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Abstract—Clustering is the act of grouping items that belong 

together. In this paper we explore clustering as a means to 

construct tangible program logic, and specifically as a means to 

use multiple tangible objects collectively as a single tangible 

program parameter. We introduce T-logo, a simple tangible 

programming environment developed to test the concept of 

cluster-based programming. Although the principle of cluster-

based programming is technology agnostic, we describe it here by 

means of a vision-based system. We further introduce the 

concepts of Cluster Marker, Cluster Marker Position, and 

Cluster Marker Zone to describe the principles on which cluster-

based programming is based. 

Keywords—construct, physical program logic, intangible 

program logic, tangible program logic, free-form construction, 

cluster. 

I.  INTRODUCTION 

T-Logo is based on the Logo [1] programming language 
and serves as a vehicle to test the tangible clustering concept. 
Although T-logo makes use of the reacTIVision framework 
[3], many other position and orientation mechanisms could be 
used with adaptation, for instance the Microsoft Surface [2]. 

To construct tangible program logic, a tangible object with 
a fiducial attached to its underside is placed on a construction 
surface. A camera is located below the construction surface, 
pointing up towards the surface and detects the fiducial through 
the translucent glass. Images captured by this camera are 
relayed by the camera control software to the reacTIVision 
image analysis software where the position and orientation of 
the fiducial are determined. The position and orientation of all 
the fiducials visible to the camera are then sent by means of the 
TUIO [3] protocol for processing by the T-Logo application 
software. 

This paper’s main contribution is an alternative physical 
programming mechanism based on clusters of objects 
positioned on a flat surface. 

This paper is structured as follows. Section II briefly lists 
some tangible programming systems and their dimensionality. 
Section III is an overview of the methodology we followed in 
our research project. Section IV provides a high-level overview 
of the project. Section V describes the concept of clustering 
and the associated technical terminology.  In section VI we 
describe T-logo and its implementation and an example of how 
it is used. Section VII describes the modes of the T-logo 
programming environment. Section VIII gives an overview of 
our tests. Section IX gives our initial observations of this 
project, and Section X concludes. 

II. RELATED TANGIBLE PROGRAMMING SYSTEMS 

Tangible program logic can be classified along many lines. 
Here we have classified them according to the number of 
Cartesian dimensions in which the logic is interpreted. In order 
to provide context, we give examples of intangible program 
logic for the one and two-dimensional cases. 

A. One Cartesian dimension (one-dimensional) 

Intangible textual program logic, such as constructed using 
the C-language, is one-dimensional. Examples of one-
dimensional tangible program logic are those constructed using 
programming environments such as TORTIS – slot machine 
[4], GameBlocks [5], T-Maze [6], Electronic blocks [7], 
Navigational Blocks [8], and Robo-Blocks [9]. 

B. Two Cartesian dimensions (two-dimensional) 

Two-dimensional intangible program logic can be 
constructed in graphic form using for example the Pd 
programming environment. Two-dimensional tangible logic 
can be created with programming environments such as 
Algoblocks [10], Flow blocks [11], Questzal [12], Tern [13], 
SmartTiles [14], QuiltSnaps [15], Tangible Programming Brick 
[16], reacTable [17], and Turtan [18]. reacTable and Turtan are 
interactive programming systems in which the results of 
program changes are immediately visible to the user. 

C. Three Cartesian dimensions (three-dimensional) 

Three-dimensional tangible program logic can be created 
using roBlocks [19]. 

All the above examples seem to interpret each tangible 
object as an independent entity. What is missing is a 
mechanism that can interpret a cluster of similar tangible 
objects as a single entity.  

III. METHODOLOGY 

We followed a design research approach in reaching our 
research objective. Our first design was influenced by the 
‘maker’ community in developing regions. This design was 
evaluated and followed by additional iterations. The current 
iteration as discussed here is the result of learning from prior 
iterations and the researchers’ subsequent exposure to 
contemporary positioning mechanisms.  

A number of iterations were initiated, with some 
completed, and others abandoned or adapted prior to 



completion, before we have reached the current design as de-
scribed here. 

IV. TANGIBLE PROGRAM LOGIC AND EXECUTION: T-LOGO 

In describing T-logo we use expressions based on human 
language studies. For what is usually described as commands 
in ‘traditional’ programming languages, we use the term verb. 
The object on which the verb acts is called a noun. If needed, 
an adverb optionally describes a verb and fulfills a role similar 
to the parameter used in traditional programming languages. In 
this paper we limit our discussion to verbs and nouns.  

In this section we describe the design principles and the 
derived engineering requirements that were applied in reaching 
our research goal of the current T-logo tangible programming 
and execution environment.  

A. T-Logo Design Principles 

T-logo was designed to simplify programming for the 
novice artist. Our approach to simplification was to reduce the 
T-logo ‘instruction set’. Because our target group is the artist 
who is looking for a tool to support her creativity as supposed 
to a novice whose aim is to become a professional 
programmer, the justification of this constraint can be argued.  

This target group would very likely not have had prior 
programming experience or exposure to a programming 
environment. This afforded us an opportunity to experiment 
with mechanisms that deviate significantly from existing 
programming approaches. Design principles were specifically 
developed to suit this target group:  

1) Clustering  
Cluster concepts in a way similar to how physical items in the 
real world would are clustered; items that belong together are 
placed together. It appears that people experience it as ‘natural’ 
to put things together that ‘belong’ together. For example, 
when clearing one’s office desk the pens and pencils are kept 
together but separate from the piles of printed journal pages. 

2) “Soft” Failure 
Syntax errors should not prevent the program from executing. 
Consider for example how a paint-by-numbers painting can be 
completed and viewed even when the incorrect color/number 
mapping has been used at places. 

3) Tangible Artifacts 
Combinations of tangible artifacts represent the logic of the 
computer program instead of intangible symbols on a two-
dimensional computer screen. 

B. T-logo Engineering Requirements 

Once we had established the design principles we derived 
engineering requirements that would adhere to these principles. 
We next describe the resulting engineering requirements that 
address each of the three design principles. 

1) Clustering  
Assuming that the programmer clusters objects as they are 

perceived to belong together, we designed the programming 
environment that uses a marker to denote a cluster. We call this 
the “cluster marker” (CM). Around this marker a circular 
region of a fixed radius is identified. This circular region is 
also called the “zone of influence”. Our algorithm assumes that 
all objects located within this circular region are to be 
“associated” with each other, and any object beyond this 
circular region not to be associated with the objects inside this 
region. 

2) Soft Error Handling 
 We engineered recovery from anticipated errors by 

assigning fixed default values for adverbs if they are not 
explicitly present in the tangible pro-gram logic. Conversely, 
in the case when no verb is present and only adverbs given, 
then such a cluster is simply ignored and not interpreted 
further. 

3) Physical Artifacts 
 Our design makes use of three-dimensional objects which 

the user places on a two-dimensional construction surface. 
Underneath each physical artifact is attached an optical marker 
(fiducial) whose value and position is detected and stored when 
the object is placed onto the construction surface. Depending 
on its intended function in the program logic, a physical object 
may represent either a verb or an adverb. 

V. CLUSTERING 

Clustering is a method of grouping tangible objects that 
seemingly belong with each other (Fig. 1).  

Fiducials attached to the physical objects identify the 
tangible objects to the computer process tasked to cluster 
objects. Each fiducial is distinguished from others by its 
identification number (ID), its orientation, and its two 
dimensional position on the construction surface.  

A. Cluster Marker, Position, and Zone 

Clustering is achieved by first identifying all fiducials with 
ID = 0. This specific ID number is reserved for this purpose 
only. We call a tangible object with this associated ID a Cluster 
Marker (CM). The positions of the remainder fiducials are in 
turn compared with the position of each CM.  

The position of each CM is mapped to a plane in the digital 
domain and we call this position the Cluster Marker Position 
(CMP) (Fig. 2, Fig. 3, and Fig. 4). We name the area with 

 

Fig. 1. For humans, it’s a simple task to cluster kitchen items (left) and 

smaller objects (right). 



radius R around the CMP the Cluster Marker Zone (CMZ). The 
CMZ specifies the CMP’s ‘area of influence’. 

Another tangible object, with an attached fiducial, may be 
placed in close proximity to the CM. If this object falls within 
the CMZ then it is assumed to be associated with the CMP. 

 

Fig. 2. A CMZ with a radius of R is centred on the CMP (diagram design 

based on [20]). 

 

 

Fig. 3. A tangible construction and equivalent digital instruction (diagram 

design based on [20]). 

 

 

 

Fig. 4. The tangible construction is replicated in the digital domain. 

VI. T-LOGO 

The T-logo system consists of tangible objects with 
attached fiducials, the construction surface, a light source, a 
web camera, camera control software, image analysis software, 
and a display. 

Clusters consist of at least one tangible object, called an 
element. A single element can either represent an action or a 
numerical value. Tangible objects are identified by their 
fiducial identity (ID) and a look-up table is maintained in 
computer memory which maps multiple fiducials to multiple 
verbs or values. Mapping makes provision for multiple ID’s to 
be mapped to the same action or value. 

Clusters are sorted according to a top-bottom, left-right 
sequence. Fig. 5 illustrates the top left to bottom right scanning 
sequence used for detecting CMP’s in the source image. In Fig. 
5, the order in which the CM’s are processed is first CM #1, 
then CM #2, and then CM #3. 



 

Fig. 5. The scanning and processing sequence. 

The compilation process consists of four steps. (1) A 
predefined code template is written to the target file. (2) For 
each sorted Cluster, the elements contained are evaluated (Fig. 
6, right) in sequence. (3) When multiple numerical values are 
present in one Cluster, the values are summed and the 
numerical result used in further operations. Fig. 6 shows an 
example of where 90 and 30 are added to produce the result of 
120. (4) A line of text code is sent to the target file for each 
action type detected, along with the numerical summed value if 
required (Fig. 6, left). Values are simply ignored when none are 
required. 

 

Fig. 6. Clusters (right) are interpreted and text added to a program file (left). 

 

 

Fig. 7. The resultant display after repeatedly executing the five instructions in 

Fig. 6. 

 

 

Fig. 8. Tangible objects and what they represent. 

 

 
Fig. 9. Tangible program logic and intangible result. 

VII. T-LOGO MODES 

The T-Logo software executes in three modes: mapping, 
construction, and execution. We describe these modes next. 

A. Mapping Mode  

Clusters consist of at least one tangible object, called an 
element. A single element can either represent a verb or a 
numerical value that elaborates a verb. When the T-logo 
software operates in mapping mode, a tangible object is bound 
to a predefined program action or numerical value. 

Tangible objects are identified by their fiducial identity 
(ID) and a look-up table is maintained in computer memory 
which maps multiple fiducials to multiple verbs or values. 
Mapping makes provision for multiple ID’s to be mapped to 
the same verb or value. However, it is possible that a particular 
ID is mapped to one verb or value only. 

Mapping is achieved as follows: First, the user places an 
element on the construc-tion surface. Next, T-logo decodes the 
fiducial marker attached to the element and prompts the user 
with seven options on the computer screen. These options are 
‘hard coded’ and cannot be changed by the user: 

• Two options relate to the ability of the drawing turtle. 
One of these is equivalent to the Logo Pen Down command, 
and the other to the Pen Up command.  



• Four options set the direction in which the drawing 
turtle will move. These are equivalent to the Logo Forward, 
Back, Left, and Right commands.  

• One option allows for a numerical value to be 
mapped. This option provides the ability for the user to attach a 
positive integer to the element.  

Finally, when the user has made the selection, the ID and 
selection are stored as a data pair in computer memory. 

B. Construction Mode 

Construction in a tangible programming environment is 
roughly equivalent to the act of programming in ‘traditional’ 
programming environments when text/graphic editors are 
employed. In this mode the user makes use of a CM to identify 
which combination of IDs should be clustered together. 
Clustering is done according to the position of an element 
relative to the CM’s associated CMP. If an element resides 
within a particular CMZ (Fig. 3), the element is assumed to be 
associated with that particular CMP.  

C. Execution Mode 

The execution mode follows three sequential steps: sort, 
compile, and launch. We describe these steps next. 

1) Sort 
The construction surface is considered to be a two-

dimensional plane. Clusters are sorted according to a top-
bottom, left-right sequence. Fig. 5 illustrates the top left to 
bottom right scanning sequence used for detecting CMP’s in 
the source image.  

Scanning is done to the same resolution as the image 
received from the camera. As used in this research, the 
resolution may be considered as infinitely fine.  

2) Compile 
Fig. 5 shows the sequence in which the example CMZ’s are 

processed when the following steps are executed.  

The compilation process consists of four steps. (1) A 
predefined code template is written to the target file. (2) For 
each sorted Cluster, the elements contained are evaluated in 
sequence. (3) When multiple numerical values are present in 
one Cluster, the values are summed and the numerical result 
used in further operations. (4) A line of text code is sent to the 
target file for each verb detected, along with the numerical 
summed value if required. Values are simply ignored when 
none are required.  

Fig. 7 is the result when the tangible program, shown of 
Fig. 4, is executed. 

3) Launch  
An instance of the execution environment is launched with 

the target file as parameter. The result is the execution of the 
target file as an independent process. Visual output is shown on 
a display (Fig. 9, right). 

VIII. T-LOGO TESTING 

T-logo was designed to take as input tangible objects that 
define program logic and display the result of program 
execution on a computer display. We conducted laboratory 
tests to identify and rectify problems. Steps (2) and (3) below 
were repeated with various combinations of the tangible 
objects.  

The test required the sequential activation of the three T-
logo modes as follows:  

(1) Using the mapping mode, we associated tangible 
objects with program elements. Program elements include 
verbs, adverbs, and CM’s.  For the purpose of our test we 
mapped the objects to elements as indicated by the annotations 
in Fig. 8. Some of the objects were cut from cardboard stock 
while others were made from colored wooden cubes. Fiducials 
in the form of printed paper patterns were attached to the 
bottom of each object. 

(2) T-logo was then placed in the construction mode. In this 
mode we arranged the 15 objects on the glass construction 
surface into clusters to represent the desired program logic. Fig. 
9 (left) shows the construction ready to be interpreted. 

(3) With the construction completed we placed T-logo in 
interpretation mode. This resulted in the display as shown in 
Fig. 9, right. 

IX. OBSERVATIONS 

In this section we provide our initial observations in 
developing T-logo cluster-based tangible programming 
environment:  

CMZ: The size of the CMZ is ‘hard coded’ in the T-logo 
software and we had to adjust the CMZ multiple times to 
achieve a usable system. Three variables have to be considered 
when choosing a CMZ: (a) the CMZ should be large enough to 
encompass multiple tangible objects in program constructions, 
(b) the CMZ should not occupy a large portion of the 
construction surface so as to leave space for other CMZ’s, (c) 
the minimum size of a fiducial is determined by the usable 
resolution of the camera and lighting conditions.  

Using our setup, we found that we could fit five clusters in 
an area of approximately 400x400mm.  

Some tangible objects were marked using paper flags to 
indicate their intended function (Fig. 8). The extension dowel 
on which the flags were attached served as unexpected useful 
handles with which to move the objects. Some cubes did not 
have these extensions and required careful manipulation so as 
not to disturb the surrounding objects already on the 
construction surface. 

The following result is not a consequence of the design but 
rather the implementation thereof. A notable delay is evident 
between the time when the execution mode is activated and 
when the result is visible on the display. This can be explained 
as follows: The current implementation makes multiple calls to 
the underlying operating system. Every call adds a delay of 
approximately one second to the time before the program 
output is made visible. We anticipate that this delay can be 



reduced by an order of magnitude by applying appropriate 
software engineering thinking to the implementation. 

X. CONCLUSION 

We have presented and explained an approach to 
constructing tangible program logic which makes use of 
‘clustering’. 

All the features of the fiducial design are not yet fully 
exploited by T-logo. One such feature is the ability to derive 
the orientation of the object to which the fiducial is attached. If 
exploited, the program construction can be decoupled from the 
current ‘scanning’ mechanism used in the T-logo ‘sort’ mode. 
Instead, it will then be possible for the tangible objects 
themselves to determine the order of interpretation by means of 
their orientation relative to other objects.  

It is possible that two or more CMZs intersect and we still 
have to devise a mechanism to deal with such a situation. 

In conclusion, we have developed an approach to tangible 
programming which makes use of clusters of objects grouped 
in close proximity to each other so that they are interpreted 
collectively as a single program parameter. 
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