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Abstract—Exact solutions of equations of longitudinal vibration 

of conical and exponential rod are analyzed for the Rayleigh-

Love model. These solutions are used as reference results for 

checking accuracy of the method of lines. It is shown that the 

method of lines generates solutions, which are very close to those 

that are predicted by the exact theory. It is also shown that the 
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accuracy of the method of lines is improved with increasing the 

number of intervals on the rod. Reliability of numerical methods 

is very important for obtaining approximate solutions of physical 

and technical problems. In the present paper we consider the 

Rayleigh-Love model of longitudinal vibrations of rods with 

conical and exponential cross-sections. It is shown that exact 

solution of the problem of longitudinal vibration of the conical 

rod is obtained in Legendre spherical functions and the 

corresponding solution for the rod of exponential cross-section is 

expressed in the Gauss hypergeometric functions. General 

solution of these problems is expressed in terms of the Green 

function. For numerical solution of the problem we use the 

method of lines. By means of this method the partial differential 

equations describing the dynamics of the Rayleigh-Love rod are 

reduced to a system of ordinary differential equations. For 

checking of accuracy of the numerical solution we chose special 

initial conditions, namely we assume that initial longitudinal 

displacements of the rod are proportional to one of eigenfunction 

of the system and initial velocities are zero. In this case vibrations 

of every point of the rod are harmonic and their amplitudes are 

equal to the initial displacements. Periods of these vibrations, 

obtained by the method of lines, are estimated and compared 

with the theoretically predicted eigenvalues of the rod, thus 

giving us estimations of accuracy of the numerical procedures. 

Keywords—Longitudinal vibration of rods, variable cross-section, 

exact solution, method of lines. 

 

INTRODUCTION 

 Reliability of numerical methods is very important for 
obtaining approximate solutions of physical and technical 
problems. That is why it is necessary to test these solutions 
whenever it is possible using exact solutions, obtained for some 
special cases. This is especially important for the class of 
dynamical problems described by the hyperbolic partial 
differential equations, which have always been considered as 
challenging problems for numerical methods. In the present 
paper we consider the Rayleigh-Love model of longitudinal 
vibrations of rods with conical and exponential cross-sections. 
It is shown that exact solution of the problem of longitudinal 
vibration of the conical rod is obtained in Legendre spherical 
functions and the corresponding solution for the rod of 
exponential cross-section is expressed in the Gauss 
hypergeometric functions. For numerical solution of the 
problem we use the method of lines. By means of this method 
the partial differential equations describing the dynamics of the 
Rayleigh-Love rod are reduced to a system of ordinary 
differential equations. For checking of accuracy of the 
numerical solution we chose special initial conditions, namely 
we assume that initial longitudinal displacements of the rod are 
proportional to one of eigenfunction of the system and initial 
velocities are zero. In this case vibrations of every point of the 
rod are harmonic and their amplitudes are equal to the initial 

displacements. Periods of these vibrations, obtained by the 
method of lines are estimated and compared with the 
theoretically predicted eigenvalues of the rod, thus giving us 
estimations of accuracy of the numerical procedures. 

 
EXACT SOLUTION OF EQUATIONS OF THE CONICAL ROD 

 

Let us consider a rod of length  and assume that its 

physical parameters such as mass density , modulus of 

elasticity  and Poisson ratio are constant, but radius 

of cross-section is variable and depends on longitudinal 

coordinate  of the rod: . In this case area of cross-

section of the rod  and its polar moment of inertia 

 are also variable. In the case of circular cross-

section  and . Equation of 

longitudinal vibration [1] for longitudinal displacement 

 is as follows: 

 

        (1) 

Let us consider a steady-state vibration  

( ). In this case the corresponding to (1) homogeneous 

equation is: 

  (2) 

If the generatrix of conical surface of the rod is described by 

equation , where  is coordinate of 

the pole of the cone, , then , 

 and equation (2) is rewritten as follows: 
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       (3) 

where - speed of wave propagation in cylindrical 

rod in accordance with the classical theory, and  is 

the wavenumber of the conical rod which has dimension . 

Introducing new dimensionless variable  and 

considering new function  we transform (3) to 

equation: 

     (4) 

which could be further transformed by means of 

transformation  to the form: 

     (5) 

or 

   (6) 

where . Equation (6) is the Legendre 

equation which has solution  

       (7) 

where ,  are Legendre functions of the first and 

second kind and  are arbitrary constants. In original 

variables solution of the problem of the Rayleigh-Love 

longitudinal vibration of the conical rod is rewritten as follows: 

 (8) 

where . 

EXACT SOLUTION OF EQUATIONS OF THE EXPONENTIAL ROD 

Let us now consider the Rayleigh-Love rod with the 

exponential generatrix so that radius of its cross-section is 

. In this case area of cross-section is 

 and polar moment of inertia 

. In this case equation (2) is transformed to 

the following form: 

  (9) 

where . Exact solution of equation (9) could be 

obtained by means of it transformation to the Gauss 

hypergeometric equation in two steps. At the first step we 

make transformation , where  is constant, 

which will be specially selected further. After this 

transformation equation (9) is rewritten as 

 

        (10) 

At this stage we make a choice of  so that 

. Hence,  and 

we make an arbitrary choice of the sign, so we assume 
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   (11) 

 

At the second step we change variable so that 

 and introduce function . In 

the new variables equation (10) is represented as follows: 

      (12) 

where  is calculated by formula (11).  

Equation (12) could be rewritten in the standard Gauss 

hypergeometric equation form: 

   (13) 

where ,  

and . 

Solution of equation (13) is  

  (14) 

where  is the Gauss hypergeometric function 

with parameters , b, c and argument z and  are arbitrary 

constants. 

In the original variables solution (14) could be rewritten as 

follows: 

 (15) 

where  and  are new arbitrary constants. 

 
COMPUTATIONAL SCHEME OF THE METHOD OF LINES FOR 

THE ROD WITH VARIABLE CROSS-SECTION 
 

 Let us return to equation (1) and rewrite it as follows: 

           (16) 

Next we divide the rod in  equal intervals, so that 

, , and compose an approximate finite 

difference scheme for x – differentiation at an arbitrary inner 

point , : 

 

, 

          (17) 

where  is length of the intervals of the rod. 

Substituting (17) in (16) and regrouping terms we obtain the 

system of N ordinary differential equations: 
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where , , , 

, , , , 

 and . 

For the conical rod  (remember that  

is the coordinate of the pole of the cone), 

, , 

, , 

,  and 

. 

For the exponential rod , , 

, , , 

,  and . 

Unknowns  and  are defined from 

the boundary conditions. For example, for fixed ends 

 and . For free ends  and 

(or) . Derivatives at the end points are approximated 

as follows [4, 5]: 

 

,        (19) 

and hence, for free boundary conditions  (for 

, and hence, ) and (or) 

 (for , and hence, 

). For different boundary conditions the 

corresponding values ,  and ,  could be 

estimated similarly. 

 
EXAMPLES 

 

For the conical Rayleigh-Love rod with fixed ends 

 we obtain the following characteristic 

system of equations (see (8)): 

 

       (20) 

From this equation we calculate eigenvalues  and 

eigenfunctions: 
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located at m. The pole of the rod is located at 

 m. Modulus of elasticity of the rod is  

Pa, mass density  kg/m
3
 and Poisson ratio is 

 (for calculation the Poisson ratio was taken with 

eight digits after coma as  because at this 

value  is very close to 

integer value , which substantially simplified 

calculations of the Legendre functions  and ). 

Simulation of the problem was performed in MATHCAD14 

which has the built-in function  for calculation of  

 with integer . Function  with integer  

calculated as follows [4, 5]: 

 
     

Figure 1. Eigenvalues of the Rayleigh Love (solid red line)  

and classical (dotted blue line) conical rods. 

 

 

Distribution of eigenvalues of the problem (equation (20)) is 

shown in Fig. 1 (solid line) where it is compared with the 

eigenvalues distribution of the rod with the same geometric 

and physical properties but considered in the frames of the 

classical theory (dotted line). 

One can see that eigenvalues of the conical rod calculated 
according to the Rayleigh-Love theory are lower than the 
corresponding eigenvalues calculated according to the classical 
theory. Furthermore the eigenvalues considered in the frames 

of the Rayleigh-Love theory have the limiting point which in 
this case is approximately equal to 15.438 kHz. First two 
eigenvalues of the Rayleigh-Love conical rod are 
approximately equal to the corresponding eigenvalues of the 
classical rod. First five eigenvalues of the Rayleigh-Love 
conical rod are (in the brackets we give corresponding 

eigenvalues of the classical conical rod):  kHz 

(1.715 kHz),  kHz (3.430 kHz),  kHz 

(5.145 kHz),  kHz (6.860 kHz), ),  kHz 
(8.575 kHz). Eigenfunctions corresponding to the first five 
eigenvalues are shown in Fig. 2. These eigenfunctions were 
plotted using exact solution (8). 

 

 
 
Figure 2. First five eigenfunctions of the Rayleigh-Love conical rod. 

 

 
Figure 3. Free vibrations of the Rayleigh-Love 

conical rod at the first mode. 
 

Let us consider free vibrations of the Rayleigh-Love 

conical rod at ,  corresponding to initial conditions 
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, . The analysis was 
performed by means of expressions (20) -  (21) and by means 
of the method of lines in which the conical rod was divided in 

 equal intervals and numerical integration of the 

system of  ordinary differential equations was 
performed by the Adams-backward differentiation formula 

method with tolerance . All solutions gave the similar 
results which are shown in Fig. 3 – 7. In Fig. 3 we assumed 
that initial condition is proportional to the first eigenfunction

 (see Fig. 2), the time integration was 

performed in interval  seconds, where   

and  is the first eigenvalue.  

 
 

Figure 4. Free vibrations of the Rayleigh-Love 
conical rod at the second mode. 

 

 
Figure 5. Free vibrations of the Rayleigh-Love 

conical rod at the third mode. 
 

Time interval  is subdivided into 1000 subintervals. 
The Fourier analysis of the time realization shown that absolute 
difference between the exact eigenvalue and eigenvalue 

calculated by the method of lines is  Hz which 

corresponds to . 

. For  intervals the 

results of solution of the system of  ordinary 

differential equation are  Hz and 

. In Fig. 4 the initial condition 
were taken proportional to the second eigenfunction

 (Fig. 2), the time integration was performed 

in interval  seconds, where   and  is 
the second eigenvalue. Results of the Fourier analysis of the 
time realization shown that absolute 

 

 
 

Figure 6. Free vibrations of the Rayleigh-Love 
conical rod at the fourth mode. 
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Figure 7. Free vibrations of the Rayleigh-Love 

conical rod at the fourth mode. 
 

difference between the exact eigenvalue and eigenvalue 

calculated by the method of lines is  Hz which 

corresponds to . For  

intervals the results of solution of the system of  

ordinary differential equation are  Hz and 

. In Fig. 5 the initial condition 

were taken proportional to the second eigenfunction

 (Fig. 2), the time integration was 

performed in the time interval  seconds, where 

  and  is the third eigenvalue. Results of the 

Fourier analysis of the time realization shown that absolute 

difference between the exact eigenvalue and eigenvalue 

calculated by the method of lines is  Hz which 

corresponds to . For  

intervals the results of solution of the system of  

ordinary differential equation are  Hz and 

. In Fig. 6 the initial condition 

were taken proportional to the second eigenfunction

 (Fig. 2), the time integration was 

performed in the time interval  seconds, where 

  and  is the fourth eigenvalue. Results of the 

Fourier analysis of the time realization shown that absolute 

difference between the exact eigenvalue and eigenvalue 

calculated by the method of lines is  Hz which 

corresponds to . For  

intervals the results of solution of the system of  

ordinary differential equation are  Hz and 

. In Fig. 7 the initial condition 

were taken proportional to the second eigenfunction

 (see Fig. 2), the time integration was 

performed in the time interval  seconds, where 

  and  is the fifth eigenvalue.  Results of the 

Fourier analysis of the time realization shown that absolute 

difference between the exact eigenvalue and eigenvalue 

calculated by the method of lines is  Hz which 

corresponds to . For  

intervals the results of solution of the system of  

ordinary differential equation are  Hz and 

. 

One can see that the results of numerical simulation by the 

method of lines are very close to the theoretically predicted 

results. Accuracy of estimations is increasing with increasing 

of the number of intervals of the rod’s length. Hence, we can 

conclude that the method of line is a reliable numerical 

method of simulation of partial differential equations with 

mixed time-spatial derivatives. 

 

CONCLUSIONS 

 

Two exact solutions of equations of motion were derived for 

the case of longitudinal vibrations of the Rayleigh-Love rod. 

The first exact solution was obtained for the conical rod and 

expressed in the Legendre functions. The second exact 

solution was obtained for the exponential rod and expressed in 

the Gauss hypergeometric functions. The general solutions of 

the problem are formulated in terms of two alternative Green 

functions. The computational scheme of the method of lines 

was formulated for the case of the Rayleigh-Love rod with 
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variable cross-section. Solutions obtained using the method of 

lines for the conical rod are compared with the exact solutions 

of the problem. It was shown that the method of lines 

produces results which are very close to the corresponding 

exact solutions. It was also shown that the accuracy of the 

method of lines is increasing with increasing of number of 

intervals on the rod. The conclusion was formulated that the 

method of lines generates reliable and accurate results for 

partial differential equations with mixed time-spatial 

derivatives. 
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