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Abstract 21 

The objective of this study was to investigate the entire spectra (from visible to the thermal 22 

infrared; 0.390 µm -14.0 µm) to retrieve leaf water content in a consistent manner. Narrow-band 23 

spectral indices (calculated from all possible two band combinations) and a partial least square 24 

regression (PLSR) were used to assess the strength of each spectral region. The coefficient of 25 

determination (R2) and root mean square error (RMSE) were used to report the prediction 26 

accuracy of spectral indices and PLSR models. In the visible-near infrared and shortwave 27 

infrared (VNIR-SWIR), the most accurate spectral index yielded R2 of 0.89 and RMSE of 7.60%, 28 

whereas in the mid infrared (MIR) the highest R2 was 0.93 and RMSE of 5.97%. Leaf water 29 

content was poorly predicted using two-band indices developed from the thermal infrared 30 

(R2=0.33). The most accurate PLSR model resulted from MIR reflectance spectra (R2=0.96, 31 

RMSE=4.74% and RMSECV=6.17%) followed by VNIR-SWIR reflectance spectra (R2=0.91, 32 

RMSE=6.90% and RMSECV=7.32%).  Using thermal infrared (TIR) spectra, the PLSR model 33 

yielded a moderate retrieval accuracy (R2=0.67, RMSE=13.27% and RMSECV=16.39%). This 34 

study demonstrated that the MIR and SWIR domains were the most sensitive spectral region for 35 

the retrieval of leaf water content.  36 

Keywords; Water stress, remote sensing, VNIR-SWIR, MIR, TIR, statistical models 37 
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1. Introduction 39 

An accurate estimation of leaf water content permits for example monitoring plant physiological 40 

status (Datt 1999), predicting drought risk (Bauer et al. 1986), precision agriculture (Peñuelas et 41 

al. 1993; Peñuelas et al. 1997) and assessing the risk of forest fire (Chuvieco et al. 2002). 42 

Remote sensing is a promising tool for assessing vegetation water status due to its capability of 43 

providing continuous spatial observations over large areas compared to point based 44 

measurements in the field (Hunt et al. 1987; Hunt and Rock 1989; Sepulcre-Cantó et al. 2006).  45 

Retrieving leaf water content using remote sensing data, has been widely investigated in the 46 

visible near infrared (VNIR) and shortwave infrared (SWIR) spectra (Thomas et al. 1971; 47 

Danson et al. 1992; Aldakheel and Danson 1997; Ceccato et al. 2001; Cheng et al. 2011). Water 48 

molecules in leaves strongly absorb electromagnetic energy in the NIR (0.720 – 1.00µm) and 49 

SWIR (1.40 – 1.90 µm) (Thomas et al. 1971; Datt 1999). The estimation of leaf water content 50 

using NIR is less effective, and the spectral response is less sensitive with changing leaf water 51 

content, compared to the SWIR (Datt 1999). Other studies found that leaf water content is 52 

strongly correlated with reflectance and derivative spectra at wavebands between 1.40 – 1.90 µm 53 

while wavebands between 1.90 – 25 µm are relatively less sensitive to the variation in leaf water 54 

content (Danson et al. 1992; Ceccato et al. 2001; Ceccato et al. 2002b; Champagne et al. 2003).  55 

The wavebands between 1.40 – 1.90 µm contain water absorption features and are strongly 56 

related to leaf water content (Hunt et al. 1987; Bowman 1989).  57 

 58 

 59 
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Very few studies attempted to estimate leaf water content using the MIR and TIR spectra. 60 

However, there are strong specific water absorption features located in the MIR (at 2.90, 4.65, 61 

and 6.08 µm) which may potentially be a suitable region for quantifying leaf water status 62 

(Wieliczka et al. 1989). Using visible to MIR (0.4 – 5.7 µm), Gerber et al. (2011) recently 63 

modeled the Directional Hemispherical Reflectance (DHR) and transmittance spectra of fresh 64 

and completely dried leaves. Using two different (independent) datasets, they noticed 65 

considerable variation with changing leaf water content in the MIR domain (Gerber et al. 2011). 66 

More recently, Fabre et al. (2011) studied the effect of leaf water content on spectral reflectance 67 

in the MIR to TIR (3.0–15.0 µm). The variation in spectral response of the three plant species 68 

used was more pronounced in the MIR compared to the TIR (Fabre et al. 2011). The variation in 69 

MIR spectra with varying leaf water content was quantified and resulted in a high correlation 70 

with leaf water content. This strong correlation led to the successful estimation of leaf water 71 

content from MIR spectra using various spectral transformation techniques (Ullah et al. 2012c; 72 

Ullah et al. 2013).  73 

The above studies either used VNIR– SWIR or MIR and TIR but they did not sample the same 74 

target for the entire range from visible to thermal infrared to guarantee consistency in 75 

measurement. In the current study, we report on research where the same leaf samples were 76 

measured simultaneously across the visible to thermal infrared. Moreover, the intermediate water 77 

levels were acquired by successively dehydrating leaves. The main objective of this study was to 78 

assess the strength of the entire spectra (from visible to thermal infrared) for the estimation of 79 

leaf water content. The reflectance and first derivative spectra in the visible to thermal infrared 80 

domain were assessed using various water stress indices (e.g. by establishing univariate 81 

regression) and partial least square regression (PLSR; a type of multivariate regression analysis).  82 
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  83 

2. Material and Methods  84 

2.1 Leaf sampling and measurements of leaf water content. 85 

Leaves (six samples per species) were collected from various plant species (Table 1) in the 86 

vicinity of the ITC building (in Enschede, the Netherlands) during July and August 2011.  Before 87 

the first spectral measurements, leaves attached to small twigs, were keep moist in cotton to 88 

avoid desiccation (Kumar et al. 2010). The leaves were then progressively dehydrated at room 89 

temperature and measurements were taken after every four hours. Before the final reading, 90 

leaves were oven dried at 60 °C for one and a half hour. The leaves mass were precisely 91 

measured using a digital weight balance with 100 µg accuracy. 92 

The leaf water content (LWCf) was calculated using the following formula (Ullah et al. 2013); 93 

LWCf = 100(Mw - Md)/ Mw 94 

where Mw represents the mass of the wet leaf and Md is the mass of completely dried leaf (dried 95 

in oven for 90 minutes at last succession). LWCf is the leaf water content relative to wet leaf 96 

weight.  97 

We sampled 402 measurements from eleven different plant species. The number of leaves 98 

sampled per species and the dehydration phases are detailed in Table 1.  99 

Insert Table. 1 about here 100 

 101 

2.2 Spectral measurements 102 
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The spectral measurements were recorded between 0.390 and 14.0 µm. To cover the entire 103 

spectral range (visible, NIR, SWIR, MIR and TIR); two different spectrometers were used for 104 

the measurements.  The ASD FieldSpec® spectro-radiometer (Analytical Spectral Devices: 105 

Boulder, CO, USA) covered the VNIR-SWIR range (0.390–2.50 µm), whereas a Bruker 106 

VERTEX 70 FTIR (Fourier transform infrared; Bruker Optics GmbH, Ettlingen, Germany) 107 

spectrometer was used to acquire Directional Hemispherical Reflectance (DHR) between 2.50 –108 

14.0 um. During spectral measurements of the leaf samples, the ASD and Bruker  spectro-109 

radiometers were used in random order to minimize the influence of different spectral 110 

instruments.  111 

An ASD spectrometer, coupled with an integrating sphere, was used to measure reflectance 112 

spectra between VNIR and SWIR (0.390–2.50 µm; comprising 2110 spectral bands). The ASD 113 

is a portable spectrometer and can acquired spectra with a sampling interval of 1 nm. Two 114 

hundred (200) scans were averaged to a single spectrum in order to minimize the effect of noise 115 

(signal variance) on the final correlation analysis (see section 2.5). A calibrated reference 116 

standard (with approximately 99% reflectance) was used to convert raw radiance to reflectance.  117 

A Bruker VERTEX 70 FTIR acquired DHR spectra between 2.5 and 14.0 µm of the adaxial 118 

surface of the leaf.  The spectrometer was purged of water vapor and carbon dioxide using 119 

nitrogen gas. A Mercury Cadmium Telluride (MCT) detector (cooled with liquid N2) was used to 120 

measure leaf spectra with a spectral resolution of 4-cm (Hecker et al. 2011; Ullah et al. 2012a; 121 

Zaini et al. 2012).  Each spectrum was calibrated using a high reflectance (approximately 0.96) 122 

gold plate (infragold; Labsphere reflectance technology).  Each spectrum was calculated from 123 

the average of 1000 scans. 124 
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2.3 Preprocessing of spectra and spectral transformation. 125 

The spectra were smoothed using a Savitsky–Golay filter (Savitzky and Golay 1964), with 15 126 

sample points and second order polynomials. The smoothed spectra were then used for 127 

calculating different indices and first derivatives reflectance (FDR).  128 

2.4 Narrow band indices. 129 

A narrow band simple ratio, simple difference and normalized difference indices (Hunt and Rock 130 

1989; Gao 1996; Peñuelas et al. 1997) were calculated for all band combinations using the 131 

reflectance spectra. These indices have been reported in the literature for the VNIR–SWIR (Datt 132 

1999; Ceccato et al. 2001; Zygielbaum et al. 2009), but are hardly used in the MIR and TIR 133 

(Ullah et al. 2013). Different naming conventions are used for the indices in the VNIR-SWIR 134 

and MIR and TIR for their interpretation (see details in Table 2).  135 

Narrow band vegetation indices have been successfully used to estimate vegetation parameters 136 

(Mutanga and Skidmore 2004; Darvishzadeh et al. 2008). The notion of  calculating vegetation 137 

indices (i.e. simple ratio, normalized difference indices) are based upon the contrast in the 138 

reflectance between two spectral bands (Rouse et al. 1974). In vegetation indices, a limited 139 

number of wavebands (which contain most of the information) are used from massive 140 

hyperspectral wavebands. The purpose of using vegetation indices is to minimize the variability 141 

in reflectance caused by various factors such as illumination condition, instrument noise, 142 

atmospheric condition and soil background (van Leeuwen and Huete 1996). To determine the 143 

best narrow band index, all possible combination of two bands were calculated and a 144 
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combination that has the highest R2 with leaf water content was located (Thenkabail et al. 2000; 145 

Mutanga and Skidmore 2004). 146 

Insert Table. 2 about here 147 

 148 

2.5 Statistical analysis  149 

2.5.1 Simple Linear regression 150 

Simple linear regression was used to quantify the retrieval accuracy of leaf water content using 151 

the calculated indices. The data were randomly divided in to calibration and validation subsets. 152 

The model was trained with a calibration subset (n= 268; two third of the entire dataset) and was 153 

then used to predict the leaf water content in validation subsets (n= 134; one third of the entire 154 

dataset). The predicted leaf water content was plotted against the measured leaf water content, 155 

and the accuracy of each index reported using R2 and RMSE. 156 

2.5.2 Partial least square regression (PLSR) 157 

A challenge associated with hyperspectral data is a high spectral dimensionality and a high 158 

degree of collinearity of the adjacent bands (Vaiphasa et al. 2005). Multivariate regression 159 

models based on hyperspectral data suffers from multi-collinearity especially when the numbers 160 

of predictors are equal or higher in number than sample observations and the input data lead to a 161 

high R2 (Curran 1989). PLSR is a robust technique which can handle high dimensional 162 

hyperspectral datasets for predicting leaf bio-chemicals, while minimizing multi-collinearity and 163 

model over-fitting (Thomas and Haaland 1990). This technique has been successfully used to 164 

estimate several leaf bio-chemicals (Huang et al. 2004; Asner and Martin 2008; Ramoelo et al. 165 
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2011). The Partial least square regressions (PLSR) were used to estimate leaf water content from 166 

both the reflectance and FDR spectra in the VNIR-SWIR, MIR and TIR. The increased use of 167 

PLSR in remote sensing (Lin et al. 2007; Asner and Martin 2008; Darvishzadeh et al. 2008; 168 

Ramoelo et al. 2011) is due to the fact that PLSR can process multi-collinear predictors 169 

(hyperspectral data) by inputting all spectral bands simultaneously and select uncorrelated 170 

variables from a matrix of explanatory variables (Geladi and Kowalski 1986). The PLSR 171 

analysis was implemented using the TOMCAT toolbox in MATLAB. The independent variables 172 

were first mean centered prior to input to the PLSR. The lowest RMSECV (RMSE-leave-one-out 173 

cross validation) was adopted as criterion to select the optimal number of components for model 174 

development (Darvishzadeh et al. 2008).  The accuracy of the models using different spectral 175 

domains was assessed using R2, RMSE and RMSECV.   176 

3. Results 177 

3.1 Effect of leaf water content on spectral responses 178 

The leaf water content was variably correlated with reflectance across spectral bands (Fig.1). The 179 

correlation was low between leaf water and the blue part of the spectrum ( 0.390–0.430 µm) and 180 

increased in the green and red part of the visible spectrum (0.50-0.65 µm;  Fig.1 a). The 181 

correlation attained a maximum between 1.4 and 2.2 µm (in the SWIR). In the MIR domain, leaf 182 

water content was strongly correlated with the Directional Hemispherical Reflectance (DHR)  183 

between  2.50 and 2.70 µm, and the correlation became weaker at 2.7 to 3.6 µm. After 3.6 µm 184 

the correlation increased to a maximum between 4.0–5.6 µm (Fig 1 b).  In the thermal infrared 185 

the correlation plot (Fig.1c) exhibited a flat line. 186 

 187 

Insert Figure. 1 about here 188 
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    189 

 190 

3.2 Leaf water content and spectral indices 191 

Using visible near infrared and shortwave infrared (VNIR-SWIR) spectra, the narow-band 192 

indices (NDWI, SRWI and DWI) were calculated and leaf water content was estimated based on 193 

these indices. The indices with the most sensitive waveband combinations yielded a high R2  194 

(Fig.2) using the caliberation dataset. The models derived from the calibration data were  applied 195 

to the validation datasets in order to predict leaf water content. For the VNIR-SWIR domain, the 196 

prediction of leaf water content was high (R2=0.86 (minimum), RMSE=8.86% (maximum)) 197 

using the validation datasets. For all possible waveband combinations of the three indices, the 198 

most senstive waveband combinations (with highest R2) were located in the SWIR region (i.e. 199 

the blue rectangle in Fig.2).  For the VNIR and SWIR , the NDWI provided more accurate 200 

predictions of leaf water content compared to SRWI and DWI (Fig. 3), though it is noted that in 201 

all three models (NDWI, SRWI and DWI) the predicted values underestimate the measured leaf 202 

water content above approximately 50% leaf water content. 203 

Insert Figure. 2 about here 204 

 205 

Insert Figure. 3 about here 206 

 207 

For the MIR, leaf water content was accurately estimated using narow-band indices (MNDWI, 208 

MSRWI and MDWI). Using the calibration datasets, these indices yielded a high R2 (Fig. 4). 209 

When the calibration model was applied to the independent validation datasets, leaf water 210 
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content was accurately predicted (i.e. high R2 and low RMSE) (Fig.5 and Table 3). The indices 211 

developed from TIR spectra were less effective in estimating leaf water content. Using TIR, the 212 

maximum R2 achieved was 0.33 (from TNDWI) and lead to a poor estimation (i.e. high RMSE) 213 

of leaf water content (Fig.6, Table 3).  214 

Insert Figure. 4 about here 215 

 216 

Insert Figure. 5 about here 217 

 218 

Insert Table. 3 about here 219 

 220 

Insert Figure. 6 about here 221 

 222 

3.3 Partial least square regression (PLSR) and leaf water content 223 

 224 

Using the VNIR-SWIR reflectance spectra, the PLSR models (Fig.7) were slightly more accurate 225 

(R2=0.91, RMSE =6.90 % and   RMSECV =7.32 %) than the PLSR models developed using the 226 

first derivative spectra (R2=0.90, RMSE =7.14% and RMSECV = 8.50%). The number of 227 

wavelength latent factors were equal (8 factors) for both the reflectance and first derivative 228 

spectra (Table 4).   229 

Using reflectance and first derivative spectra in the MIR, both PLSR models yielded an accurate 230 

estimate of leaf water content (Fig.8). The models based on MIR reflectance spectra were more 231 

accurate (R2 =0.96, RMSE= 4.74 and RMSECV= 6.14) compared to the model developed from 232 

first derivative spectra using MIR (R2 =0.93, RMSE= 5.98 and RMSECV= 8.40). The number of 233 

factors involved in the models is detailed in Table 4. The PLSR models based on MIR was more 234 
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accurate (i.e. high R2 and low RMSE) than the models developed using VNIR –SWIR spectra. 235 

The PLSR regression using TIR spectra, yielded the lowest R2 (0.67) and highest RMSE 236 

(13.27 %) and RMSECV (16.39) (Fig. 9). 237 

  238 

The PLSR models in all spectral domains (i.e. VNIR-SWIR, MIR and TIR) improved the 239 

prediction of leaf water content (i.e. results in a higher R2 and low RMSE) compared to the 240 

narow band indices. The most significant improvement was noticed for retrieving leaf water 241 

content using the TIR reflectance, where R2 increased from 0.32 to 0.67 and RMSE decreased 242 

from 31.83% to 16.39 % (Table 3 and Table 4). 243 

 244 

Insert Table. 4 about here 245 

 246 

Insert Figure. 7 about here 247 

 248 

Insert Figure. 8 about here 249 

 250 

Insert Figure. 9 about here 251 

 252 

4. Discussion  253 

Remote sensing is potentially a viable tool to assess and monitor vegetation parameters from 254 

local (point sample) to global scales (Skidmore 2002). In the past, estimation of vegetation water 255 

content focused on the VNIR-SWIR (0.3-2.5µm). The advent of sensor technology in the MIR 256 

(2.5-6.0 µm) and TIR (8.0-14.0 µm) enables the assessment and monitoring of vegetation 257 

functions or physiological status (Ribeiro da Luz 2006; Ribeiro da Luz and Crowley 2007, 2010; 258 
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Ullah et al. 2012b).  In this study, an empirical relationship between leaf spectra and leaf water 259 

content demonstrated that MIR and SWIR were the most sensitive spectral regions (R2 ≥ 0.86) 260 

for the estimation leaf water content. The TIR showed moderate affinity with leaf water content 261 

(maximum R2 = 0. 67), however the performance of TIR were less accurate compared to MIR 262 

and SWIR.  263 

The correlation between reflectance spectra (across visible to thermal infrared) and the leaf water 264 

content (Fig. 1) underlined that leaf water content is related to the spectral response, but the 265 

strength of the relationship varies across VNIR-SWIR/ MIR and TIR. The spectral response was 266 

strongly correlated with leaf water content (Fig.1) in the SWIR (1.4-2.5 µm) and MIR (2.5-2.7 267 

µm and 3.7-5.6 µm). The findings of this study are in line with that of the previous studies where 268 

two band indices were used for the retrieval of leaf water or biochemical parameters (Hunt and 269 

Rock 1989; Gao 1996; Datt 1999; Ceccato et al. 2001; Ceccato et al. 2002a; Ceccato et al. 2002b; 270 

Zhang et al. 2012). Using narrow-band indices, the most sensitive waveband combinations were 271 

located at 1.60 µm, 1.397 µm (i.e. SWIR) and at 2.65 µm, 3.89 µm and 5.20 µm (i.e. MIR). 272 

These selected sensitive wavebands (from narrow-band indices) correspond to the slope and 273 

depth of water absorption features in the reflectance spectra (Datt 1999; Ceccato et al. 2001; 274 

Cheng et al. 2010; Gerber et al. 2011; Ullah et al. 2012c). The selected wavebands in the SWIR 275 

(1.397 µm and 1.60 µm) are related to the absorption features associated with moisture, cellulose 276 

and starch in plant leaves (Curran 1989; Thenkabail et al. 2004). The selected wavebands at 3.89 277 

µm and 5.20 µm (MIR) are associated with cellulose maxima at 4.0 and 5.2 µm (Fabre et al. 278 

2011).  279 
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The PLSR model of the MIR reflectance spectra yielded the highest accuracy (R2= 0.96, RMSE= 280 

4.74% and RMSECV= 6.14%) (Fig.8) compared to the VNIR-SWIR (Fig.7) and TIR (Fig. 9). The 281 

PLSR models derived using first derivative spectra were less accurate than the model developed 282 

from reflectance spectra. The lower performance of the first derivative PLSR model may be due 283 

to consistent illumination conditions used in the experiment, as well as no influence of 284 

background soil/litter reflectance (Elvidge and Chen 1995).  285 

The PLSR model is emerging as an alternative to univariate statistical analysis for estimating leaf 286 

water content as it selects the most important variables for a parsimonious model (Lin et al. 2007; 287 

Asner and Martin 2008; Darvishzadeh et al. 2008; Ramoelo et al. 2011) and can therefore be 288 

considered in general to be more practical for such analyses. Compared to narrow band indices, 289 

all the PLSR models in their respective spectral domains achieved relatively higher accuracy 290 

(Table 3 and Table 4). In this study, using the reflectance and first derivative spectra, the number 291 

of PLSR latent factors varied from 4 to 10 (Table 4).  292 

The novelty of this study is the simultaneous and consistent sampling of the same target leaf 293 

while measuring the whole spectrum (from the visible to thermal infrared) for the retrieval of 294 

leaf water content. Integrating various imaging spectrometers data to cover the entire spectral 295 

range (i.e. visible to thermal) helps to identify the spectral bands for accurate retrieval of leaf 296 

water content at the field level and may provide a foundation for up-scaling to canopy level.  297 

5. Conclusion 298 

This study has used univariate and multivariate statistical techniques to examine the strength the 299 

VNIR-SWIR, MIR and TIR for the retrieval of leaf water content. Narrow band indices and 300 

PLSR were used in to analyze the spectral data. The strength of each model was assessed by 301 
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comparing the differences in the R2 and RMSE and RMSEcv. It is concluded that the PLSR 302 

models were more accurate (yielded high R2 and low RMSE) compared to narrow band indices 303 

in all spectral domains and is a practical and robust technique compared to univariate statistical 304 

analysis for estimating leaf water content. The strength of predicting leaf water content using 305 

SWIR and MIR (yielded high R2 and low RMSE) are higher than TIR. The SWIR and MIR 306 

proved highly sensitive spectral regions and hold promise for the estimation of leaf water content.    307 
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List of figures 449 

 450 

 451 

Figure 1. The relationship between spectral reflectance and the leaf water contents in the VNIR-452 

SWIR (a), MIR (b) and TIR (c). The red line represents the average reflectance spectrum while 453 

the blue line is the correlation coefficient between leaf water content and spectral response. 454 

  455 
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 456 

Figure 2. Contour map displaying the relationship (R2) between leaf water content and different 457 

indices calculated from all possible waveband combinations from 0.390 – 2.50 µm. The blue 458 

rectangles represent the most sensitive waveband regions with the highest R2. 459 

  460 
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 461 

Figure 3. Scatterplots detailing the relationship between measured and predicted leaf water 462 

content using VNIR- SWIR. The solid line shows the regression line, while the dotted line is the 463 

1:1 line. The NDWI performed more accuratly compared to SRWI and DWI. 464 
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 466 

Figure 4. Contour map highlighting the relationship (R2) between leaf water content and different 467 

indices calculated from all possible waveband combinations from 2.50– 6.00 µm. The sensitivity 468 

of different waveband combination is different. The blue rectangles represent the most sensitive 469 

waveband regions with the highest R2. 470 
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 472 

Figure 5. Scatterplot detailing the relation between measured and predicted leaf water content 473 

(LWCf (%). The predicted leaf water content is based on the calibration models developed from 474 

MNDWI, MSRWI and MSDWI; the highest correlation shown produced using MNDWI. 475 
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 477 

Figure 6. The relationships between leaf water content and narrow-band spectral indices in the 478 

TIR spectra. The rectangular region indicates the sensitive wavebands combination selected on 479 

the basis of the highest R2 values.  480 
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 482 

Figure 7. The PLSR coefficients (blue line) showing the importance of each waveband in 483 

developing the PLSR model for retrieving leaf water content from reflectance (a) and first 484 

derivative spectra (c) in the VNIR-SWIR. The average reflectance spectra (black line) are shown 485 

for reference purpose. The PLSR analysis using reflectance (b) predicted leaf water content more 486 

accurately (high R2 and low RMSE and RMSEcv) compared to the PLSR model developed from 487 

first derivative spectra (d). 488 
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 490 

Figure 8. The PLSR coefficients (blue line) showing the importance of each waveband in 491 

developing the PLSR model for retrieving leaf water content from reflectance (a) and first 492 

derivative spectra (c) in the MIR. The average reflectance spectra (black line) are shown for 493 

reference purpose. The PLSR analysis using reflectance (b) predicted leaf water content more 494 

accurately (high R2 and low RMSE and RMSEcv) compared to the PLSR model developed from 495 

first derivative spectra (d). 496 
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 498 

Figure 9. The PLSR coefficients (blue line) showing the importance of each waveband in 499 

developing the PLSR model for retrieving leaf water content from TIR reflectance spectra (a). 500 

The average TIR reflectance spectra (black line) are shown for reference purpose. The PLSR 501 

models using TIR reflectance spectra (b) and TIR first derivative spectra (d) yielded moderately 502 

accurate estimate of leaf water content.  503 
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List of Tables 505 

Table 1. Eleven plant species, their common name, Latin name, leaf sample size per species, 506 

successive drying phases, and the total number of spectra measured. 507 

Common name Species name  Sample 
size 

Progressive 
drying phases  

Total  spectra 

Maidenhair tree Ginkgo biloba 6 6 36 
English ivy Hedera helix 6 8 48 
Norway Maple  Acer platanoides 6 5 30 
Redosier Dogwood  Cornus sericea 6 6 36 
Japanese Knotweed  Fallopia japonica 6 5 30 
Oriental Planetree  Platanus orientalis 6 6 36 
Rhododendron  Rhododendron caucasicum 6 8 48 
Largeleaf Linden  Tilia platyphyllos 6 6 36 
Sweetgum  Liquidambar styraciflua 6 7 42 
European Beech  Fagus sylvatica 6 4 24 
Horse-Chestnut  Aesculus hippocastanum 6 6 36 
 Calibration Dataset = 268 Validation 

dataset =134 
Total = 402  

 508 

 509 

  510 
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Table 2. List of spectral indices used in this study.  511 

Name Acronym Equation 

VNIR-SWIR MIR TIR 

Normalized Difference Water 

Index 

NDWI MNDWI  TNDWI (R λ1- R λ2)/ (R λ1+ R 

λ2) 

Simple Ratio Water Index SRWI MSRWI TSRWI R λ1/ R λ2 

Difference Water Index DWI MDWI TDWI R λ1- R λ2 

where Rλ1 and Rλ2 is the reflectance at two different wavebands 

 512 

  513 
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Table 3. The most sensitive wavebands for the different indices, selected on the basis of the 514 

highest R2 values, and regression equations as calculated using the calibration datasets. The 515 

validation RMSE and R2 are displayed in the last two columns. 516 

Index Most sensitive bands          Calibration Validation 
λ1(µm) λ2(µm) R2 Regression Eq R2 RMSE (%) 

NDWI 1.400 1.578 0.91 y =-0.002x + 0.0368 0.89 7.60 
SRWI 1.397 1.614 0.88 y = -0.0038x + 1.0694 0.86 8.86 
DWI 1.396 1.615 0.87 y = -0.0014x + 0.0339 0.87 8.62 
MNDWI 2.651 3.891 0.92 y = -0.0088x + 0.5562 0.93 5.97 
MSRWI 3.814 5.219 0.92 y = 0.0092x + 0.5396 0.92 6.10 
MDWI 2.591 4.220 0.91 y = -0.0024x + 0.1519 0.90 7.53 
TNDWI 6.730 11.310 0.34 y = -0.0032x + 0.9632 0.33 31.22 
TSRWI 6.730 11.310 0.33 y = -0.0019x - 0.0196 0.32 31.83 
TDWI 6.730 11.460 0.34 y = -0.0002x - 0.0016 0.32 31.69 
 517 

  518 
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Table 4. The results of PLSR analysis for estimating leaf water content using the reflectance and 519 

first derivative spectra in the VNIR-SWIR, MIR and TIR. 520 

R
ef

le
ct

an
ce

 
sp

ec
tr

a 

Spectral region No. of factors R2 RMSE (%) RMSECV (%) 
VNIR-SWIR 8 0.91 6.90 7.32 

 
MIR 10 0.96 4.74 6.14 

 
TIR 9 0.67 13.27 16.39 

 

F
ir
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D
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S
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a
 

VNIR-SWIR 8 0.90 7.14 8.50 
 

MIR 
 

4 
 

0.93 
 

5.98 
 

8.40 
 

TIR 
 

4 0.63 14.21 23.95 

 521 


