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Abstract

The objective of this study was to investigate &mtire spectra (from visible to the thermal
infrared; 0.390 um -14.0 um) to retrieve leaf watentent in a consistent manner. Narrow-band
spectral indices (calculated from all possible tvamd combinations) and a partial least square
regression (PLSR) were used to assess the strehgthch spectral region. The coefficient of
determination (B and root mean square error (RMSE) were used fortrehe prediction
accuracy of spectral indices and PLSR models. & \isible-near infrared and shortwave
infrared (VNIR-SWIR), the most accurate spectralix yielded R of 0.89 and RMSE of 7.60%,
whereas in the mid infrared (MIR) the highest\was 0.93 and RMSE of 5.97%. Leaf water
content was poorly predicted using two-band indideseloped from the thermal infrared
(R?=0.33). The most accurate PLSR model resulted fkiR reflectance spectra (R0.96,
RMSE=4.74% and RMSK=6.17%) followed by VNIR-SWIR reflectance specti’£0.91,
RMSE=6.90% and RMSk=7.32%). Using thermal infrared (TIR) spectra, BleSR model
yielded a moderate retrieval accuracy<®67, RMSE=13.27% and RM&E16.39%). This
study demonstrated that the MIR and SWIR domain® wWe most sensitive spectral region for

the retrieval of leaf water content.

Keywords; Water stress, remote sensing, VNIR-SVWIHRR, TIR, statistical models
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1. Introduction

An accurate estimation of leaf water content pesrfat example monitoring plant physiological
status (Datt 1999), predicting drought risk (Baeteal. 1986), precision agriculture (Pefiuelas et
al. 1993; Pefiuelas et al. 1997) and assessingigkeof forest fire (Chuvieco et al. 2002).
Remote sensing is a promising tool for assessiggtaéion water status due to its capability of
providing continuous spatial observations over dargreas compared to point based

measurements in the field (Hunt et al. 1987; Humat Rock 1989; Sepulcre-Canto et al. 2006).

Retrieving leaf water content using remote senslath, has been widely investigated in the
visible near infrared (VNIR) and shortwave infrar€8WIR) spectra (Thomas et al. 1971,
Danson et al. 1992; Aldakheel and Danson 1997; &lecst al. 2001; Cheng et al. 2011). Water
molecules in leaves strongly absorb electromagrestergy in the NIR (0.720 — 1.00pm) and
SWIR (1.40 — 1.90 pm) (Thomas et al. 1971; Datt99%he estimation of leaf water content
using NIR is less effective, and the spectral raspas less sensitive with changing leaf water
content, compared to the SWIR (Datt 1999). Othediss found that leaf water content is
strongly correlated with reflectance and derivaspectra at wavebands between 1.40 — 1.90 um
while wavebands between 1.90 — 25 um are relatiesly sensitive to the variation in leaf water
content (Danson et al. 1992; Ceccato et al. 20@tréto et al. 2002b; Champagne et al. 2003).
The wavebands between 1.40 — 1.90 um contain vedusorption features and are strongly

related to leaf water content (Hunt et al. 1987AvB@an 1989).
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Very few studies attempted to estimate leaf watartent using the MIR and TIR spectra.
However, there are strong specific water absorpigatures located in the MIR (at 2.90, 4.65,
and 6.08 um) which may potentially be a suitablgia®e for quantifying leaf water status
(Wieliczka et al. 1989). Using visible to MIR (04 5.7 um), Gerber et al. (2011) recently
modeled the Directional Hemispherical ReflectaridélR) and transmittance spectra of fresh
and completely dried leaves. Using two differenhd@pendent) datasets, they noticed
considerable variation with changing leaf waterteahin the MIR domain (Gerber et al. 2011).
More recently, Fabre et al. (2011) studied theotféd leaf water content on spectral reflectance
in the MIR to TIR (3.0-15.0 um). The variation ipestral response of the three plant species
used was more pronounced in the MIR compared td@ lRgFabre et al. 2011). The variation in
MIR spectra with varying leaf water content was rjifeed and resulted in a high correlation
with leaf water content. This strong correlatiod k& the successful estimation of leaf water
content from MIR spectra using various spectratdfarmation techniques (Ullah et al. 2012c;

Ullah et al. 2013).

The above studies either used VNIR— SWIR or MIR @it but they did not sample the same
target for the entire range from visible to thermafrared to guarantee consistency in
measurement. In the current study, we report oparel where the same leaf samples were
measured simultaneously across the visible to takimfrared. Moreover, the intermediate water
levels were acquired by successively dehydratiagds. The main objective of this study was to
assess the strength of the entire spectra (frorbl@iso thermal infrared) for the estimation of
leaf water content. The reflectance and first dae spectra in the visible to thermal infrared
domain were assessed using various water stressesnde.g. by establishing univariate

regression) and partial least square regressioSRPh type of multivariate regression analysis).
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2. Material and Methods

2.1Leaf sampling and measurements of leaf water contén

Leaves (six samples per species) were collectenh frarious plant species (Table 1) in the
vicinity of the ITC building (in Enschede, the Nettands) during July and August 2011. Before
the first spectral measurements, leaves attacheuntdl twigs, were keep moist in cotton to
avoid desiccation (Kumar et al. 2010). The leavesewthen progressively dehydrated at room
temperature and measurements were taken after éveryhours. Before the final reading,

leaves were oven dried at 60 °C for one and a halfr. The leaves mass were precisely

measured using a digital weight balance with 10@garacy.

The leaf water content (LWiCwas calculated using the following formula (Ullahal. 2013);

LWG = 100(Mw - Md)/ Mw

whereMw represents the mass of the wet leaf lslads the mass of completely dried leaf (dried
in oven for 90 minutes at last succession). LW&Cthe leaf water content relative to wet leaf

weight.

We sampled 402 measurements from eleven differantt species. The number of leaves

sampled per species and the dehydration phaseetaited in Table 1.

Insert Table. 1 about here

2.2 Spectral measurements
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The spectral measurements were recorded betwe®d &8l 14.0 um. To cover the entire
spectral range (visible, NIR, SWIR, MIR and TIR}at different spectrometers were used for
the measurements. The ASD FieldSpec® spectro+redar (Analytical Spectral Devices:
Boulder, CO, USA) covered the VNIR-SWIR range (@-382.50 um), whereas a Bruker
VERTEX 70 FTIR (Fourier transform infrared; Bruk®ptics GmbH, Ettlingen, Germany)
spectrometer was used to acquire Directional Hemeispal Reflectance (DHR) between 2.50 —
14.0 um. During spectral measurements of the aptes, the ASD and Bruker spectro-
radiometers were used in random order to mininfirarfluence of different spectral

instruments.

An ASD spectrometer, coupled with an integratinhesp, was used to measure reflectance
spectra between VNIR and SWIR (0.390-2.50 um; coimg 2110 spectral bands). The ASD
is a portable spectrometer and can acquired spadthaa sampling interval of 1 nm. Two
hundred (200) scans were averaged to a singlerapeat order to minimize the effect of noise
(signal variance) on the final correlation analyége section 2.5). A calibrated reference

standard (with approximately 99% reflectance) wseduto convert raw radiance to reflectance.

A Bruker VERTEX 70 FTIR acquired DHR spectra betweée5 and 14.0 um of the adaxial
surface of the leaf. The spectrometer was purdedater vapor and carbon dioxide using
nitrogen gas. A Mercury Cadmium Telluride (MCT) elgtor (cooled with liquid B was used to

measure leaf spectra with a spectral resolutiod 8f (Hecker et al. 2011; Ullah et al. 2012a;
Zaini et al. 2012). Each spectrum was calibratgidgia high reflectance (approximately 0.96)
gold plate (infragold; Labsphere reflectance tedbgy). Each spectrum was calculated from

the average of 1000 scans.
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2.3Preprocessing of spectra and spectral transformatio

The spectra were smoothed using a Savitsky—Gdtay (Savitzky and Golay 1964), with 15
sample points and second order polynomials. Theoiled spectra were then used for

calculating different indices and first derivativeslectance (FDR).

2.4 Narrow band indices.

A narrow band simple ratio, simple difference andmalized difference indices (Hunt and Rock
1989; Gao 1996; Pefuelas et al. 1997) were caézulfdr all band combinations using the
reflectance spectra. These indices have been egpiorthe literature for the VNIR-SWIR (Datt
1999; Ceccato et al. 2001; Zygielbaum et al. 2009}, are hardly used in the MIR and TIR
(Ullah et al. 2013). Different naming conventiorre ased for the indices in the VNIR-SWIR

and MIR and TIR for their interpretation (see distai Table 2).

Narrow band vegetation indices have been succéssiséd to estimate vegetation parameters
(Mutanga and Skidmore 2004; Darvishzadeh et al8R0Dhe notion of calculating vegetation
indices (i.e. simple ratio, normalized differencelices) are based upon the contrast in the
reflectance between two spectral bands (Rouse. €1934). In vegetation indices, a limited
number of wavebands (which contain most of the rimftion) are used from massive
hyperspectral wavebands. The purpose of using a&ggetindices is to minimize the variability
in reflectance caused by various factors such lasnithation condition, instrument noise,
atmospheric condition and soil background (van kesuand Huete 1996). To determine the

best narrow band index, all possible combinationtwb bands were calculated and a



145  combination that has the highestvith leaf water content was located (Thenkabaile2000;

146  Mutanga and Skidmore 2004).

147 Insert Table. 2 about here

148

149 2.5 Statistical analysis

150  2.5.1 Simple Linear regression

151  Simple linear regression was used to quantify ¢tieeval accuracy of leaf water content using
152  the calculated indices. The data were randomlydduiin to calibration and validation subsets.
153  The model was trained with a calibration subsetZ68; two third of the entire dataset) and was
154  then used to predict the leaf water content ind&ion subsets (n= 134; one third of the entire
155 dataset). The predicted leaf water content wasqu@gainst the measured leaf water content,

156  and the accuracy of each index reported usiarid RMSE.

157  2.5.2 Partial least square regression (PLSR)

158 A challenge associated with hyperspectral data legh spectral dimensionality and a high
159 degree of collinearity of the adjacent bands (Vagzhet al. 2005). Multivariate regression
160 models based on hyperspectral data suffers froni-gullinearity especially when the numbers
161  of predictors are equal or higher in number than@e observations and the input data lead to a
162 high R (Curran 1989). PLSR is a robust technique which bandle high dimensional
163  hyperspectral datasets for predicting leaf bio-dkals, while minimizing multi-collinearity and
164  model over-fitting (Thomas and Haaland 1990). Tieishnique has been successfully used to

165 estimate several leaf bio-chemicals (Huang et @042 Asner and Martin 2008; Ramoelo et al.



166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

2011). The Partial least square regressions (Pu#fR9 used to estimate leaf water contearh
both the reflectance and FDR spectra in the VNIRHSVWWIR and TIR. The increased use of
PLSR in remote sensing (Lin et al. 2007; Asner Mattin 2008; Darvishzadeh et al. 2008;
Ramoelo et al. 2011) is due to the fact that PL3R process multi-collinear predictors
(hyperspectral data) by inputting all spectral marsimultaneously and select uncorrelated
variables from a matrix of explanatory variablesel@di and Kowalski 1986). The PLSR
analysis was implemented using the TOMCAT toolboMIATLAB. The independent variables
were first mean centered prior to input to the PLERe lowest RMSE, (RMSE-leave-one-out
cross validation) was adopted as criterion to $ehexoptimal number of components for model
development (Darvishzadeh et al. 2008). The acguch the models using different spectral

domains was assessed usirfgflRVISE and RMSEy.

3. Results

3.1 Effect of leaf water content on spectral resp@es

The leaf water content was variably correlated weaftectance across spectral bands (Fig.1). The
correlation was low between leaf water and the plart of the spectrum ( 0.390—-0.430 um) and
increased in the green and red part of the visggectrum (0.50-0.65 um; Fig.1 a). The
correlation attained a maximum between 1.4 anqithqin the SWIR). In the MIR domain, leaf
water content was strongly correlated with the &imnal Hemispherical Reflectance (DHR)
between 2.50 and 2.70 um, and the correlationrbecaeaker at 2.7 to 3.6 pm. After 3.6 um
the correlation increased to a maximum between5460gm (Fig 1 b). In the thermal infrared

the correlation plot (Fig.1c) exhibited a flat line

Insert Figure. 1 about here
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3.2 Leaf water content and spectral indices

Using visible near infrared and shortwave infra®NIR-SWIR) spectra, the narow-band
indices (NDWI, SRWI and DWI) were calculated andfleater content was estimated based on
these indices. The indices with the most sensitie@eband combinations yielded a high R
(Fig.2) using the caliberation dataset. The modelssed from the calibration data were applied
to the validation datasets in order to predict lgafer content. For the VNIR-SWIR domain, the
prediction of leaf water content was high’B.86 (minimum), RMSE=8.86% (maximum))
using the validation datasets. For all possible elbband combinations of the three indices, the
most senstive waveband combinations (with highéstwre located in the SWIR region (i.e.
the blue rectangle in Fig.2). For the VNIR and 8®\/Ithe NDWI provided more accurate
predictions of leaf water content compared to SRWd DWI (Fig. 3), though it is noted that in
all three models (NDWI, SRWI and DWI) the predictedues underestimate the measured leaf

water content above approximately 50% leaf watetert.

Insert Figure. 2 about here

Insert Figure. 3 about here

For the MIR, leaf water content was accuratelynestied using narow-band indices (MNDWI,
MSRWI and MDWI). Using the calibration datasetses indices yielded a high® RFig. 4).

When the calibration model was applied to the ietelent validation datasets, leaf water

10
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content was accurately predicted (i.e. highaRd low RMSE) (Fig.5 and Table 3). The indices
developed from TIR spectra were less effectivesiingating leaf water content. Using TIR, the
maximum R achieved was 0.33 (from TNDWI) and lead to a pestimation (i.e. high RMSE)

of leaf water content (Fig.6, Table 3).

Insert Figure. 4 about here

Insert Figure. 5 about here

Insert Table. 3 about here

Insert Figure. 6 about here

3.3 Partial least square regression (PLSR) and leafater content

Using the VNIR-SWIR reflectance spectra, the PLS®lets (Fig.7) were slightly more accurate
(R°=0.91, RMSE =6.90 % and RMS&E=7.32 %) than the PLSR models developed using the
first derivative spectra (R0.90, RMSE =7.14% and RMSE = 8.50%). The number of
wavelength latent factors were equal (8 factors)doth the reflectance and first derivative
spectra (Table 4).

Using reflectance and first derivative spectrahia MIR, both PLSR models yielded an accurate
estimate of leaf water content (Fig.8). The modbelsed on MIR reflectance spectra were more
accurate (R=0.96, RMSE= 4.74 and RM$f= 6.14) compared to the model developed from
first derivative spectra using MIR {R0.93, RMSE= 5.98 and RM$&= 8.40). The number of

factors involved in the models is detailed in Tadbldhe PLSR models based on MIR was more

11
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accurate (i.e. high Rand low RMSE) than the models developed using VNSRIR spectra.
The PLSR regression using TIR spectra, yielded Itveest R (0.67) and highest RMSE

(13.27 %) and RMSE (16.39) (Fig. 9).

The PLSR models in all spectral domains (i.e. VNERAR, MIR and TIR) improved the
prediction of leaf water content (i.e. results irnigher B and low RMSE) compared to the
narow band indices. The most significant improveimeas noticed for retrieving leaf water
content using the TIR reflectance, whereiftcreased from 0.32 to 0.67 and RMSE decreased

from 31.83% to 16.39 % (Table 3 and Table 4).

Insert Table. 4 about here

Insert Figure. 7 about here

Insert Figure. 8 about here

Insert Figure. 9 about here

4. Discussion
Remote sensing is potentially a viable tool to sssend monitor vegetation parameters from
local (point sample) to global scales (Skidmore20(h the past, estimation of vegetation water
content focused on the VNIR-SWIR (0.3-2.5um). Theemt of sensor technology in the MIR
(2.5-6.0 um) and TIR (8.0-14.0 um) enables the ssssent and monitoring of vegetation

functions or physiological status (Ribeiro da L@08; Ribeiro da Luz and Crowley 2007, 2010;

12
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Ullah et al. 2012b). In this study, an empiricallationship between leaf spectra and leaf water
content demonstrated that MIR and SWIR were thet messitive spectral regions{R 0.86)

for the estimation leaf water content. The TIR shduwnoderate affinity with leaf water content
(maximum R = 0. 67), however the performance of TIR were ssurate compared to MIR

and SWIR.

The correlation between reflectance spectra (asfisgide to thermal infrared) and the leaf water
content (Fig. 1) underlined that leaf water contentelated to the spectral response, but the
strength of the relationship varies across VNIR-BYWIR and TIR. The spectral response was
strongly correlated with leaf water content (Figiithe SWIR (1.4-2.5 pum) and MIR (2.5-2.7
pm and 3.7-5.6 um). The findings of this studyiarine with that of the previous studies where
two band indices were used for the retrieval of {eater or biochemical parameters (Hunt and
Rock 1989; Gao 1996; Datt 1999; Ceccato et al. 2G@tcato et al. 2002a; Ceccato et al. 2002b;
Zhang et al. 2012). Using narrow-band indices,niost sensitive waveband combinations were
located at 1.60 pm, 1.397 pum (i.e. SWIR) and ab 216, 3.89 um and 5.20 um (i.e. MIR).
These selected sensitive wavebands (from narrow-lragices) correspond to the slope and
depth of water absorption features in the reflemaspectra (Datt 1999; Ceccato et al. 2001;
Cheng et al. 2010; Gerber et al. 2011; Ullah eR@l2c). The selected wavebands in the SWIR
(2.397 um and 1.60 um) are related to the absorpei@tiures associated with moisture, cellulose
and starch in plant leaves (Curran 1989; Thenkaail. 2004). The selected wavebands at 3.89
um and 5.20um (MIR) are associated with cellulose maxima at @@ 5.2um (Fabre et al.

2011).

13
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The PLSR model of the MIR reflectance spectra giglthe highest accuracy¥R0.96, RMSE=
4.74% and RMSE= 6.14%) (Fig.8) compared to the VNIR-SWIR (Figand TIR (Fig. 9). The
PLSR models derived using first derivative speateae less accurate than the model developed
from reflectance spectra. The lower performanddefirst derivative PLSR model may be due
to consistent illumination conditions used in tlkperiment, as well as no influence of

background soil/litter reflectance (Elvidge and €Hi€95).

The PLSR model is emerging as an alternative teaunisite statistical analysis for estimating leaf
water content as it selects the most importanabées for a parsimonious model (Lin et al. 2007,
Asner and Martin 2008; Darvishzadeh et al. 2008n&ealo et al. 2011) and can therefore be
considered in general to be more practical for sarcdlyses. Compared to narrow band indices,
all the PLSR models in their respective spectrah@ios achieved relatively higher accuracy
(Table 3 and Table 4). In this study, using théeténce and first derivative spectra, the number

of PLSR latent factors varied from 4 to 10 (Tab)e 4

The novelty of this study is the simultaneous aondsestent sampling of the same target leaf
while measuring the whole spectrum (from the vesitd thermal infrared) for the retrieval of

leaf water content. Integrating various imagingcsfmemeters data to cover the entire spectral
range (i.e. visible to thermal) helps to identihetspectral bands for accurate retrieval of leaf

water content at the field level and may provideumdation for up-scaling to canopy level.

5. Conclusion

This study has used univariate and multivariatéssizal techniques to examine the strength the
VNIR-SWIR, MIR and TIR for the retrieval of leaf wea content. Narrow band indices and

PLSR were used in to analyze the spectral data.sTieagth of each model was assessed by
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comparing the differences in thé ABnd RMSE and RMSE It is concluded that the PLSR

models were more accurate (yielded higrafd low RMSE) compared to narrow band indices
in all spectral domains and is a practical and solbechnique compared to univariate statistical
analysis for estimating leaf water content. Thergith of predicting leaf water content using
SWIR and MIR (yielded high Rand low RMSE) are higher than TIR. The SWIR and MIR

proved highly sensitive spectral regions and hotdrse for the estimation of leaf water content.
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505 List of Tables

506 Table 1. Eleven plant species, their common naragn lname, leaf sample size per species,
507 successive drying phases, and the total numbereati® measured.

Common name Species name SampleProgressive Total spectra
size drying phases
Maidenhair tree Ginkgo biloba 6 6 36
English ivy Hedera helix 6 8 48
Norway Maple Acer platanoides 6 5 30
Redosier Dogwood | Cornus sericea 6 6 36
Japanese Knotweed Fallopia japonica 6 5 30
Oriental Planetree | Platanus orientalis 6 6 36
Rhododendron Rhododendron caucasicunb 8 48
Largeleaf Linden Tilia platyphyllos 6 6 36
Sweetgum Liguidambar styraciflua | 6 7 42
European Beech Fagus sylvatica 6 4 24
Horse-Chestnut Aesculus hippocastanum | 6 6 36
Calibration Dataset = 268 Validation Total = 402
dataset =134
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512

513

Table 2. List of spectral indices used in this gtud

Name Acronym Equation
VNIR-SWIR MIR TIR

Normalized Difference Water NDWI MNDWI | TNDWI | (R ;2- R 2)/ (Rj1+ R

Index i2)

Simple Ratio Water Index SRWI MSRWI TSRWI ;RRR;,

Difference Water Index DWI MDWiI TDWI R.-R,>

where R;and Rsis the reflectance at two different wavebands
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518

Table 3. The most sensitive wavebands for therdiffeindices, selected on the basis of the

highest R values, and regression equations as calculatad tis calibration datasets. The

validation RMSE and Rare displayed in the last two columns.

Index Most sensitive bands Calibration iation
Aa(um) | Ap(um) R Regression Eq R’ RMSE (%)
NDWI 1.400 | 1.578 0.91 y =-0.002x + 0.0368 0.89 7.60
SRWI 1.397 | 1.614 0.88 y =-0.0038x + 1.0604 0.86 868.
DWI 1.396 | 1.615 0.87 y =-0.0014x + 0.0339 0.87 28.6
MNDWI | 2.651 | 3.891 0.92 y = -0.0088x + 0.5562 0.93 5.97
MSRWI | 3.814 | 5.219 0.92 y =0.0092x + 0.5396 0.92 106.
MDWI 2.591 | 4.220 0.91 y =-0.0024x + 0.1519 0.90 53/.
TNDWI | 6.730 | 11.310 0.34 y =-0.0032x + 0.9632 0.3331.22
TSRWI | 6.730 | 11.310 0.33 y =-0.0019x - 0.0196 0.3231.83
TDWI 6.730 | 11.460 0.34 y =-0.0002x - 0.0016 0.32 1.68
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519 Table 4. The results of PLSR analysis for estingal@af water content using the reflectance and
520 first derivative spectra in the VNIR-SWIR, MIR aifitR.

Spectral region No. of factors °R RMSE (%) RMSEy (%)
VNIR-SWIR | 8 0.91 6.90 7.32
)
(&)
8 & MIR 10 0.96 4.74 6.14
83
T 2 TIR 9 0.67 13.27 16.39
X on
VNIR-SWIR | 8 0.90 7.14 8.50
25 |MR 4 0.93 5.98 8.40
- 28
288 |TR 4 0.63 14.21 23.95
Law

521
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