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Abstract—We describe the integration of several tools to enable
the end-to-end development of an Automatic Speech Recognition
system in a typical under-resourced language. Google App Engine
is employed as the core environment for data verification, storage
and distribution, and used in conjunction with existing tools for
gathering text and for speech data recording. We analyse the
data acquired by each of the tools and develop an ASR system
in Shona, an important under-resourced language of Southern
Africa. Although unexpected logistical problems complicated the
process, we were able to collect a usable Shona speech corpus
for the development of the first Automatic Speech Recognition
system in that language.

I. INTRODUCTION

The range of applications for high-quality automatic speech
recognition (ASR) systems has grown dramatically with the
advent of smart phones, in which speech recognition can
greatly enhance the user experience. Currently, the languages
with extensive ASR support on these devices are languages that
have thousands of hours of transcribed speech data already
collected. Developing a speech system for such a language
is made simpler because extensive resources already exist.
However for languages that are not as prominent, the process
is more difficult. Many obstacles such as reliability and cost
have hampered progress in this regard, and various separate
tools for every stage of the development process have been
introduced to overcome these difficulties.

The approach we explore in this paper is to combine these
partial solutions. This process includes creating new tools and
incorporating existing ones to develop an end-to-end ASR
system in typical under-resourced conditions. The first stage
of our solution uses an on-line tool called Rapid Language
Adaptation Toolkit (RLAT) [1]. RLAT permits speech system
developers to rapidly collect text data from the internet using
web crawlers and web robots. We also incorporated an open-
source software tool called Woefzela [2], that can collect
speech data in resource-constrained environments at low costs.
Google App Engine (GAE) [3] is the platform that houses the
collected corpus in a reliable and secure location; tools were
written to combine the outputs of RLAT and Woefzela for
management, storage and distribtion via GAE. The end-to-end
process uses a web interface to perform most of the tasks.
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The aim was to make the process as simple as possible, and
facilitate case of use.

I1.

The foundation of most ASR and text-to-speech (TTS) systems
is the availability of sufficient clean text and speech corpora.
Most languages in developing and underdeveloped countries
do not have the luxury of having such resources. Sixty percent
of the world’s population speak only about thirty of the
6900 living spoken languages, as native or second language
speakers. The vast majority of the remaining languages are
plagued by limited speech resources. Reasons for the lack
of resources can range from native speakers being illiterate
to accessibility because they live in remote areas. Languages
that have little or no speech corpora are therefore classified as
under resourced and those with sufficient speech corpora are
said to be well resourced. The majority of African languages
fall in the under resourced category, even though many of
these languages have millions of speakers. For the current
work, we focus our attention on the Shona language, which
is a typical widely-spoken but poorly-resourced language in
Southern Africa.

Fortunately, a substantial number of the under-resourced lan-
guages do have a significant presence on the World Wide Web.
These internet sites can be crawled to retrieve the contents
of the web pages, and the data can then be cleaned through
suitable preprocessing stages to serve as general text corpora.
The preprocessing steps include the removal of HTML tags,
foreign-language content and various forms of punctuation.

BACKGROUND

For the specific purpose of ASR corpus development, suitable
prompting material can be extracted from such general corpora.
Woefzela employs short n-grams of frequently co-occurring
words as prompts, in order to simplify the prompt-reading task.
Thus, such segments need to be extracted from the text corpus.
To avoid inappropriate or confusing prompts, it is useful to
have the automatically-extracted segments verified by a native
speaker before they are recorded. We have therefore developed
a tool for on-line prompt verification, which integrates with
Woefzela to download the selected prompts to Woefzela-
enabled smart phones in preparation for speech recording,



The remainder of this paper is arranged as follows. Section
IIT gives a brief background of the language/dialect Shona,
chosen for baseline system evaluation. Section IV introduces
the text data collection process and how the data were cleaned
to generate prompts. Section V introduces the method we used
to acquire speech data. Subsequently, Section VI reports on
the experiments and results of each part of of the end-to-
end system, and we conclude with some retrospective remarks
on the strengths and weaknesses of the system that we have
developed.

III. THE SHONA LANGUAGE

The Shona language is a Bantu language native to the Shona
people of Zimbabwe, southern Zambia, Botswana and parts
of Mozambique. Shona is also used as an umbrella term to
identify people who speak one of the Shona language di-
alects, namely Zezuru, Karanga, Manyika, Ndau and Korekore.
Zezuru, mainly spoken in Mashonaland, is regarded as standard
Shona dialect [4]. Shona is also spoken unofficially in South
African and it is closely related to the Venda language (one
of the official languages of South Africa). The language has
more than 10.8 million first-language speakers across Southern
Africa. Shona is a tonal language with two tomes, high and
low; the tones are not indicated in the script form of the
language, which uses the Roman alphabet with a fairly regular
relationship between orthography and pronunciation.

IV. TEXT DATA COLLECTION

There are various methods that can be utilized when collecting
text data - see [5] for an overview. The method explored
here was the use of RLAT, which is a tool developed at the
Karlsruhe Institute of Technology to quickly collect data for a
particular language without being a speech expert. RLAT can
also be used for speech data collection, for the development of
automatic speech recognition (ASR) and text-to-speech (TTS)
systems. However, that functionality requires that audio data
be recorded over the internet, which is often not feasible in
developing countries, because internet connectivity is usually
an non-existent. We therefore only utilize the text-collection
capabilities of RLAT in our development.

A. Text Data Crawling

A list of one hundred frequently used Shona words, which
was created by extracting text from a few Shona websites
and performing a word frequency count, served as starting
point for our development. The process flow of the remainder
of the text data collection process is depicted in Figure 1.
To collect text data, this list of one hundred frequently used
Shona words was submitted to the RLAT team and used to
search for web sites which may contain Shona content (based
on the presence of those words). The Shona language option
was added by the RLAT team to support our effort, and can
be found on the drop-down menu on the RLAT website. For
direct and robust web crawling, a text file with a list of eight
URL’s, shown in Table I, was also uploaded to the RLAT
site. A total of 19 Megabytes of data was collected. The
data contained approximately 267 thousand sentences, which
include over 2.6 million word tokens. RLAT provides data
clean-up mechanisms that remove HTML tags, punctuation
marks and convert the text to lower case. This process is termed
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Fig. 1. A schematic diagram of the RLAT interaction process.
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language independent text normalization [6]. After the cleaning
process, the data was found to have a large portion of English
content: for both word types (i.e each unique words counted
separately) and word tokens (i.e each word counted regardless
of repetition) the ratio of English to Shona was approximately
1:1. Although some English data would be acceptable for our
Shona development process, this ratio is too high - we therefore
needed to perform additional processing, as described below.

TABLE 1. Shona URLs used to initiate crawling.

URL
hitp://mudararatinashemuchuri.blogspot.com
http: fvashona.com/shona-news
hittp://www.watchtower.org/carjt/

http: /www.kwayedza.co.zw/
hitp://www.voanews.com/shona

http. 'www.viva.org/downloads/pdfwwp2012/
http://faraitose.wordpress.com
http:716dayscwgl.rutgers.edu
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B. Prompt Design and Generation

There are several important factors that need to be kept in mind
when designing prompts. These include the domain in which
the prompts will be used, likely user populations and phonetic
coverage of the prompts. The prompts were designed for open-
domain purposes, which means a complete coverage is unlikely
to be achieved (especially within the restricted scope of a
corpus for an under-resourced language).

Since our prompts are intended for usage with Woefzela, we
required short phrases that could easily be displayed on the
screen of a smart phone. The developers of Woefzela found
that prompts of three to five words work well for that purpose.
Since Shona is a morphologically complex (agglutanitive)
language with a conjunctive writing style, its words tend to



Fig. 2. A screen shot of the on-line prompt verifier.
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be long. Thus, the prompts were limited to 3-grams. This
made the prompts not too long to read but still semantically
meaningful. A prompt list of five thousand sentence fragments
was generated. The digits in the text were not normalized to
see how the native speakers would call out the numbers. The
greedy algorithm used to generate prompts does not perform
any spell checking. This can be overcome by providing a
verification process - which is required in any case to remove
inappropriate content, as we discuss next,

C. Prompt Verification

At this stage a text file containing five thousand sentences
is generated for prompt verification. The UTF-8 encoded
sentences have three words each for recording. Some of the
sentences have mixed English and Shona words. Before the
recording process could take place, the prompts had to be
verified. This is to ensure that they do not contain spelling
errors or inappropriate content (such as abusive or obscene
phrases). The verification process was established through
a web interface. The site was developed on Google App
Engine in the django environment. The prompt text file can
be uploaded by users to the site.

During the verification process, a text file is retrieved from
the database and displayed in a table format. Each prompt has
a corresponding check box which is checked if the verifier
is satisfied with the correctness of the prompt. The interface
provides a field that allows the user to give the file to be
generated a unique name. The text file with verified prompts
is saved to the database and is ready for download for use by
the Woefzela application. Figure 2 shows a snapshot of the
verification page.
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Fig. 3. A schematic diagram of the data collection and training processes.
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V. SPEECH DATA COLLECTION

The simplicity of the end-to-end process of ASR development
lies in its process flow and automated nature. Figure 3 il-
lustrates the interaction between different tools to accomplish
end-fo-end ASR system development. For the verified prompts
to be recorded, they need to be downloaded from the Google
App Engine server. This prompted the development of an
application that facilitates the interconnection between the
server and the recording tool. For this purpose, we developed
an application called WDownload which retrieves the recently
verified text file of prompts to the local mobile smart phone.
It is open-source based and runs on the Android operating
system.

A. Respondent Canvassing and Screening

For the recording process to start, native speakers of the
language have to be recruited to perform verification and to
do the recordings. A Shona native speaker was hired to be
in every recording session to screen the respondents. The
screening process was done by assessing the ability and fluency
of how respondents could read fifteen Shona sentences that
were randomly selected from the prompt text file.

The respondents included students and domestic workers,
and were rewarded with token awards for their participation.
However, this turned out to be surprisingly controversial —
many potential respondents wished for substantial payments
in order to participate, which was not compatible with the
limited budget and open-source approach of the current project.
Amongst the students, there was a greater receptivity for the
open-source style; we were able to collect with greater success
in that population, but only a limited number of students
were available in Pretoria, where our collection was being
performed.

Another challenge faced by field workers during the collection
process was getting many respondents in a single location
to record. This was the unexpected result of political events
that had occurred previously. The recordings therefore had to
be done with one or two respondents at a time in different



locations, and again limited our ability to collect a substantial
number of speakers.

B. Respondent Registering

Respondents were required to sign a consent form to allow
their voices to be used for our project; afterwards they received
their tokens of appreciation. They were also required to fill
in a profile field which included their age, phone numbers,
identity numbers and their gender. The recording process using
Woefzela (see below) was very intuitive for students: very little
training was required to operate the application. The older
generation needed more assistance on how the application
should be operated.

C. Prompt Recording

Six inexpensive mobile telephones running the Android op-
erating system were used to perform recordings. The phones
had to be fully charged and running all the software required.
Woefzela was used for audio and meta-data collection. Woe-
fzela [2] is an open-source tool that runs on the Android
operating system. It provides a practical and cost effective
manner to collect speech data, especially in under-resourced
environments.

Each respondent was required to record about 500 prompts
initially; this was later reduced to 300 when frequent respon-
dent fatigue and loss of concentration was noticed. Depending
on how fast the respondent could read prompts, the recording
session could take between 45 minutes to an hour. The record-
ings with the associated meta data were then saved onto the SD
card. The data collection effort initially aimed at recording 20
Shona speakers, based on performance against speaker-number
results previously obtained [7].

Collected data may be copied directly from the SD cards to
limit reliance on the internet (a significant concern in the
developing world). However, phones can be moved to an
area with internet and directly upload all the files on the SD
card to the server. WUpload is an Android application that
is responsible for data upload to the Google App Engine. To
ensure that the files are not duplicated, a checksum is returned
from the server and if it matches that on the phone, the file in
the SD card is deleted. The data is stored in a blob-oriented
database for easy retrieval.
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In order to evaluate the partial solutions that make up the
end-to-end system, we have conducted various experiments as
described in this section. We present the quality of the text data
collected. We also analyse the recorded transcribed corpora,
and finally report on the results obtained with an acoustic
model that was trained to perform ASR.

ANALYSIS, EXPERIMENTS AND RESULTS

A. Text Data Analysis

To control the amount of English text in our corpus, a list
of English words was acquired by combining the CMU ([8],
Lwazi [9] and NCHLT English [2] pronunciation dictionaries.
This list was used as a lookup table to remove sentences
that contained English words only. The list consisted of 65
thousand words, mostly in the South African dialect of English.
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Sentences that had a mix of English and Shona were included
in the corpus, since such code-switched speech is commonly
found in ASR applications in under-resourced languages. Fig-
ure 4 shows pie charts that indicate the English-to-Shona ratio
of the remaining sentences. Numerics were left as they are to
hear how native speakers call them out (previously, we have
found that numeric quantities are often pronounced in English

[10]).
Fig. 4. A schematic diagram of Shona to English text ratio.

English to Shona: all tokens]

shona
english english

B. Speech Data Quality Control and Analysis

English to Shona: unique types]

The speech data and associated eXtensible Mark-up Language
(XML) files can be downloaded directly from the Google
App Engine using a Python script. In order to complete the
evaluation of our system, we have downloaded the data and
developed a grapheme-based Shona ASR system.

Because of the complications described in Section V-A above,
the collected corpus was smaller than we had initially intended:
we had recordings from five female voices and six male voices,
and a total of three and a half hours of speech. This data had
to go through quality control measures both on the phone [11]
and during off-line post processing [12]. The post processing
scripts use the meta data from the mobile phone to tag the
audio files. The process extracts the text prompts from XML
files and creates associated transcriptions.

The off-line quality control examines the volume levels and
the stop/start errors of the recording. Table II shows the
results of the quality control process before any training is
performed. From a total of 4018 recorded utterances, only 1855
were usable to train acoustic models. The recorded prompts
had 7296 word tokens, containing 3619 unique types. The
recording process managed to acquire 3.28 hours of speech
data.

TABLE 1II. Quality control data results.
Respondent | Total Recordings | Usable Recordings
000 395 59
001 377 205
002 679 259
003 6 1
004 520 276
005 375 223
006 424 331
007 377 257
008 393 119
009 334 83
010 138 42
TOTAL 4018 1855




C. Recognition Results

The quality-control process verifies that prompts have appro-
priate durations and energy levels, but does not contain any
mechanism to verify that the recorded audio files correspond to
the prompted transcriptions. For a better understanding of the
collected corpus, we randomly split the data into 80% and 20%
training and test data respectively. For eleven speakers, we used
five-fold cross validation. The speaker tags were generated so
that no speaker would appear in both the test and training sets.

The recogniser employed standard Hidden Markov Model
(HMM) based systems. For feature extraction, 39 dimensional
Mel Frequency Cepstral Coefficient (MFCC) features were
generated using HTK [13]. The MFCCs were extracted from a
25 milliseconds frame every 10 milliseconds. A flat grapheme-
based language model was used for grapheme recognition.
The dictionary used in the experiment was compiled from
the crawled text data. It comprises a word list with the
corresponding space separated grapheme representation. Table
IIT shows the overall amount of data used and the accuracy
of the grapheme-based system with both English + Shona
and Shona-only data. The experiments were conducted using
independent test sets and 5-fold cross validation. Table IV
shows the results of the ASR system with both English + Shona
and Shona-only data per speaker.

The training and test data contained English, which is a highly
irregular language. The grapheme-based recognition results
for such languages are invariably poor [14] — especially for
the case where the majority of the speech data are written
in the orthography of another language. To investigate this
further, the English content from the training and test data were
removed and the system was retrained. The last two columns of
Table TV show the results for Shona-only training and test sets.
It is observed that all the speaker results improved, showing
that even the small amount of English data present in our
corpus hurts grapheme-based performance substantially.

TABLE IIIL. Overall English + Shona and Shona-only results.
Language % Correct | % Accuracy | Amount of Data
English + Shona 66.29 55.34 3.28 howury
Shona-only 73.95 64.68 2.74 howrs
TABLE IV. English + Shona and Shona-only ASR results per speaker:
English + Shona Shona Only
Respondent | % Correct | % Accuracy | % Correct | % Accuracy
Speaker 000 60.08 48.34 61.64 52,05
Speaker 001 55.86 45.02 60.32 48.51
Speaker 002 64,84 53.48 69.03 58.07
Speaker 003 62.59 51.02 67.35 63.27
Speaker 004 70.39 60.44 73.28 64.83
Speaker 005 69.55 58.46 74.0 64.44
Speaker 006 67.73 55.64 69.40 58.58
Speaker 007 60.01 45.10 63.15 50.1
Speaker 008 71.72 61.83 75.89 66.71
Speaker 009 62,32 48.58 64.81 52.3
Speaker 010 65,11 48,19 67.19 55.96

Although our corpus was very limited in size and speaker
variability, the grapheme accuracy achieved is acceptable. It
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is, for example, in the same range as the accuracies achieved
for phoneme recognition on the 11 official South African
languages during the Lwazi project [9]. Of course, this is only
a starting point for Shona ASR development, and a number of
measures that are likely to improve recognition accuracy are
discussed below.

VII. CONCLUSION

We have explored the development of a set of tools that can
be used for rapid end-to-end ASR system development. The
process was tested and validated using the Shona language
native to Zimbabwe. The system uses the web-based RLAT to
acquire text data. The text data were cleaned to contain words
in a 86% to 14% Shona-to-English ratio, Text data were seg-
mented into prompts and uploaded to GAE. The prompts were
verified on-line through a web-based system. To automate the
end-to-end process, we also developed an Android application,
WDownload, to download verified prompts to a mobile phone.
Woefzela was used for recording and meta data collection. The
recorded speech data was uploaded to the GAE through an
Android application called WUpload. The data can be fetched
at any time to develop an ASR system. With the combination of
all these partial solutions, the end-to-end system development
is made faster, easier, more intuitive and cost effective.

The accuracy of the ASR system can be improved in a number
of ways. For example, a manually verified pronunciation
dictionary - especially of the English words - would be useful.
Also, during the recording process it was found that there
were several inconsistencies in the pronunciation of certain
numerals: the reading of years and large numbers, particularly,
varied from respondent to respondent. This led to a degradation
in word accuracy. Most importantly, more speech from a larger
number of respondents will greatly enhance the accuracy of our
recognizer. The logistical challenges that limited the size of
our corpus were both unexpected and highly dependent on the
local context. We hope that others will use our tools to perform
ASR system development in under-resourced languages ... and
that they will not be plagued by similar logistical issues!
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