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Abstract

This paper demonstrates the application of Intrin-
sic Spectral Analysis (ISA) for low-resource Auto-
matic Speech Recognition (ASR). State-of-the-art speech
recognition systems that require large amounts of task
specific training data fail to reliably model feature dis-
tributions in resource impoverished settings. We address
this issue by approaching the problem in the front-end,
where we can learn an intrinsic subspace that can re-
place the traditional feature space like mel frequency cep-
stral coefficients (MFCC). We use ISA features for under-
resourced settings to model the acoustic feature distri-
bution with less complexity. We also propose to com-
bine intrinsic features with extrinsic ones to take advan-
tage of both subspaces. Experimental results for a phone
recognition task on the Afrikaans language show that a
combination of the intrinsic subspace and extrinsic sub-
spaces provides us with improved performance compared
to conventional features.

Index Terms: low-resource speech recognition, mani-
fold learning, intrinsic spectral analysis

1. Introduction

Over the past four decades, most efforts in the realm of
speech recognition were focused on a very small num-
ber of languages spoken by a large number of speakers,
and the dominant strategy has relied on the availability
of substantial language-specific transcribed speech and
text data. However, when forced to deal with limited re-
sources, conventional acoustic modeling techniques per-
form very poorly. With more widespread use of voice
technology, developing ASR systems for under-resourced
domains or languages has become of great interest in re-
cent years [1] [2].

An extensive amount of study has been conducted
to improve the accuracy of speech recognizers in low-
resource conditions, and several strategies have been pre-
viously proposed. One group of approaches deal with
cross-lingual acoustic modeling to port information from
one or more source language systems which are built
using larger amounts of training data, in order to build
a recognizer for an under-resourced target language [3]
[4]. To this end, acoustic modeling techniques capa-
ble of exploiting out-of-language data such as Kullback-
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Leibler divergence based HMM (KL-HMM) [5], Tandem
[6] or Subspace Gaussian mixture models (SGMMSs) [7]
have been developed and extensively used [4]. Moreover,
training data-driven feature front-ends, in which a multi-
layer perceptron (MLP) trained on large amounts of task
independent data plays a key role has also been proposed
[8].

A less studied alternative approach to accommodat-
ing low resource language scenarios moves the focus to
feature transformations in the front-end, where we can
train more reliable models with less data. Principal com-
ponents analysis (PCA) and Linear discriminant analy-
sis (LDA) are commonly used linear methods. However,
speech production mechanisms imply that our vocaliza-
tions are approximately restricted to a low-dimensional
manifold embedded in a high-dimensional space [9] [10].
Manifold learning methods have been widely used to
learn nonlinear projection maps that recover the under-
lying configuration space. The applicability of this class
of techniques in the speech community was first proposed
in [10] by introducing Intrinsic Spectral Analysis (ISA).

Intrinsic Spectral Analysis is the extension of Lapla-
cian Eigenmaps in the framework of unsupervised man-
ifold regularization [11], which naturally deals with out-
of-sample data and also results in feature reduction. ISA
has been compared with traditional front-ends in high re-
source speech recognition [12] [13]. The utility of ISA on
a completely unsupervised task of spoken term discovery
was also investigated in terms of zero resource speech
recognition [12]. In the low resource regime, however,
the performance of ISA features has not been investi-
gated.

Intrinsic components can discriminate between natu-
ral classes of speech sounds [13]. Improved linear sepa-
rability implies that acoustic modeling may be achieved
with less complexity and less training data. In the case
of Gaussian mixture monophone or triphone models, im-
proved linear separability may reduce the number of mix-
ture components required. Moreover, an ISA-based clas-
sification task showed that the accuracy of a system using
ISA features is different from that of a system using cep-
stral features [14]). This suggests that a combination of
both feature styles might be even better. In this paper we
address this issue.

The remainder of this paper is structured as follows:
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Section 2 contains a brief review of the theoretical back-
ground of Intrinsic Spectral Analysis and the data selec-
tion method we proposed in [14]. Section 3 describes the
utility of ISA features for low-resource settings. Then
the database we used is explained in section 4. Section
5 presents experimental results, and finally we have con-
cluding remarks.

2. Background
2.1. Intrinsic Spectral Analysis

Given a set of data points X = [z1,Z2,...,Ts] in
RH sampled from a manifold M, we first construct an
undirected adjacency weighted (or binary) graph G =
(X, W) with one vertex per data point. We put an edge
between node i and j if x; is among  nearest neigh-
bors of z; (or vice versa). W € R"™" is the similar-
ity matrix whose 7jth element, w,;, represents the sim-
ilarity between z; and z;. We use the gaussian simi-
larity function, w;; = exp(—||z; — z;||*/27%), to ex-
ploit more structural information [14]. We then define
the graph Laplacian matrix L = D — W, where D is di-
agonal with Dy; = Y7, w;;. In this paper we use nor-
malized Laplacian matrix: Lporm = D™V/2LD71/2 =
I - D-Y/2WD~1/2, where I is the identity matrix, as it
has some nice properties [15].

In Laplacian Eigenmaps, the graph Laplacian is used
to approximate the intrinsic coordinates for the manifold
[16]. However, this method is limited to the eigen func-
tions of the graph and not the entire manifold. Intrinsic
Spectral Analysis approaches out-of-sample data by in-
troducing a modified variant of the unsupervised mani-
fold regularization algorithm

f* = argmin||f||% + ¢£7LE ¢y
feHk

Where [ is a projection to intrinsic bases, H y is the Re-
producing Kernel Hilbert Space (RKHS) for some posi-
tive semi-definite n x n kernel function K, and L is the
graph Laplacian, f = [f(x1), f(z2), .., f(zn)]T is the
vector of values of f for the training data. £ is the pa-
rameter which makes the balance between extrinsic and
intrinsic smoothness of the functions. The /th component
of the solution to this optimization problem, based on the
RKHS representer theorem, can be expressed as

n

fi) =) aiK(zi,v)

i=1

2)

a! € R™ is the lth eigenvector (sorted by eigenvalue) to

the following generalized eigenvalue problem
(I+&éLK)a= AKa (3)

In this paper, we always use a Radial Basis Function
(RBF) kernel: K (y,z) = exp(—|ly — z||*/202).

62

2.2. Data Selecetion

Classical manifold learning methods need to storean xn
Laplacian matrix and to compute an eigendecomposition.
This can be problematic for large-scale data (large n).
Approximations such as the Nystrom method can be used
to solve a reduced eigenvalue problem and to approxi-
mate the full-size eigenvectors solution [17]. These tech-
niques typically use random subsampling which may lead
to choosing a subset of data points that do not represent
the underlying structure of the data. We proposed to use
quadratic Renyi entropy to find a proper subset being well
representative of manifold structure [14]; we will review
this approach in this section briefly.

Considering Dy, as a full dataset, we seek to find a
subset, D, with much smaller number of data points and
well representative of the structure of data. To this end,
we select a subset of m samples, and then maximize the
nonparametric estimation of the quadratic Renyi entropy
for the subset using RBF kernel as has been discussed in
[18].

1
E(D,p) = —log [p(m)zdac ~ flog(—n—ﬁl?;Klm)
' )

Where 1,, is a vector of m ones and K is the m x m
RBF kernel matrix with parameter p. This criterion can
be maximized iteratively in a greedy manner as explained
in [14]. We use Silverman’s rule [19] to find an appropri-
ate kernel parameter:

p = 8|/ H ) 5)
(2H + )n,

Where H is the dimension of data, § is the sum of diag-
onal elements in the covariance matrix of data in Dy,
and n is the number of data points in D).

The greedy method we used in [14] is based on the
substitution of one datapoint with the other; however, for
the selection of large number of points we can select a
small subset in each iteration.

3. ISA for low-resource settings

Short-term spectral-based (typically cepstral) features
such as MFCC or PLP are typically non-Gaussian, and
are most often modeled by mixtures of Gaussians. Thus,
we need many Gaussian mixtures to effectively model the
feature distribution. On the other hand, ISA is effective at
modeling unknown distributions by recovering the non-
linear articulatory parameter space. The numerical corre-
lation between the distinctive features and intrinsic spec-
tral components is studied in [13]. This implies that in-
dividual intrinsic coordinates can be understood accord-
ing to some broad phonetic class distinction and separate
natural classes of speech sounds with no supervision. Al-
though the ISA interpretation cannot be formally devel-
oped for all classes of speech sounds, e.g. turbulence-
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Figure 1: Schematic diagram of Feature Transformation.

driven obstruents, it still improves clustering by preserv-
ing localities [10]. This separability suggests less com-
plexity to model feature distributions in resource impov-
erished settings, and this leads to more reliable models.

3.1. Combined ISA features with MFCC features

In addition to intrinsic components there can exist indi-
vidual extrinsic ones, e.g. frequency bands, that can dis-
criminate some of the natural classes reasonably well.
To fully take advantage of the benefit of ISA together
with regular features like MFCC, we combine ISA fea-
tures with MFCC features. It is worth noting that the
combination of ISA features with PLP features using the
Dempster-Shafer (DS) theory of evidence is addressed
for high resource speech recognition in [13]. However,
in this paper we show that even a simple concatenation
of these feature types improves the recognition in the low
resource scenarios.

A simple way to combine MFCC and ISA features is
to concatenate them. This can result 39 4 39 = 78 di-
mensional feature vectors for example, where we consid-
ered 39 as the dimension of both ISA and MFCC features.
The resulting feature vector could contain significant re-
dundancies. Thus, different feature reduction approaches
such as HLDA or LDA can be applied to discard the in-
significant dimensions. In this paper, however, we use
Principal Component Analysis (PCA) to find significant
dimensions and respect the unsupervised nature of ISA
features.

Figure 1 outlines the components of the feature trans-
formation. Starting from a Mel-spectrum, we can ex-
tract cepstral features by taking discrete cosine transform
(DCT). To obtain ISA features MelSpectra features are
first normalized to have zero mean and unit variance.
Then, MFCC and ISA features are concatenated to form
a long vector. PCA is subsequently applied to reduce di-
mensionality.
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4. Database discription

In this study we use Afrikaans data from the NCHLT cor-
pus ! [20]. The database consists of 210 speakers, includ-
ing broadband speech recorded at 16 kHz. The dictionary
contains 45 phonemes (including silence); the standard
dataset configuration consists of only a training and a test
part. The validation set introduced in Table 1 is taken
from the training portion. The dataset information in-
cluding the duration of each part and number of female
and male speakers is summarized in Table 1.

Low-resource settings were simulated by using only
small amounts of the training data mentioned in Table 1.
To this end, we use 18 hours of randomly chosen speech
covering all the speakers from the complete train set. We
continue to choose smaller amount of data from the new
set and keep the balance among speakers. The informa-
tion regarding these new subsets is summarized in Table
2. In this paper we use these datasets as examples of data
from a low-resource language.

Table 1: Summary of NCHLT Afrikaans dataset. Dura-
tion is in hours

| Set Duration | # male sp. | # female sp.
Train 50.70 98 94
Test 2.55 4 4
Validation 2.70 5 5

Table 2: Summary of small datasets chosen to represent
low-resource settings.

[ Set setl | set2 | set3 [ setd [ set5 |
| Duration [ 1h [ 4h [ 8h [ 12h [ 18h |
| #speakers | 188 [ 190 | 191 [ 192 [ 192 |

5. Experiments
5.1. Feature extraction

For feature extraction, a short-time Fourier analysis is
performed with a 30ms Hamming window and a 10ms
window shift. Each frame was represented by a 24-
dimensional Mel-Spectrum applying triangular shaped
filterbank using the full spectrum (24 channels for 16
kHz). To train the intrinsic coordinates, all features were
normalized to have zero mean and unit variance. 10k
samples were subsequently selected from the training
data as explained in section 2.2. Next, the weighted sim-
ilarity graph is constructed to make the normalized graph
Laplacian. After finding the intrinsic coordinates by ISA,
we kept only the first 13 ones (skipping the first trivial

! Available from the South African Resource Management Agency
(http:rma.nwu.ac.za).
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Figure 2: Comparing phone recognition accuracies with
1 hour of training data for different front-ends.

one) and add the first and second derivatives (A and AA)
features.

The ISA features together with 39 dimensional
MFCC features (13 cepstral +A + AA features) are con-
catenated to form 78-dimensional feature vectors. Then
PCA is applied to reduce the dimensionality to 39 (Figure

1).

5.2. Evaluation

In this section, we analyze the performance of the dif-
ferent features in under resourced settings. Our defini-
tion of ISA involves four parameters that must be chosen
by the user. To this end, all parameters are jointly op-
timized on the validation set introduced in Table 1. To
save time these parameters are found once using simple
monophones trained on the 1 hour dataset (setl in Ta-
ble 2), and the resulting optimized parameters are used
for the evaluation on the test set in the rest of this sec-
tion. The suitable parameters are determined as follows:
k = 30,0 = 90,¢ = 1,7 = 0.5. It is worth mentioning
that the efforts to find these parameters using other train-
ing sets lead to more or less the same values. This makes
an interesting point that setting the parameters shows a
good robustness to the amount of training data.

For the first set of experiments, we only used setl (in-
cluding 1 hour of data). Since the amount of training data
is very low, the standard 3-state left to right HMM archi-
tecture to model monophones with a simple phone-loop
grammar are trained. Using various numbers of Gaus-
sians per state (1 to 10), phone recognition accuracies for
different feature types are shown in Figure 2.

Figure 2 confirms our hypotheses that intrinsic coor-
dinates can separate natural speech sound classes with
less model complexity. However, as shown, when the
number of Gaussians increases per state, the improve-
ment of ISA over MFCC vanishes. This implies that
when adequate data is available to train more complex
models, MFCC features contain reasonably good dis-
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Table 3: Comparing phone recognition accuracies
(%) using different amounts of data for MFCC and
ISA+MFCC.

Set: [ set2 | set3 | setd [ set5 |
MFCC Features 59.11 | 64.73 | 67.60 | 70.55
ISA Features 58.10 | 64.68 | 68.17 | 69.86
ISA+MFCC Features | 61.70 | 67.34 | 69.99 | 71.94

crimination information. Figure 2 also shows that the
combination of ISA and MFCC features (ISA+MFCC)
yields the best results in all cases. This suggests that the
intrinsic subspace together with the extrinsic one consti-
tutes a suitable feature space for low resource settings.

For the second set of experiments, we used more data,
(set2,...,set5), to model context-dependent triphones. Tri-
phones were tied at the state level using decision tree
clustering, and each tied-state triphone was estimated
with 8 Gaussian mixtures per state. The phone recog-
nition accuracy for conventional acoustic features, i.e.
MFCCs, compared to the combined feature type based
on ISA is shown in Table 3.

As shown, ISA features combined with MFCC fea-
tures provides a substantial gain over conventional acous-
tic features in all sets. This demonstrates the useful-
ness of our approach to use the intrinsic subspace in low-
resource settings to generate better features.

6. Conclusions

We have argued that using ISA features combined with
MFCC features can improve ASR performance on a low-
resource speech recognition task. ISA features provide
a data-driven front-end approach to feature extraction
that improves discrimination and ease of modeling by
recovering a set of intrinsic projections maps that cor-
relate with natural classes of speech sounds. We pro-
posed to combine the intrinsic feature space with the ex-
trinsic one to take full advantage of both. We have con-
ducted phone recognition experiments on Afrikaans lan-
guage taken from the NCHLT dataset to examine the va-
lidity of our proposed features for low-resource condi-
tions. The results showed that the combined feature type
outperforms cepstral features not only in very impover-
ished settings but also for the case of having more train-
ing data of about 18 hours.
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