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Implementing quantum walks using orbital angular momentum of classical light
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We present an implementation scheme for quantum walk in the orbital angular momentum space
of a laser beam. The scheme makes use of a ring interferometer, containing a quarter-wave plate
and a q-plate. This setup enables one to perform an arbitrary number of quantum walk steps. In
addition, the classical nature of the implementation scheme makes it possible to observe the quantum
walk evolution in real time. We use non-quantum entanglement of the laser beam’s polarization
with its orbital angular momentum to implement the quantum walk.
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Propagation by a succession of random steps is known
as classical random walk, where the position of the walker
is described by a Gaussian probability distribution after
several random steps. Both discrete time quantum walks
(DTQW) and classical random walks involve a random
choice (coin toss) and a conditional drift (propagation),
but in a quantum walk the superposition of states allows
interference of different paths, leading to strikingly differ-
ent output distributions. For example, the spread of the
probability distribution for the quantum walker increases
quadratically as fast as that of its classical counterpart
[1–5].

This speed up gained in quantum walks promises ad-
vantages when applied in quantum computation for cer-
tain classes of quantum algorithms [6], for example, quan-
tum search algorithms [7, 8]. Quantum walks have also
been used to analyze energy transport in biological sys-
tems [9].

Several experimental implementations of quantum
walks have been reported over the years, using either
atomic [10–13] or photonic systems [14–18]. Remark-
ably, none of these experiments could implement more
than a few steps of the walker. The reason is that atomic
systems require formidable control and isolation from
their environment, which is difficult to achieve over many
steps. Photonic quantum walks on the other hand, tend
not to be scalable because the number of optical compo-
nents (beam splitters and wave plates), which in practice
induce losses and decoherence, grows too fast with the
number of iterations in the quantum walk. Moreover,
photonic quantum walks in general suffer from low effi-
ciencies of single photon sources and detectors.

In this article we suggest a scalable photonic implemen-
tation scheme for DTQW. In our scheme orbital angular

momentum (OAM) modes [19, 20] serve as the lattice
sites and polarization is used to simulate the coin toss.
A quarter-wave plate [21] implements the coin flip op-
eration and a q-plate [22] generates conditional shifts in
OAM space. Since both optical devices work identically

on the classical level (for laser beams) and on the quan-
tum level (for single photons), one can apply the same
scheme to realize a quantum walk with classical light,
as proposed below. The classical implementation of the
quantum walk is superior to the quantum realization as
(i) it is easier to implement and (ii) non-invasive mea-
surements of classical systems enable a monitoring of the
quantum walk in real time. Moreover, this implemen-
tation sheds light on the new concept of non-quantum

entanglement [23, 24].
A different realization scheme for a quantum walk with

classical light using an electro-optic modulator has been
proposed by Knight et al. [25]. An experimental quan-
tum walk setup, using beam splitter arrays to distribute
laser beams, is described in [26], but this scheme is not
scalable.
We start with the description of DTQW in one spatial

dimension. Let us represent the basis vectors of the coin
space by {|↑〉 , |↓〉} and the basis of the position space
as {|j〉}∞j=−∞.One way to define a quantum process that
resembles the coin toss operation is to produce a weighted
superpositions of heads (|↑〉) and tails (|↓〉):

|↑〉 → 1√
2
(|↑〉+ |↓〉) , (1)

|↓〉 → 1√
2
(|↑〉 − |↓〉) , (2)

which corresponds to the Hadamard operator

H =
1√
2
(|↑〉+ |↓〉) 〈↑|+ 1√

2
(|↑〉 − |↓〉) 〈↓| . (3)

As with classical random walk, DTQW requires a con-
ditional shift operation: shift of the position to the left
(right) for tails (heads), which is represented by the shift
operator

S =
∑

j

(|j + 1〉 〈j| ⊗ |↑〉 〈↑|+ |j − 1〉 〈j| ⊗ |↓〉 〈↓|) . (4)
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FIG. 1. (Color online) A typical evolution of the probability
in a quantum walk on a one dimensional lattice. The initial
coin state of the particle is (|↑〉+ i |↓〉)/

√
2

.

The quantum walk is realized by the iteration of the com-
bined coin flip H and shift S

H̃S := (I⊗H)S =
∑

j

[

|j + 1〉 〈j| ⊗
( |↑〉+ |↓〉√

2

)

〈↑|

+ |j − 1〉 〈j| ⊗
( |↑〉 − |↓〉√

2

)

〈↓|
]

.

(5)

The combined operation causes a flip in the coin state
along with a state dependent propagation on the lattice.
For example, if the particle is initially at the lattice site
|0〉 with spin state (|↑〉+ i |↓〉)/

√
2, the action of the op-

erator H̃S will map it to the state

|ψ〉 = 1

2
[|1〉 ⊗ (|↑〉+ |↓〉) + i |−1〉 ⊗ (|↑〉 − |↓〉)] . (6)

In Fig. 1 we plot the probability distribution of the par-
ticle on the lattice for different numbers of steps.
We now show that a quantum walk can be realized us-

ing a photon that is transferred between different OAM
modes, conditioned on its polarization by means of a q-
plate. Consider a photon in the OAM eigenstate |ℓ〉 and
a superposition of left- and right circular polarization
(|L〉 + |R〉)/

√
2. The action of a q-plate on this state

is given by

1√
2
(|L, ℓ〉+ |R, ℓ〉) → 1√

2
(|R, ℓ− 2q〉+ |L, ℓ+ 2q〉),

(7)

where q is a fixed dimensionless parameter (a half-
integer) associated with the q-plate (cp. explanation of
its working principle below). Note that the change in the
OAM is twice the value of q. The q-plate acts qualita-
tively in a similar way as the conditional shift operator

S as in Eq. (4):

Q =
∞
∑

ℓ=−∞

(|ℓ+ 2q〉 〈ℓ| ⊗ |L〉 〈R|+ |ℓ− 2q〉 〈ℓ| ⊗ |R〉 〈L|) .

(8)

We can realize the quantum walk evolution operator H̃S
by concatenating a q-plate and a quarter-wave plate. A
quarter-wave plate with its optic axis rotated by an angle
of θ = π/4 is represented by the operator

W
(π

4

)

=
1√
2
(|R〉 − |L〉) 〈R|+ 1√

2
(|R〉+ |L〉) 〈L| . (9)

Thus, the product of the rotated quarter-wave plate and
the q-plate yields

W
(π

4

)

Q =
∞
∑

ℓ=−∞

[

|ℓ+ 2q〉 〈ℓ| ⊗
( |R〉+ |L〉√

2

)

〈R|

+ |ℓ− 2q〉 〈ℓ| ⊗
( |R〉 − |L〉√

2

)

〈L|
]

, (10)

which is identical to the quantum walk evolution operator
H̃S, given in Eq. (5), and leads to the state in Eq. (6),
provided that we set q = 1/2 and identify the circular
polarization states |L〉 and |R〉 with the basis for the
coin space |↑〉 and |↓〉, respectively. Thus, we can realize
a quantum walk in the space of OAM.
However, it is not necessary to use single photons to

obtain a quantum walk. In fact, a simple laser pulse un-
dergoes analogous dynamics when subjected to a q-plate
followed by a quarter wave plate. This can be easily un-
derstood in the language of classical optics using Jones
matrices [27–30], which yield a remarkably concise rep-
resentation of the quantum walk.
Homogenously polarized optical fields can be treated

as scalar fields under the paraxial approximation. In the
general case the optical field can be represented as the
sum of two orthogonally polarized fields

E(r, z) = ER(r, z)êR + EL(r, z)êL = E0

[

u
R
(r, z)

u
L
(r, z)

]

,

(11)

where ER(r, z) and EL(r, z) are the electric field compo-
nents for right-handed and left-handed circular polariza-
tion, respectively, r is the two-dimensional position vec-
tor on the transverse plane perpendicular to the prop-
agation direction (z-axis), and êR and êL are the unit
vectors associated with right-handed and left-handed cir-
cular polarization. In the last line of Eq. (11) we express
the optical field as a Jones vector, times an overall am-
plitude E0.
The two position dependent components of the Jones

vector can now be expanded in terms of any complete
set of orthogonal modes. We use the Laguerre-Gaussian
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modes, which are OAM eigenstates and solutions of
the paraxial wave equation in cyllindrical coordinates
[19, 20]. These modes are distinguished by two integer
indices, an azimuthal index ℓ, which is proportional to
the OAM of the mode, and a positive radial index p.
Not being much concerned about the radial dependence
and to simplify the analysis, we evaluate the sum over p.
The components of the Jones vector are then given by

uL,R(r, z) = uL,R(r, φ, z)

=
∑

ℓ

a
(L,R)
ℓ (r) exp(iℓφ) exp(−ikz), (12)

where a
(L,R)
ℓ (r) represents radial-dependent expansion

coefficients and k is the wave number. For convenience
we set z = 0 from now on and consider the optical field
in the image plane, purely as a function of r and φ. The
normalization of the Jones vector implies that

2π

∫

∑

ℓ

[

∣

∣

∣
a
(L)
ℓ (r)

∣

∣

∣

2

+
∣

∣

∣
a
(R)
ℓ (r)

∣

∣

∣

2
]

rdr = 1. (13)

The action of an optical device on the state of light is
represented by a 2× 2 Jones matrix. For a quarter-wave
plate in the circular polarization basis it is given by [21]

Jw =
1√
2

(

1 i
i 1

)

. (14)

A q-plate causes spin-orbital coupling — turning spin
angular momentum into OAM. It acts like a half-wave
plate, with varying orientation of its optic axis over the
transverse plane. In other words, at each point on the
transverse plane the q-plate behaves like a half-wave plate
with a particular orientation of its optics axis. The orien-
tation of the optic axis is given in terms of the azimuthal
angle φ — its orientation angle is qφ, where q is a half-
integer. Then the combined action of the rotated half-
wave plates can be expressed concisely by a φ-dependent
Jones matrix

Jq = R(−qφ)
(

0 1
1 0

)

R(qφ) =

(

0 e−i2qφ

ei2qφ 0

)

, (15)

where R(qφ) is the rotation matrix diag(eiqφ, e−iqφ).
The concatenation of a q-plate and a 45 degree rotated

quarter-wave plate, leads to

Jw

(π

4

)

Jq =
1√
2

(

1 1
−1 1

)(

0 e−i2qφ

ei2qφ 0

)

=
1√
2

(

ei2qφ e−i2qφ

ei2qφ −e−i2qφ

)

=
1√
2

(

1 1
1 −1

)(

ei2qφ 0
0 e−i2qφ

)

. (16)

We see that the action of the diagonal matrix
diag(ei2qφ, e−i2qφ) on the OAM eigenstates is the follow-
ing: the beam with right-handed circular polarization

q−plateQWP

M

M

S

D

1

2M 3

B

π−
4

FIG. 2. Diagrammatic representation of the optical setup of a
quantum walk. A laser beam passes through a quarter-wave
plate, followed by a q-plate. The loop corresponds to a single
iteration of a quantum walk process.

will gain OAM of 2q~ per photon and the one with left-
handed circular momentum will lose OAM of 2q~ per
photon. Hence, it represents the conditional shift oper-
ator in a quantum walk. The first matrix in Eq. (16)
corresponds to the Hadamard operator Eq. (3). Hence,
the q-plate and the rotated quarter-wave plate together
produce the same quantum walk evolution as H̃S. If the
initial state has an azimuthal index of ℓ = 0 and its state
of polarization is (êR + iêL)/

√
2, the state after the first

iteration reads

E(r) =
E0α0(r)

2

[

eiφ (êR + êL) + ie−iφ (êR − êL)
]

,

(17)

in analogy to the state (6).

The setup to realize the quantum walk with laser light
is depicted in Fig. 2. A laser pulse with zero OAM and a
circular state of polarization is sent through beam split-
ter B, with a transmission coefficient µ. Upon entering
the ring interferometer the beam is reflected from mirrors
M1 and M2 and passes through the q-plate, followed by
the 45 degree rotated quarter-wave plate. After reflection
from mirror M3, a fraction µ of the beam is transmitted
through beam spitter B to the detector D. The remain-
ing fraction of the beam stays in the ring interferometer.
Each round trip represents one iteration of the DTQW
process. The measurement of the light coupled out in
each iteration yields the intensity distribution over the
OAM basis states.

The detection of the OAM spectrum can be done with
the aid of an efficient OAM sorter [31], which employs re-
fractive optical elements to perform a conformal mapping
of the optical field, turning the azimuthal phase variation
into a linear phase variation. A subsequent Fourier trans-
form that is implemented by a lens will separate different
OAM orders as adjacent bright spots, which can be mea-
sured simultaneously on a CCD array to reveal the OAM
spectrum.
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Above, we proposed two different realizations of a
coined quantum walk in the OAM spectrum for (i) a sin-
gle photon and (ii) a laser pulse and discussed their phys-
ical implementation. In both cases, we found that, after
the first iteration, the optical field cannot be factored into
a product of the spatial beam profile and the state of po-
larization. For the single photon this structure Eq. (6)
implies quantum entanglement. The non-factorizability
of the electromagnetic field Eq. (17) has been called ‘non-
classical entanglement’ [32]. The formal analogy between
both forms of entanglement was used [32] to show that
in classical optics those Mueller matrices that represent
positive, but not completely positive operations, are not
physically realizable. Here we identified another appli-
cation of non-quantum entanglement, namely a coined
quantum walk with OAM modes of light.
Next we demonstrate, using the quantum description

of laser light, that non-factorizable classical optical fields
Eq. (17), do not contain quantum entanglement. To this
end we represent the state of the laser beam as a pure
coherent state |α〉 with two additional indices: s for po-
larization and ℓ for OAM

|α, s, ℓ〉 = exp(αa†s,ℓ − α∗as,ℓ) |0〉 , (18)

where a†s,ℓ is the mode creation operator, which creates
a photon in the s polarization state with an OAM of ℓ~.
The action of the q-plate and the quarter-wave plate

on the mode creation operators is given by

q-plate: a†s,ℓ → a†s̄,ℓ±1, (19)

QWP: a†R,ℓ →
1√
2

(

a†R,ℓ − a†L,ℓ

)

, (20)

a†L,ℓ →
1√
2

(

a†R,ℓ + a†L,ℓ

)

, (21)

where s̄ represents the state of polarization opposite to
s. Hence, the combined action of the q-plate, followed by
the quarter-wave plate on the coherent state reads

|α,R, ℓ〉 →
∣

∣

∣

∣

α√
2
, R, ℓ+ 1

〉

⊗
∣

∣

∣

∣

α√
2
, L, ℓ+ 1

〉

, (22)

|α,L, ℓ〉 →
∣

∣

∣

∣

α√
2
, R, ℓ− 1

〉

⊗
∣

∣

∣

∣

− α√
2
, L, ℓ− 1

〉

, (23)

which represents the quantum walk evolution in terms of
coherent states. Consider for example, an initial coherent
state with an OAM of ℓ = 0 and with a polarization state
given by (|R〉 + i |L〉)/

√
2. This state is represented by

the product

|ψ0〉 =
∣

∣

∣

∣

α√
2
, R, 0

〉

⊗
∣

∣

∣

∣

iα√
2
, L, 0

〉

. (24)

Then after the first quantum walk iteration the state be-
comes

|ψ〉0 → |ψ〉1 =
∣

∣

∣

α

2
, R, 1

〉

⊗
∣

∣

∣

α

2
, L, 1

〉

⊗
∣

∣

∣
i
α

2
, R,−1

〉

⊗
∣

∣

∣
−iα

2
, L,−1

〉

, (25)

which is clearly a product state without quantum entan-
glement.

In summary, we propose a new method to implement
quantum walk, using laser light in an optical setup that
contains a quarter-wave plate and a q-plate in a ring
interferometer. The advantage of this implementation is
that it does not require sources and detectors for single
photons. Moreover, the results of an arbitrary number
of iterations are obtained as a real-time sequence at the
output. The fact that we use a laser source implies that
the output state is not quantum entangled, but contains
so-called non-quantum entanglement which enables the
coined quantum walk. The question is whether other

applications of quantum entanglement can be realized by

means of its classical counter part!
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