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Abstract—This paper presents a comparison of methods to
fuse pre-registered colour visual and long wave infra-red images
to create a new image containing both visual and thermal cues.
Three methods of creating the artificially coloured fused images
are presented. These three methods along with the raw visual and
LWIR imagery are then evaluated using the Analytical Hierarchy
Process for three different scenarios using a set of 32 observers.
The scenarios entail bright, dim and dark conditions which
directly affect the amount of visual information available. Both
the standard method and a novel voting methodology are used
to evaluate the results, the latter providing similar ranking but
better discrimination between the voter’s preferences. The results
show that fused images are preferred for non-dark conditions
with the thermal based hue offset algorithm being preferred.

I. INTRODUCTION

This paper creates and evaluates multi-spectral fused im-
ages. Specifically visual and Long Wave Infrared (LWIR)
imagery are used. The fusion of data is a two-step process con-
sisting of registering the images and then using the registered
images to create a false-colour image for display purposes.
This paper focusses on the false-colour image creation and
the evaluation of such images for the purpose of object of
interest detection and subsequent identification.

A. Cross spectral registration

Registration is the first step in multi-spectral fusion, it
entails the warping of the two images such that corresponding
features in the images coincide. The authors have previously
shown [1] that standard feature descriptors yielded poor results
when used to generate homographies to register cameras of
spectral bands as different as the visual spectrum (0.3µm to
0.7µm) and LWIR (8µm to 14µm). Ergo this work used
the authors’ patented robot arm calibration technique [2]
to determine each camera’s forward and reverse distortion
parameters (required to correct the barrel effects), focal length,
pixel size, principal point and relative six degree of freedom
(DOF) positions. These parameters were then used to project
the cameras onto one or more virtual projection geometries [3]
to photogrammetrically stitch them in real time.

B. Creating meaningful false coloured fused images

Once the images can be correctly overlaid, the question
arises as to how to display this data. A standard computer
screen has only 24 bits resolution per pixel, 8 bits for each of
red, green and blue channels. This exactly coincides with the

data received from the visual camera, however one wants to
simultaneously display the thermal data (which is typically of
at least 10 bit resolution) together with the visual information.
Intuitively one may associate hot items with red and cold items
with blue, however these colours may already be present in
the visual image. For instance a blue vehicle with its engine
running will also be hot, and so must simultaneously be
rendered both blue and red.

For this work it is assumed that not only is the detection of
objects of interest important but so too is their identification.
LWIR imagery could be able to detect a person or vehicle in a
restricted area but normally not be able to provide information
to apprehend the person (e.g. ”Stop the guy wearing the
awesome Metallica T-shirt!”). For this reason there is no
clear best algorithm or heuristic to judge algorithms. Ergo
this work presents a suite of methods to create false colour
images as well as an assessment by a panel of evaluators as
to which algorithm performs the best in three different lighting
situations.

C. Related Work

In their paper Hama et. al [4] make use of three lay-
ers of image fusion to create meaningful images. The first
layer was pixel-level fusion, where the values of pixels are
merged. The second layer was feature-level fusion, where
salient features are detected in each image and are highlighted
in the fused image. Finally they use decision-level fusion
which enhances features in the fused image, while suppressing
conflicts. Zheng [5] make use of channel-based colour fusion,
he modified the red channel of the input image with the corre-
sponding pixel value from the LWIR image. Li et. al. [6] used
a similar channel-based fusion method to Zheng, however they
also changed the colour space of the image to Y CBCR and
weighted those values using the LWIR value and then modified
the fused image to look similar to a separate sample image.
This work uses pixel-level fusion, since the fastest possible
fusion method was required. Since the input visual images are
colour each colour channel is modified in some way during the
fusion process. Image colour space transformations were used
specifically transformation from Red-Green-Blue (RGB) to
Hue-Saturation-Value (HSV) and the reverse transform. These
methods allowed hot and cold pixels to be highlighted with
modifications to the red, green, and blue channels and then
made more visible with a modification to the value channel in



the (HSV) colour space.
The Analytical Hierarchy Process (AHP) [7] is a widely

accepted decision making method which not only determines
each evaluator’s preference but also provides a measure of
their consistency. An overview of AHP is presented in §III.

There is a precedent for using AHP in selection of security-
related technologies: Baumbach [8] used a similar process to
select optimal camouflage patterns for uniforms.

D. Paper organisation

The rest of this paper is organised as follows: Section II de-
scribes the real time fusion algorithms. Section III explains the
process used to evaluate the algorithms. Section IV describes
the three scenarios used for the evaluation. Section V provides
the results of the evaluation and the fusion algorithms. Section
VI summarises the results and places them in context.

II. FUSION ALGORITHMS

This section describes the three fusion algorithms that were
evaluated. The algorithms make use of both the RGB and HSV
colour spaces. The definition and conversion between these
colour spaces is widely standardised and can be found in any
text book on image processing (e.g. [9]).

Some of the algorithms require a definition of to what extent
the item is considered hot or cold. For this the simple clamped
linear fuzzy membership functions given in Eq. 1 and Eq. 2
were used.

fH =


0 if T ∈ [0, αH1]

T−αH1

αH2−αH1
if T ∈ (αH1, αH2]

1 if T ∈ (αH2, 1]

(1)

fC =


1 if T ∈ [0, αC1]

αH2−T
αH2−αH1

if T ∈ (αC1, αC2]

0 if T ∈ (αC2, 1]

(2)

where:
fH = the membership function for hot elements,
fC = the membership function for cold elements,
αH1 = the lower threshold for the hot element,
αH2 = the upper threshold for the hot element,
αC1 = the lower threshold for the cold element,
αC2 = the upper threshold for the cold element, and

T = the normalised intensity value of the LWIR pixel.

A. Thermal Tinged Gray Scale

The thermal tinged gray scale (TTGS) algorithm creates
a false coloured image based on a grayscale version of the
visual pixel. The visual pixel is converted to grayscale using
the formula in Eq. 3. The RGB output pixel is created by
amplifying the red and blue channels by fH and fC as
determined by Eq. 1 and 2 respectively. The green channel
is set such that the geometric mean of the three channels is
the same as the grayscale value.

P ′RGB =

 G (1 + fH)
G

(1+fH)(1+fC)

G (1 + fC)

 (3)

where:
P ′RGB = the output RGB pixel,
PRGB = the input RGB pixel, and

G =

 0.2126
0.7152
0.0722

T · PRGB .
B. Fuzzy

The fuzzy algorithm creates a colour output pixel where hot
areas are highlighted red and cold areas are highlighted blue.
The input RGB pixel has its channels weighted as shown in
Eq. 4 below, this step makes hot pixels more red, and cold
pixels more blue. This modified pixel is then converted to the
HSV colour space where the hue value is shifted towards red
by the hot LWIR weighting value, and towards blue by the
cold LWIR weighting value, the value channel is increased
slightly to make the colours brighter. This HSV pixel is then
converted back to RGB and used as the final output pixel.

P ′RGB = fHtoR

TPHSV +

 fC · 5◦ − fH · 8◦
0

0.02

 (4)

where:
TPHSV = an intermediate pixel value in HSV space,

= fRtoH

 (1− κ1fH)PRGB .R+ κ1fHT
(1− κ2fHfC)PRGB .G+ κ2fHfCT

(1− κ3fC)PRGB .B + κ3fCT

 ,

P ′RGB = the output RGB pixel,
fHtoR = the function to transform HSV to RGB,
fRtoH = the function to transform RGB to HSV, and

κn = the nth interpolation factor.

C. Thermal Based Hue Offset

The thermal based hue offset (TBHO) algorithm fuses each
channel of the input RGB pixel with the LWIR pixel using Eq.
5 and the weights in Table V, this pixel is then converted to
the HSV colour space and one of two modifications is made:
if the LWIR pixel is hot then the hue channel of the HSV
pixel is shifted towards red, conversely if the LWIR pixel is
cold then the hue channel of the HSV pixel is shifted towards
blue. The output RGB pixel is then calculated from the redder
or bluer HSV values if either of these changes were made; or
remains the modified RGB pixel value if neither change was
made.



(a) LWIR image (b) Visual image

(c) TTGS fused image (d) Fuzzy fused image

(e) TBHO fused image

Fig. 1. Bright Scenario

TABLE I
BRIGHT SCENARIO ALGORITHM RANKINGS

Consistency Eigenvector
Metric Ratio (%) IR Vis TTGS Fuzzy TBHO
Mean 1.73 0.10 0.20 0.21 0.25 0.23

Mean (CR < 20) 1.41 0.14 0.16 0.28 0.21 0.21
Votes -214.7 53.7 104.6 58.8 -2.4



(a) LWIR image (b) Visual image

(c) TTGS fused image (d) Fuzzy fused image

(e) TBHO fused image

Fig. 2. Dim Scenario

TABLE II
DIM SCENARIO ALGORITHM RANKINGS

Consistency Eigenvector
Metric Ratio (%) IR Vis TTGS Fuzzy TBHO
Mean 2.58 0.29 0.05 0.06 0.25 0.36

Mean (CR < 20) 2.02 0.27 0.04 0.06 0.24 0.39
Votes 274.1 -378.2 -361.0 82.4 382.6



(a) LWIR image (b) Visual image

(c) TTGS fused image (d) Fuzzy fused image

(e) RWHS fused image

Fig. 3. Dark Scenario

TABLE III
DARK SCENARIO ALGORITHM RANKINGS

Consistency Eigenvector
Metric Ratio (%) IR Vis TTGS Fuzzy TBHO
Mean 6.13 0.44 0.04 0.04 0.17 0.30

Mean (CR < 20) 5.14 0.42 0.04 0.04 0.18 0.31
Votes 701.7 -418.5 -421.7 -102.0 240.5



P ′RGB =

 fHtoR
(
TPHSVC

)
if T ∈ [αC1, αC2)

fHtoR
(
TPHSVH

)
if T ∈ (αH1, αH2]

PRGB otherwise
(5)

where:

TPHSVH
= fRtoH

(
TPRGB

)
−

 10◦

0
0

 , and

TPHSVC
= fRtoH

(
TPRGB

)
+

 8◦

0
0


P ′RGB = the output RGB pixel,
fHtoR = the function to transform HSV to RGB,
fRtoH = the function to transform RGB to HSV, and

TPRGB =

 κ1PRGB .R+ (1− κ1)T
κ2PRGB .G+ (1− κ2)T
κ3PRGB .B + (1− κ3)T

 .
III. ANALYTICAL HIERARCHY PROCESS

The AHP [7], developed by Saaty in the 1970s, is a struc-
tured method to perform complex decision analysis. It breaks
down a complicated problem into simpler sub-problems, which
are then assessed by a panel. In this work the decision is which
of the fusion methods, or raw video inputs provides the best
situational awareness for three given scenarios.

All possible pair-wise comparisons of the five fusion al-
gorithms (three fusions techniques presented in §II plus the
raw LWIR and raw visual images) were presented in a
randomised order. For each pairing each evaluator selected
which algorithm was better and indicated how much better that
algorithm performed using a scale from one (the algorithms
perform equally well) through nine (the chosen algorithm
is extremely superior). Where more than one evaluator was
present no discussion was allowed.

This information was used to generate an N×N matrix for
each evaluator with elements as described by Eq. 6.

ai,j =

 1 if i = j
R if Alg i chosen over Alg j
R−1 if Alg j chosen over Alg i

(6)

where:
N = the number of options being compared,
i, j ∈ [1, 2, . . . N ], and
R = the evaluator’s rating from 1 to 9.

The dominant eigenpair of this matrix is then sought and
the eigenvector normalised such that its sum of elements is
unity. According to Saaty [7] a Consistency Ratio (CR) from
the eigenvalue (λ) and the Random Consistency Index (RCI)
can be calculated as per Eq. 7.

TABLE IV
RANDOM CONSISTENCY INDEX

N 1 2 3 4 5
RCI 0.0 0.0 0.58 0.9 1.12

N 6 7 8 9 10
RCI 1.24 1.32 1.41 1.45 1.49

CR =
100.0× (λ−N)

RCI(N)× (N − 1)
(7)

where:
CR = the consistency ratio,
λ = the dominant eigenvalue,
N = the number of items being compared, and

RCI(N) = is as per Table IV.

The ideal CR is 0%, indicating that the panel member had
no contradictory selections and rankings, Saaty further states
that a CR of 20% or higher may result in anomalous findings
if used. The eigenvector meanwhile provides the percentage
preference of the panel member for each of the items being
considered. AHP thus provides both the preferences of an
evaluator as well as the credibility of the assessment.

A. New Voting Methodology
Once the evaluation of each panel member’s individual

algorithm preferences has been determined as described in
§III, the question arises as to how all of these assessments
should be combined to yield the panel’s verdict. The standard
method of doing this is to create the geometric mean decision
matrix, and obtain the dominant eigenpair of this matrix to
use as the aggregate. In this work the global geometric mean
eigenpair, the geometric mean eigenpair of evaluators with a
CR less than 20% and a new vote casting method was used.

The vote casting method was created to remedy a flaw in
the AHP process which causes people who rate algorithms
as being of similar performance (i.e. ratings of 1 through 4)
to have higher consistency. Whereby those expressing strong
opinions between the presented algorithms tend to have a
higher CR and thus may get excluded from the decision
making process. This skews the algorithm in favour of the
choices of people who do not really have a strong preference
for any of the algorithms. So the following vote casting
strategy was determined:

V ji =

{
0 if CR > 100.0

(100.0− CR)× (~vji − 1
N ) if CR 6 100.0

(8)
where:

V ji = the evaluator j’s vote for algorithm i,

~vji = the ith element of the evaluator j’s eigenvector,
N = the number of algorithms, and
CR = the evaluator j’s consistency ratio as per Eq. 7.



TABLE V
VALUES OF FACTORS USED IN ALGORITHMS

Scene Algorithm αH1 αH2 αC1 αC2 κ1 κ2 κ3

Dark TTGS 0.55 1.0 0.0 0.45
and Fuzzy 0.4 1.0 0.0 0.35 0.7 0.1 0.5
Dim TBHO 0.55 1.0 0.0 0.45 0.3 0.9 0.5

TTGS 0.65 1.0 0.0 0.1
Outside Fuzzy 0.6 1.0 0.0 0.075 0.7 0.1 0.5

TBHO 0.65 1.0 0.0 0.1 0.3 0.9 0.5

Eq. 8 causes each person to vote for the algorithms that
they prefer and negatively vote for algorithms they dislike.
The strength of a vote is proportional to both the evaluator’s
consistency and the strength of their preference for the algo-
rithm. The total of each person’s votes is always zero. The total
vote for each algorithm is merely the sum of each evaluator’s
vote for that algorithm.

IV. SCENARIOS

This section describes the three scenarios presented to a
total of 32 evaluators. For each scenario all possible pairs
were presented in a random order and with random left/right
assignments to help prevent evaluator’s consciously preferring
a specific algorithm. The same question was asked of the
evaluators when considering each scenario: Which of the two
current algorithms provides the best combination of potential
threat detection and then identification of that threat?

In all the images a small Pleora Software Development Kit
(SDK) [10] watermark is evident in the top left corner of the
visual images and a larger watermark in the LWIR images.
This was due to the laptop used to capture the images only
having the free non-licensed version of the SDK.

The visual camera used was a Sony FCB-SE600 Colour
Block Camera with a 1920 × 1080 resolution and maximum
horizontal field of view (FOV) of 78.5◦. The SE600 was fitted
with a Stemmer GigE Vision backpack. The LWIR camera
used was a Xenics Gobi 640 GigE microbolometer with an
approximate horizontal FOV of 60◦ and a resolution of 640×
480.

A. Bright

The first scenario is a bright, well illuminated outdoor scene.
There is a large amount of colour detail in the visual images
including both red and blue vehicles. Much of the scene was
already hot due to solar heating effects. Figure 1 shows the
five images presented.

B. Dim

The second scene was an indoor scene, this was so the
lighting could be controlled to ensure it was dim. The amount
of colour information throughout the scene varied depending
on proximity to the open door. Both hot and cold items were
placed in the scene along with two people, one wielding a
weapon. Figure 2 provides the 5 images shown pairwise to
the evaluators.

TABLE VI
CONSISTENCY RATIO STATISTICS

Scenario Consistency Ratio
Name Min Mean Max St Dev.
Bright 3.71 21.10 84.78 18.74
Dim 3.09 22.20 143.51 27.94
Dark 3.49 15.89 128.71 21.60

C. Dark

The final scenario presented to the evaluator’s was a dark
scene. Negligible visual/colour information is evident (see
Figure 3(b)) due to the lighting conditions. Structurally, the
scene is almost identical to that described in Section IV-B.
Figure 3 shows the images for the dark scenario.

V. RESULTS

The results of the aggregation of the individual evaluator’s
votes are given in Tables I, II and III for the bright, dim and
dark scenes respectively. In these tables the highest scoring
algorithm for each scene and aggregation method is indicated.
Table VI provides the evaluator’s consistency ratio statics for
each scenario. Note that the CR of the geometric means for
both the bright and dim datasets is lower than the minimum
individual CR for those datasets and the dark dataset’s CR
is only marginally worse than the minimum. This was why
the voting aggregation method was developed. The ranking of
algorithms provided by the voting method is almost identical
to that of the geometric mean based ranking, only the third
and fourth ranked positions are swapped around for the bright
dataset. The voting method seems to provide a better indication
of the relative preferences of the algorithms. The voting
method also indicates whether the algorithm was beneficial
(i.e. had a positive total of votes) or detrimental (negative vote
tally) for each scenario.

It can be seen that where usable information is provided by
the both cameras then a fused false-colour image is preferred.
In the dark scenario there was no visual information and
evaluators strongly preferred the raw LWIR image, the second
most favoured algorithm was TBHO algorithm.

For the bright data there was a strong preference (excluding
the global geometric mean) for TTGS, which discards the
visual colour information and uses red or blue tinting based
on the thermal information. Close second choices were the
‘Fuzzy’ and TBHO algorithms.



VI. CONCLUSIONS

This paper developed three fusion algorithms and evalu-
ated them and the raw imagery in three different scenarios
using a panel of evaluators. AHP was used to perform the
evaluation and a new method of aggregating the AHP results
was suggested which provides an improved discrimination of
preferences between algorithms.

The TBHO algorithm is the overall highest ranked fusion
algorithm across the thee scenarios and is recommended for
situations where only one fusion algorithm may be imple-
mented. Implementations capable of allowing several algo-
rithms should provide the raw LWIR, TBHO and TTGS
algorithms.
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