Laboratory Testing & Measurement on Optical Imaging Systems

Bertus Theron

27 April 2013 presented at SIECPC 2013, Riyadh, Saudi Arabia

Overview of Workshop

Part 1. Introduction & Context

- Some history of Arabic Optics
- Context: Global vs Local optical testing
- This workshop: Discussion & Interaction

Part 2. Optical imaging systems

Some defense applications

Overview of Workshop

Part 3. Specifications of an Optical Imaging System

Part 4. Laboratory Testing & Measurement of Optical Imaging Systems

Image analysis & System testing

Part 5. Laboratory testing: Impact of Local needs & Benefits / Spin-offs from Testing Capability

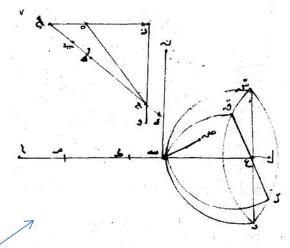
Let us start

Part 1. Introduction & Context

- Part 2. Optical imaging systems
- Part 3. Specifications of an Optical Imaging System
- Part 4. Laboratory Testing & Measurement of Optical Imaging Systems
- Part 5. Laboratory testing: Impact of Local needs & Benefits / Spin-offs from Testing Capability

Part 1.

Introduction & Context

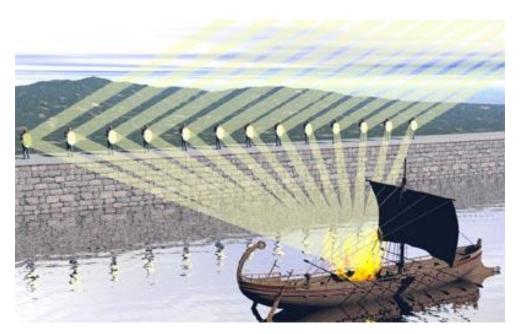


Some History of Arabic Optics 1

- Arabic records of study of geometrical optics
 - Traced to Hellenistic (Greek) optics
 - Translated to Arabic
 - 9th century
- Arabic contribution to geometric optics
 - Not just translation to Arabic
 - Innovative research
 - "Rectification" of Greek literature

See [4]

Reproduction of a page of Ibn Sahl's manuscript showing his discovery of the law of refraction", now known as Snell's law. [5]


لاندان استه عليه اسطي مستوغيره قلان هذا الشّطي يسط سطي ترص عانع طة تب قلابد من كري من طاح احد خطي ب ن بعر فليكن ذ لك الخط مستق والفصل المشترك بعن هذا السطي وبين سطي قطع ق ر خط سرس فلات هذا السطي باسترس سلط مبعى فقط التب محفظ مستمنط ترقيط ف سبد على فعلات وكذاك خط ستعر ه هل محال المسلط مستوي مسلط مستون مسلط مستون مسلط مستون سط مستون سطو مستدس و

Some History of Arabic Optics 2

- Arabic military interest in optics (Caliphs & Princes)
 - Burning mirrors (Military application)
 - + Scientific & Philosophy

See [4]

Artists impression: Soldiers directing light to a ship, but could they really get it hot enough to burst into flame? [6]

Following stories of Archimedes (Greek) defeating fleet of Marcellus (Roman General).

Some History of Arabic Optics 3

- Arabic records of study of human vision ("physiological optics")
- Arabic contribution to physiological optics
 - Not just translation to Arabic
 - Supplement shortcomings
 - Emphasis on observational experiments

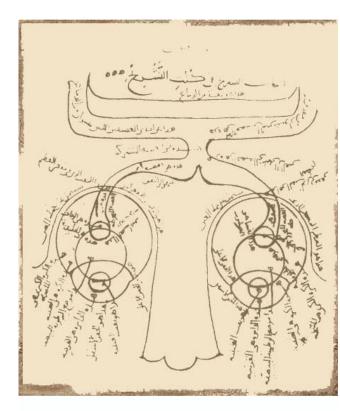


Figure 1. Diagrammatic representation of the visual system from the oldest existing copy of the Book of Optics by Ibn Al-Haitham, an arab physicist written in the 11 century AD. From Polyak (1957).

[7]

[4] Encyclopedia of the History of Arabic Science, Vol 2.

The Context: Global vs Local Optical Testing 1

- Optical & electro-optical products available
 - Good, because it can be used everywhere
 - Range from excellent to poor quality
- Local End-users & End-use applications in each country
 - End-users can be well-trained + experienced
 - But better to also have some local technical expertise

The Context: Global vs Local Optical Testing 2

Defense & Military — is specialized field

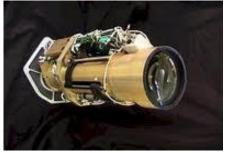
Surveillance cameras,

Reconnaissance cameras,

Infrared cameras

Night surveillance

Sighting systems for arms / scopes



Specialized application

= High cost & = Sensitive (Confidential / Secret)

Expertise base built by some testing

Testing & Measurement is Important

"When you can measure what you are speaking of and express it in numbers, you know something about it.

But

=25 cycles/milliradian

when you cannot measure it and cannot express it in numbers, your knowledge is of a very meagre and unsatisfactory kind"

- Lord Kelvin

Local Expertise & Skills Base: How?

Hands-on / Practical laboratory testing & measurement

Exposure to the science / engineering / practical optics:

- Theory of optical imaging
- Application of theory to actual optical systems
- Relevant test & measurement methods
- Practical laboratory testing problems
- Expertise gained in Lab can be extended to Field Testing
- Expertise applied to appreciate maintenance demand

Where are we

Part 1. Introduction & Context

Part 2. Optical imaging systems

- Part 3. Specifications of an Optical Imaging System
- Part 4. Laboratory Testing & Measurement of Optical Imaging Systems
- Part 5. Laboratory testing: Impact of Local needs & Benefits / Spin-offs from Testing Capability

Part 2.

Optical Imaging Systems and some Defense Applications

Optical Imaging Systems: Quick Overview

Cameras and Camera lenses

Microscopes

Telescopes, binoculars, ...

Scanners

• ...

Human vision

Spectral regions:
 Visible, Near-infrared,
 thermal infrared,
 Ultraviolet

- Detectors
- Displays & Printers

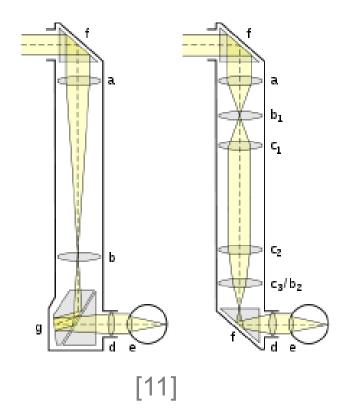
...

See [9]

Defense Applications: Afocal optical systems

- Actually "afocal" = no image formed
 - For human eye as sensor
 - or for image sensor if combined with a focusing lens
- Terrestrial telescopes
- Binoculars
- Theodolites
- Range finders

- Spotting scopes
- Rifle scopes
- Other


See [9] and [12]

Defense Applications: Afocal optical systems

Relay trains & periscopes
 (owing to hostile environment or threats)

See [9]

[10]

Defense Applications: Passive Scanning Sensors

- Remote sensing
 - Gun sights

Night vision

- (Navigation or Tactical)

- Missiles
- Surveillance

See [9]

Where are we

- Part 1. Introduction & Context
- Part 2. Optical imaging systems

Part 3. Specifications of an Optical Imaging System

- Part 4. Laboratory Testing & Measurement of Optical Imaging Systems
- Part 5. Laboratory testing: Impact of Local needs & Benefits / Spin-offs from Testing Capability

Part 3.

Specifications of an Optical Imaging System

Specifications: Three categories

- Basic system parameters
- Manufacturing specification
 or "Technology demonstrator" specifications
 in research & development context
- Performance specification

Specifications are Important. And understanding them!!!

"When you can measure what you are speaking of and express it in numbers, you know something about it.

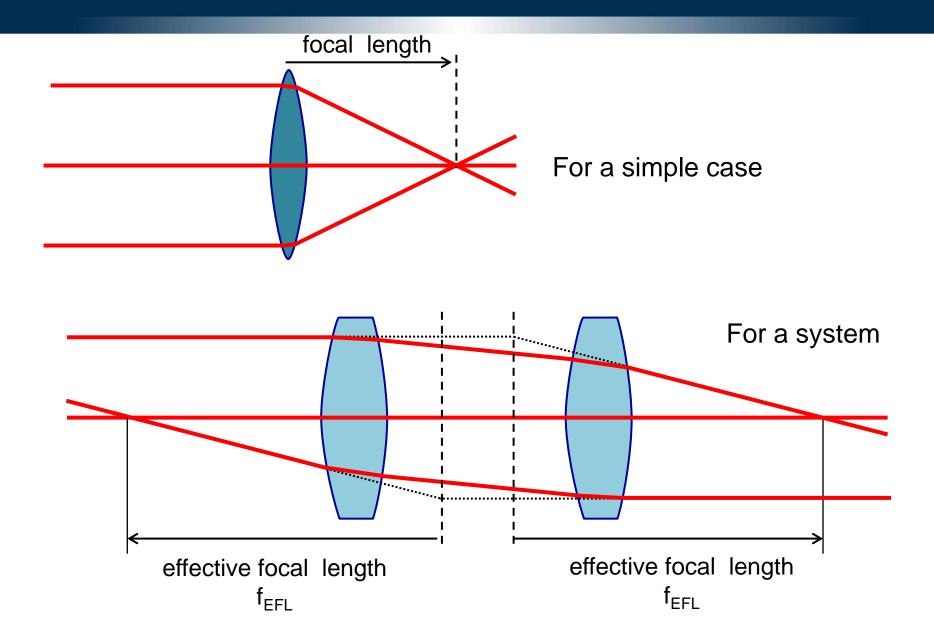
But

when you cannot measure it and cannot express it in numbers, your knowledge is of a very meagre and unsatisfactory kind"

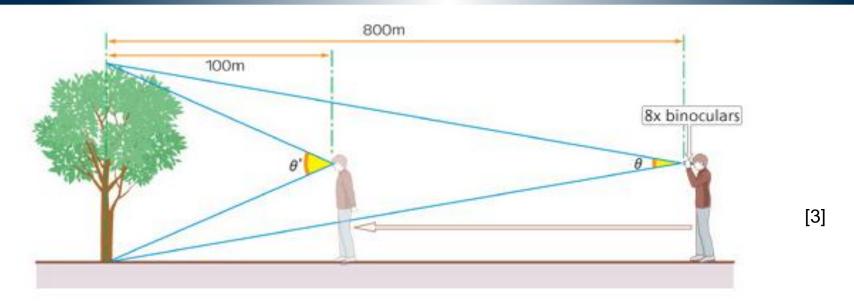
- Lord Kelvin

Basic System Parameters

- Basic system parameters
- Manufacturing specification
 or "Technology demonstrator" specifications
 in research & development context
- Performance specification



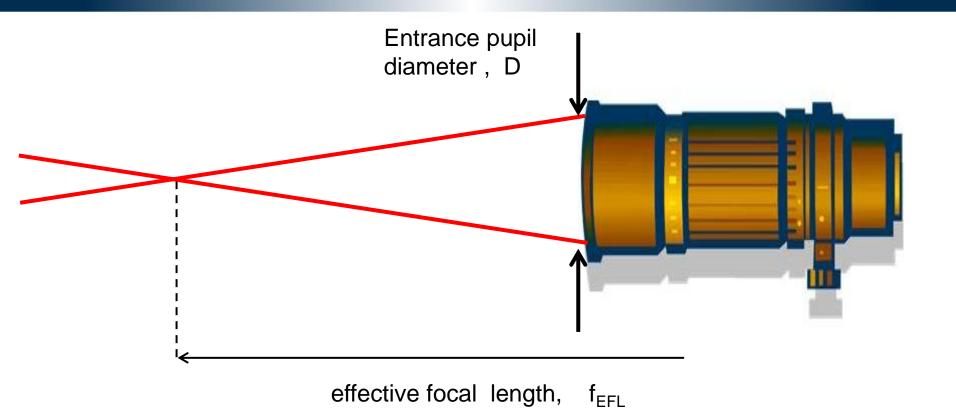
Basic system parameters 1


- Focal length
- Magnification
- Pupil diameter
- f-number
- Numerical aperture
- Wavelength interval where optical system —
 must work
- Spectral weighting

Specifications: Focal length

Specifications: Magnification

$$M = \theta / \theta$$


Specifications: Entrance Pupil & Exit Pupil

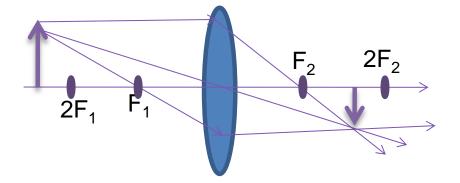
- Entrance pupil location
- Entrance pupil diameter
- Exit pupil location
- Exit pupil diameter

Specifications: f-number

f-number = f_{EFL}/D

Basic System Parameters 2

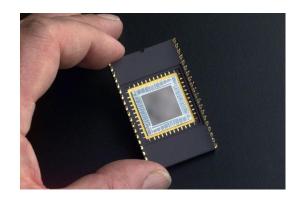
- Field of view
- Horizontal / Vertical aspect ratio



2:1

1:1

- Image distance
- Object distance


Free working distance on object side

See [2], Table 56.2

Basic System Parameters 3

- Zoom range
 - Minimum / Maximum values
- Sensor characteristics

See [2], Table 56.2

Manufacturing Specification

- Basic system parameters
- Manufacturing specification
 or "Technology demonstrator" specifications
 in research & development context
- Performance specification

Manufacturing Specification 1

- Overall size / Total track
- Maximum diameter
- Number of lenses
- Cost of production
- Number of aspherics
- Material restrictions
- Coatings
- Maximum weight

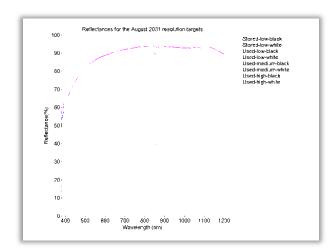
See [2], Table 56.2

Manufacturing Specification 2

- Use of diffractive elements
- Use of off-the shelf components
- Cosmetic properties
- Mechanical interface to mount the system
- Optical interface with connected systems
- Assembly requirements

Performance Specification

- Basic system parameters
- Manufacturing specifications
 or "Technology demonstrator" specifications
 in research & development context
- Performance specification



Performance Specification 1

Spectral transmission

- Vignetting
- Image Quality
- Distortion
- Image field curvature
- Depth of focus
- Illumination uniformity

See [2], Table 56.2

Performance Specification 2

- Temperature range
- Vibration resistance
- Shock survival
- ghost images
- Stray light / Veiling glare
- Telecentricity error
- Polarisation preservation

See [2], Table 56.2

Where are we

- Part 1. Introduction & Context
- Part 2. Optical imaging systems
- Part 3. Specifications of an Optical Imaging System

Part 4. Laboratory Testing & Measurement of Optical Imaging Systems

Part 5. Laboratory testing: Impact of Local needs & Benefits / Spin-offs from Testing Capability

Part 4.

Testing & Measurement of optical systems

Optical Testing. Image Analysis & System Testing

- Image analysis
- Optical bench measurements on imaging systems
- Aberration & Resolution measurements
- Interferometric testing of optical systems
 and interferometric wavefront measurement [1,2]
- Non-interferometric wavefront sensing [1,2]
- General light beam measurements

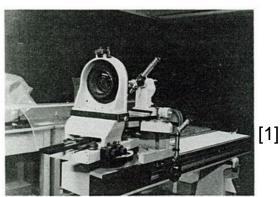
"Handbook of Optical Systems", vol 5 "Metrology of Optical Components & Systems" [2]

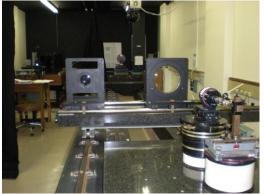
This book covers wider range of measurement topics on optical systems

- Interferometry
- Non-interferometric wavefront sensing
- Radiometry
- Image analysis
- System testing

• ...

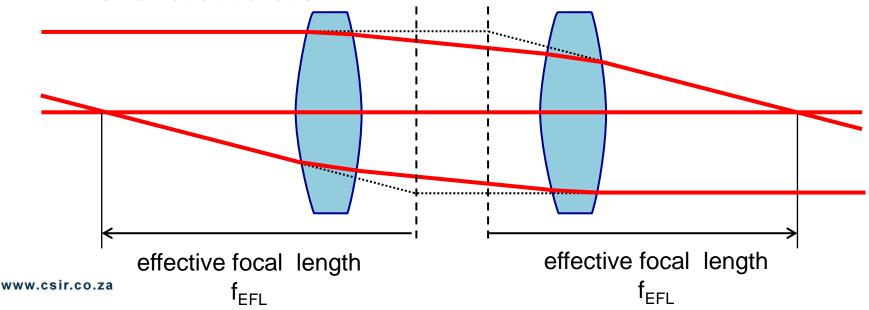
"Handbook of Optical Systems", vol 5 "Metrology of Optical Components & Systems" [2]


- ...
- Testing the Quality of optical materials
- Testing the geometry of optical components
- Component measurements [1,2]
- Testing texture and imperfections on optical surfaces
- Testing the quality of coatings


Optical bench measurements on imaging systems

- Effective focal length
- f-number
- Axial color
- Field curvature and distortion
- Transmission
- Relative illumination fall-off
- Veiling glare
- Thermal behavior

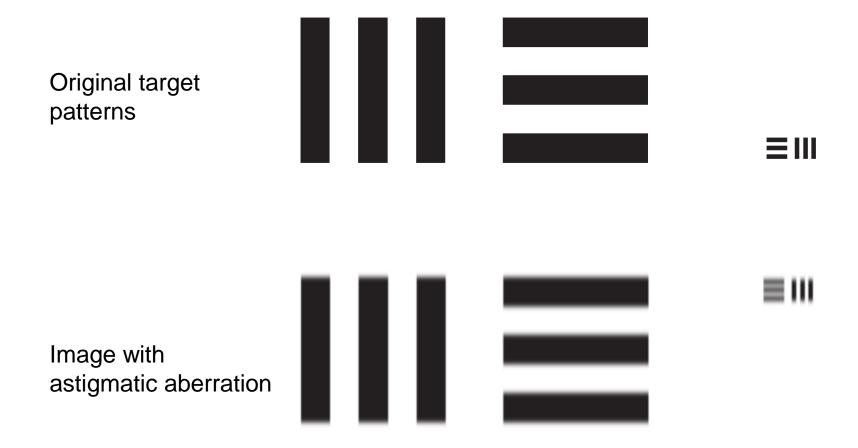
See [1] and [2] for more detail



Focal length measurement methods

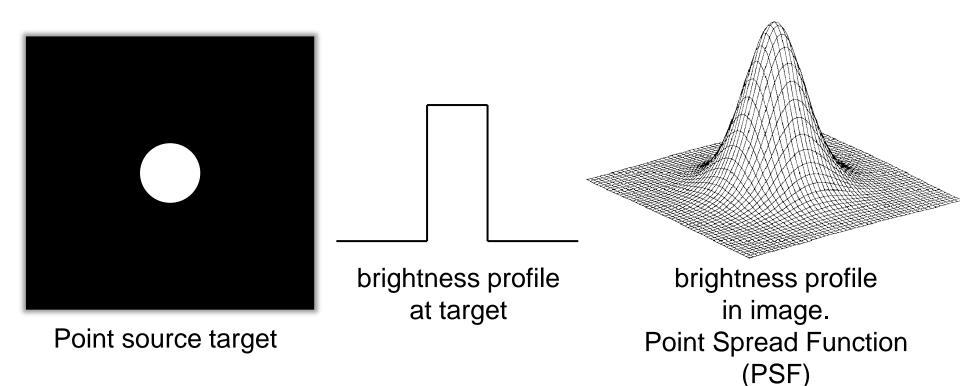
Three general methods [2]

- Methods based on image location
- Methods using relation between magnification & focal length
- Methods which determine wavefront curvature of a focused beam

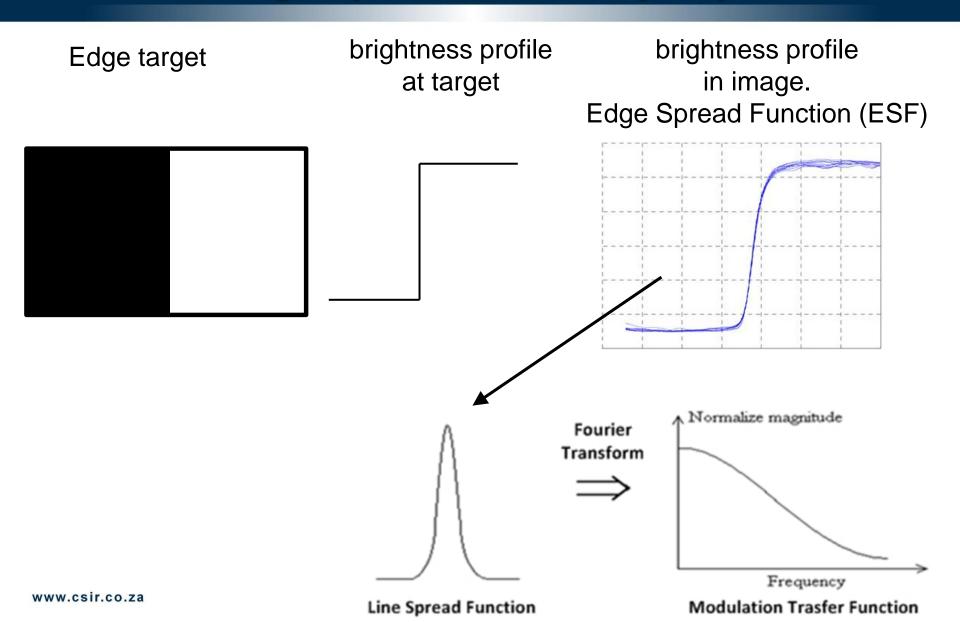


Aberration & Resolution measurements

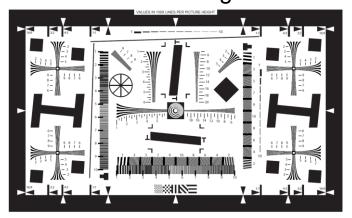
- Spherical aberration
- Astigmatism
- Coma
- Image resolution
- Modulation transfer function tests

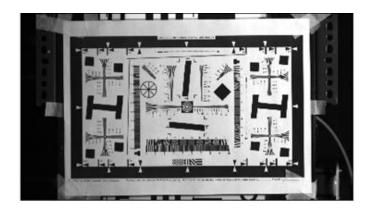

our future through science

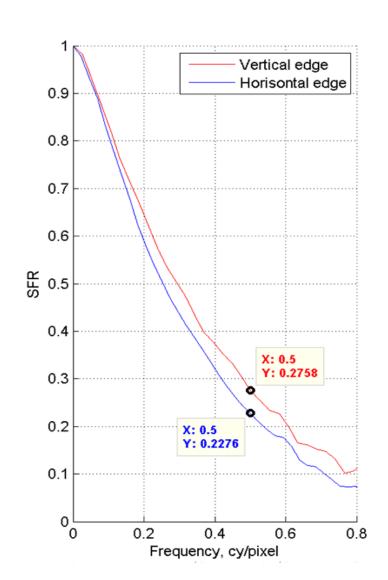
Aberrations: Astigmatism


Modulation Transfer Function (MTF) and Point Spread Function — 1

See [1] and [2] for more detail




Modulation Transfer Function (MTF) and Edge Spread Function (ESF) — 1


System MTF via printed target

ISO 12233 target

Photographed

Interferometric Testing of Optical systems

- Spherical aberration
- Astigmatism
- Coma
- Image resolution
- Modulation transfer function tests

See [1] and [2] for more detail

Testing of Optical Imaging Systems

Some tests specific to Image Quality and Imaging

- Resolution testing
- MTF
- IR: MRTD, NETD
- Laser rangefinder characteristics

Supporting measurements

- Spectrophotometry
- Spectroradiometry
- Photometry

Day & Night Resolution Testing

Targets for resolution tests

Lower spatial resolution target ("coarser" patterns)

Higher spatial resolution target ("finer" patterns)

Observation system on resolution testing bench

MTF Testing

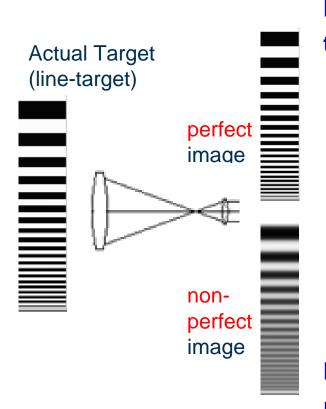
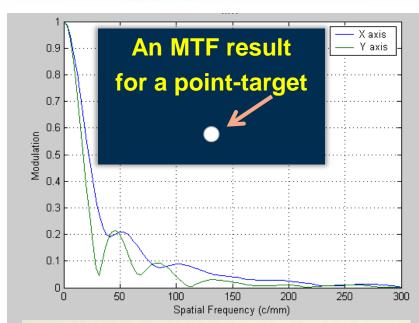
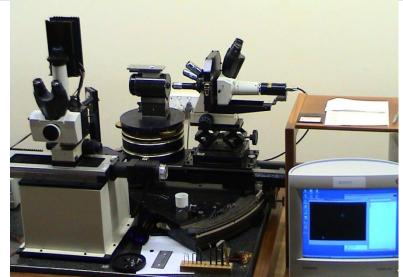
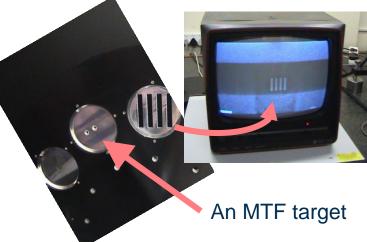




Image by theoretical lens

Image by real lens

lens aberrations and diffraction "smears" points in the image

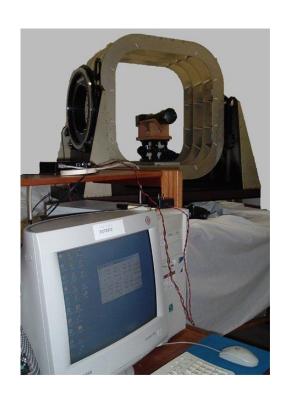
Infrared Bench: MRTD, NETD, Noise, System MTF


Blackbody and target wheel

Part of target wheel seen from rear

Four-bar target Imaged by infrared camera

our future through science



MRTD = Minimum resolvable temperature difference

Smallest temperature difference between a standard target at a given spatial frequency and its background, such that the target is "just resolved" by an observer.

Off-axis Performance Testing of Optical Systems

Testing Thermal Effects on Optical Systems

Performance of optical systems

Use with other benches

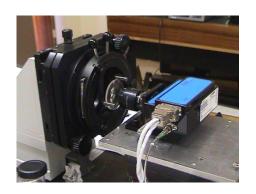
- Day or Night resolution testing
- Lens or system MTF
- Infrared: MRTD, NETD, MTF, NETD, Noise

Radiometry, Spectroradiometry, and Photometry. + Camera Uniformity

Large uniform sphere source

&

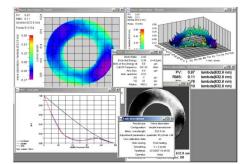
a spectroradiometer


Portable spectrometer/spectroradiometer

Laboratory and field measurement:

- Visible Near-infrared
- Camera uniformity characterisation using uniform sphere source

Interferometric wavefront measurement



Main applications:

- Determine wavefront after traversal of an optical system.
- Determine shape & precision of optical surfaces, be they flat, spherical or aspherical.

This enables:

- Verification of component optical surfaces against specifications
- Integration of optical components to a very high degree of precision
- Verification of transmitted wavefront of complete optical sub-assembly or system

Spectrophotometry and Colorimetry

Laboratory and field spectral measurement:

- Visible Near-infrared
- UV Visible Near-infrared
- Diffuse & Specular
- Transmittance & Reflectance

Example measurement applications:

- For camouflage design & evaluation
- Optical materials & filter characterisation

Where are we

- Part 1. Introduction & Context
- Part 2. Optical imaging systems
- Part 3. Specifications of an Optical Imaging System
- Part 4. Laboratory Testing & Measurement of Optical Imaging Systems
- Part 5. Laboratory testing: Impact of Local needs & Benefits / Spin-offs from Testing Capability

Part 5.

Laboratory testing: Impact of Local needs &

Benefits / Spin-offs from Laboratory Capability

Local needs & Spin-offs. Global vs Local Optical Testing

Discussion

End

Literature references

- [1] J.M. Geary, Introduction to optical testing, SPIE, 1993
- [2] B. Dörband, H. Müller, H. Gross, Handbook of optical systems, vol 5, Metrology of optical components and systems, Wiley, April 2012.
- [3] "Basic information about binoculars: Magnification", http://www.nikon.com/products/sportoptics/how_to/guide/binoculars/basic/basic_03.htm, accessed 2013-04-26
- [4] Rushdī Rāshid, Encyclopedia of the history of Arabic science. Vol 2. Mathematics and the physical sciences, Routledge, 1996
- [5] image used: "Reproduction of a page of Ibn Sahl's manuscript showing his discovery of the law of refraction", now known as Snell's law.", image from http://en.wikipedia.org/wiki/History_of_optics, accessed on 2013-04-26
- [6] image used: "Soldiers using multiple flat mirrors could concentrate light on a ship, but could they really get it hot enough to burst into flame?", from http://www.unmuseum.org/burning_mirror.htm, accessed 2013-04-26, Copyright credited to Lee Krystek, 2011
- [7] image used: "Diagrammatic representation of the visual system from the oldest existing copy of the Book of Optics by Ibn Al-Haitham, an arab physicist written in the 11 century AD. From Polyak (1957)", online copy of image from http://webvision.med.utah.edu/book/part-ix-psychophysics-of-vision/the-primary-visual-cortex/, accessed 2013-04-26
- [8] World map from: https://www.cia.gov/library/publications/the-world-factbook/maps/refmap_political_world.html, accessed 2013-04-26
- [9] M Bass, ed., "Handbook of optics", 2nd ed. McGraw-Hill, 1995, (2 or more volumes. Newer edition exists)

Literature references

- [10] http://en.wikipedia.org/wiki/Submarine, accessed 2013-04-26
- [11] http://en.wikipedia.org/wiki/Periscope, accessed 2013-04-26
- [12] Francis B Patrick, "Military Optical Instruments", in Applied Optics and Optical Engineering, Vol 5, Part II, R Kingslake, Academic Press, 1969

