory
which maps multiple fiducials to multiple verbs or values.
Mapping makes provision for multiple ID’s to be mapped to
the same verb or value. However, it is possible that a particular
ID is mapped to one verb or value only.

Mapping is achieved as follows: First, the user places an
element on the construc-tion surface. Next, T-logo decodes the
fiducial marker attached to the element and prompts the user
with seven options on the computer screen. These options are
‘hard coded’ and cannot be changed by the user:

• Two options relate to the ability of the drawing turtle.
One of these is equivalent to the Logo Pen Down command,
and the other to the Pen Up command.

• Four options set the direction in which the drawing
turtle will move. These are equivalent to the Logo Forward,
Back, Left, and Right commands.

• One option allows for a numerical value to be
mapped. This option provides the ability for the user to attach a
positive integer to the element.

Finally, when the user has made the selection, the ID and
selection are stored as a data pair in computer memory.

B. Construction Mode

Construction in a tangible programming environment is
roughly equivalent to the act of programming in ‘traditional’
programming environments when text/graphic editors are
employed. In this mode the user makes use of a CM to identify
which combination of IDs should be clustered together.
Clustering is done according to the position of an element
relative to the CM’s associated CMP. If an element resides
within a particular CMZ (Fig. 3), the element is assumed to be
associated with that particular CMP.

C. Execution Mode

The execution mode follows three sequential steps: sort,
compile, and launch. We describe these steps next.

1) Sort
The construction surface is considered to be a two-

dimensional plane. Clusters are sorted according to a top-
bottom, left-right sequence. Fig. 5 illustrates the top left to
bottom right scanning sequence used for detecting CMP’s in
the source image.

Scanning is done to the same resolution as the image
received from the camera. As used in this research, the
resolution may be considered as infinitely fine.

2) Compile
Fig. 5 shows the sequence in which the example CMZ’s are

processed when the following steps are executed.

The compilation process consists of four steps. (1) A
predefined code template is written to the target file. (2) For
each sorted Cluster, the elements contained are evaluated in
sequence. (3) When multiple numerical values are present in
one Cluster, the values are summed and the numerical result
used in further operations. (4) A line of text code is sent to the
target file for each verb detected, along with the numerical
summed value if required. Values are simply ignored when
none are required.

Fig. 7 is the result when the tangible program, shown of
Fig. 4, is executed.

3) Launch
An instance of the execution environment is launched with

the target file as parameter. The result is the execution of the
target file as an independent process. Visual output is shown on
a display (Fig. 9, right).

VIII. T-LOGO TESTING

T-logo was designed to take as input tangible objects that
define program logic and display the result of program
execution on a computer display. We conducted laboratory
tests to identify and rectify problems. Steps (2) and (3) below
were repeated with various combinations of the tangible
objects.

The test required the sequential activation of the three T-
logo modes as follows:

(1) Using the mapping mode, we associated tangible
objects with program elements. Program elements include
verbs, adverbs, and CM’s. For the purpose of our test we
mapped the objects to elements as indicated by the annotations
in Fig. 8. Some of the objects were cut from cardboard stock
while others were made from colored wooden cubes. Fiducials
in the form of printed paper patterns were attached to the
bottom of each object.

(2) T-logo was then placed in the construction mode. In this
mode we arranged the 15 objects on the glass construction
surface into clusters to represent the desired program logic. Fig.
9 (left) shows the construction ready to be interpreted.

(3) With the construction completed we placed T-logo in
interpretation mode. This resulted in the display as shown in
Fig. 9, right.

IX. OBSERVATIONS

In this section we provide our initial observations in
developing T-logo cluster-based tangible programming
environment:

CMZ: The size of the CMZ is ‘hard coded’ in the T-logo
software and we had to adjust the CMZ multiple times to
achieve a usable system. Three variables have to be considered
when choosing a CMZ: (a) the CMZ should be large enough to
encompass multiple tangible objects in program constructions,
(b) the CMZ should not occupy a large portion of the
construction surface so as to leave space for other CMZ’s, (c)
the minimum size of a fiducial is determined by the usable
resolution of the camera and lighting conditions.

Using our setup, we found that we could fit five clusters in
an area of approximately 400x400mm.

Some tangible objects were marked using paper flags to
indicate their intended function (Fig. 8). The extension dowel
on which the flags were attached served as unexpected useful
handles with which to move the objects. Some cubes did not
have these extensions and required careful manipulation so as
not to disturb the surrounding objects already on the
construction surface.

The following result is not a consequence of the design but
rather the implementation thereof. A notable delay is evident
between the time when the execution mode is activated and
when the result is visible on the display. This can be explained
as follows: The current implementation makes multiple calls to
the underlying operating system. Every call adds a delay of
approximately one second to the time before the program
output is made visible. We anticipate that this delay can be

reduced by an order of magnitude by applying appropriate
software engineering thinking to the implementation.

X. CONCLUSION

We have presented and explained an approach to
constructing tangible program logic which makes use of
‘clustering’.

All the features of the fiducial design are not yet fully
exploited by T-logo. One such feature is the ability to derive
the orientation of the object to which the fiducial is attached. If
exploited, the program construction can be decoupled from the
current ‘scanning’ mechanism used in the T-logo ‘sort’ mode.
Instead, it will then be possible for the tangible objects
themselves to determine the order of interpretation by means of
their orientation relative to other objects.

It is possible that two or more CMZs intersect and we still
have to devise a mechanism to deal with such a situation.

In conclusion, we have developed an approach to tangible
programming which makes use of clusters of objects grouped
in close proximity to each other so that they are interpreted
collectively as a single program parameter.

ACKNOWLEDGMENT

This research was sponsored in part by the South African
Department of Science and Technology.

REFERENCES

[1] B. Harvey, “Logo,” in Encyclopedia of Computer Science,

Chichester, UK: John Wiley and Sons Ltd., 2000, pp.

1035–1038.

[2] J. Wall, “Demo I Microsoft Surface and the Single View

Platform,” in Collaborative Technologies and Systems,

2009. CTS ’09. International Symposium on, 2009, pp.

xxxi–xxxii.

[3] M. Kaltenbrunner, “reacTIVision and TUIO: a tangible

tabletop toolkit,” in Proceedings of the ACM International

Conference on Interactive Tabletops and Surfaces, 2009,

pp. 9–16.

[4] R. Perlman, “Using computer technology to provide a

creative learning environment for preschool children.,”

MIT Artificial Intelligence Lab, May 1976.

[5] A. C. Smith, “Using magnets in physical blocks that behave

as programming objects,” in TEI ’07: Proceedings of the

1st international conference on Tangible and embedded

interaction, 2007, pp. 147–150.

[6] D. Wang, C. Zhang, and H. Wang, “T-Maze: A tangible

programming tool for children,” in IDC2011, 2011.

[7] P. Wyeth and H. C. Purchase, “Tangible programming

elements for young children,” in CHI ’02: CHI ’02

extended abstracts on Human factors in computing systems,

2002, pp. 774–775.

[8] K. Camarata, E. Y.-L. Do, B. R. Johnson, and M. D. Gross,

“Navigational blocks: navigating information space with

tangible media,” in IUI ’02: Proceedings of Intelligent user

interfaces, 2002, pp. 31–38.

[9] A. Sipitakiat and N. Nusen, “Robo-Blocks: designing

debugging abilities in a tangible programming system for

early primary school children,” in IDC, 2012, pp. 98–105.

[10] H. Suzuki and H. Kato, “Interaction-level support for

collaborative learning: AlgoBlock - an open programming

language,” in CSCL ’95: The first international conference

on Computer support for collaborative learning, 1995, pp.

349–355.

[11] O. Zuckerman, S. Arida, and M. Resnick, “Extending

tangible interfaces for education: digital Montessori-

inspired manipulatives,” in CHI ’05: Proceedings of the

SIGCHI conference on Human factors in computing

systems, 2005, pp. 859–868.

[12] M. S. Horn and R. J. K. Jacob, “Tangible

programming in the classroom: a practical approach,” in

CHI ’06: CHI ’06 extended abstracts on Human factors in

computing systems, 2006, pp. 869–874.

[13] M. S. Horn and R. J. K. Jacob, “Tangible

programming in the classroom with tern,” in CHI ’07: CHI

’07 extended abstracts on Human factors in computing

systems, 2007, pp. 1965–1970.

[14] N. Elumeze and M. Eisenberg, “SmartTiles: mobility

and wireless programmability in children’s construction

and crafts,” in WMTE ’05: Proceedings of the IEEE

International Workshop on Wireless and Mobile

Technologies in Education, 2005, pp. 230–237.

[15] L. Buechley, N. Elumeze, C. Dodson, and M.

Eisenberg, “Quilt Snaps: a fabric based computational

construction kit,” in IEEE International Workshop on

Wireless and Mobile Technologies in Education, 2005, p.

3pp.

[16] T. S. McNerney, “Tangible Programming Bricks: An

approach to making programming accessible to everyone,”

Massachusetts Institute of Technology, 1999.

[17] S. Jorda, M. Kaltenbrunner, G. Geiger, and R.

Bencina, “The reacTable,” in Proceedings of the

International Computer Music Conference (ICMC 2005),

2005.

[18] D. Gallardo, C. F. Julia, and S. Jorda, “TurTan: A

tangible programming language for creative exploration,”

in TABLETOP 2008. 3rd IEEE International Workshop on

Horizontal Interactive Human Computer Systems, 2008,

vol. 10, no. 4, pp. 89–92.

[19] E. Schweikardt and M. D. Gross, “The robot is the

program: interacting with roBlocks,” in TEI ’08:

Proceedings of the 2nd international conference on

Tangible and embedded interaction, 2008, pp. 167–168.

[20] H. Ishii, “Human-computer interaction: design issues,

solutions and applications,” A. Sears and J. A. Jacko, Eds.

CRC Press, 2009, pp. 141–159.

