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Abstract—This paper introduces a model of affect to improve
prosody in text-to-speech synthesis. It operates on the discourse
level of text to predict the underlying linguistic factors that con-
tribute towards emotional appraisal, rather than any particular
surface emotion itself. The architecture of the model is described
and its performance is evaluated on three levels—its predictive
accuracy on text, its effect on natural speech and its effect on
synthesised speech.

I. INTRODUCTION

From an engineering point of view, spoken language can be
divided primarily into a verbal component and a prosodic com-
ponent [1]. The verbal component comprises the actual words
that are used to communicate. Text-to-speech (TTS) systems
use the well-established linguistic methodologies of phonol-
ogy and phonetics to synthesise intelligible verbal speech.
The prosodic component, or prosody, is the rhythm, stress,
and intonation of speech, and contributes to its naturalness.
Prosody is much less understood in linguistics, with most
theories advocating a sentence-level prosodic hierarchy that
maps morpho-syntactic units to prosodic units of different
sizes [2], [3]. The work of [4], [5] and others show that some
aspects of prosody are governed by linguistic levels higher
than the sentence. In fact, [6] provides acoustic evidence from
read and spontaneous speech that confirms this theory, and
proposes an expanded prosodic hierarchy that includes higher
domains such as discourse.

Discourse is a coherent multi-utterance monologue or di-
alogue text [7], [8], [5]. It is more than a sequence of
utterances, just as an utterance is more than a sequence of
words. Explicit and implicit discourse devices signify links
among utterances, such as anaphoric relations on the one
hand, and discourse topic (or theme) and its progression
on the other. Information structure is the utterance-internal
devices that relate the utterance to its context in the discourse,
inter alia its contribution to the topic. More formally, the
definition theme/rheme distinguishes between the part of the
utterance that relates it to the discourse purpose, and the
part that advances the discourse. Background/kontrast (or
givenness/focus) distinguishes the parts, specifically words, of
the utterance that denote actual content from the alternatives
that the discourse context makes available.

Beyond discourse and information structure, another prag-
matic influence that regulates prosody is affect, or emotion.
Affect is probably the most intuitive contributing factor of
prosody, yet it is also the most difficult to model. Analysis of
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positive and negative sentiments in text is an easier, yet useful
precursor to detecting affect. Research on sentiment analysis
and affect detection has explored data-driven and rule-based
avenues [9], though it is emphasised that research in affective
computing should not be disjunct from emotion theory.

The OCC model [10] is one such theory that takes a step
back from the surface level of emotional expressions and rather
identifies the underlying factors that contribute towards them.
It appraises human emotions from valenced reactions to three
aspects of the environment. Firstly, the consequence of an
event—whether it is desirable or undesirable with respect to
one’s goals. Secondly, the action of the agent responsible
for the event—whether it is praiseworthy or blameworthy
with respect to one’s standards. Thirdly, the aspect of an
object—whether it is appealing or unappealing with respect
to one’s atfitudes.

The goals, standards and attitudes of a person are the
cognitive antecedents that determine whether his valenced
reaction to the environment is positive or negative. A particular
emotion is the consequent of the appraisal process, as the
person focuses on either the consequence, action or aspect,
respectively. For example, the event of “I shot the sheriff” may
elicit pride over the action if one is an outlaw (one’s standard
is lawlessness), but fear over the consequence of ending up in
jail (one’s goal is to remain uncaptured).

[11], [12] implement the OCC model in their TTS sys-
tem. The accuracy of the natural language processing (NLP)
component that predicts the OCC emotions is 80.5% on a
200 sentence test set when the 22 complex OCC emotions
are collapsed onto the 6 basic emotions of joy, sadness, fear,
anger, disgust and surprise (for comparison to related work).
For the speech synthesis component, improvement is shown in
the perception of dichotomous sentiment, but the perception
of discrete emotions in the synthesised speech still falls far
short of those in real speech. This leaves the question of
whether a theoretically-motivated approach to modelling affect
in synthesised speech is, after all, possible.

Section II will briefly introduce the audiobook as a use-
ful narrative domain for discourse-level analysis in text and
speech. In an attempt to improve on the work of [11], [12],
a new model of affect will be proposed in Section IIT that
addresses the shortcomings of the initial implementation by
operating on the audiobook level. Section IV will relate the
experiments on the model and Section V will draw some
conclusions about the results.



II. AUDIOBOOKS

The text and speech of the audiobook of a novel should be
a most suitable source of higher level linguistic and prosodic
phenomena. The unfolding plot is directly analogous to a
progressively growing discourse context. A knowledge base
of the fictional world and its characters is formed by the
narrator of the audiobook as he reads out loud. Information in
this knowledge base moves from new to given or comes into
focus on a continual basis, which should theoretically influence
the speech prosody. In the same way the narrator chooses to
express affect based on his understanding, or interpretation,
of the interaction between the characters and the world and
among the characters themselves.

The prototype narrative domain that can be best exploited
by a model of affect based on the OCC theory (and for
which audiobooks are available) are children’s stories. These
narratives typically have a simpler grammar of English—to
boost the accuracy of the NLP—as well as characters of
clear distinction between good and evil (protagonists and
antagonists)—to boost the accuracy of the OCC model inputs.
The Oz series of children’s books by L. Frank Baum presents
a good case study as it is in the public domain. Electronic
versions of the books are obtainable from Project Gutenberg
(http://www.gutenberg.org/) (for the text) and LibriVox (http:
/Mibrivox.org/) (for the audio). The audiobooks to be used as
a training set are “The Wonderful Wizard of Oz”, “Ozma of
0z”, “Dorothy and the Wizard in Oz”, “The Road to Qz”, “The
Patchwork Girl of Oz"” and “Rinkitink in Oz”. The audiobook
for the test set is “The Emerald City of Oz”. The typical length
of a book is around 40k words/4 hours.

An NLP software package that is most suitable to anal-
yse the audiobook text on a discourse level is Stanford
CoreNLP (http://nlp.stanford.edw/software/corenip.shtml), The
accuracies of its most important compenents are state of the
art—POS tagging [13] at 97.24%, constituent parsing [14] at
86.36%, dependency parsing [15] at 80.3% and coreference
resolution [16] at 58.3%.

Concerning the audiobook speech on LibriVox, there are
two North American English speakers that narrate sizeable
subsets of the Oz series. Phil Chenevert is a male with an
animated, variably toned voice who reads around 21 hours
of the training data. Judy Bieber is a female with a calmer,
evenly toned voice who reads around 12 hours of the training
data. Both read around 5 hours of the test data. When a 100
sentence gold standard test subset is singled out (explained
later), it comprises around 4 minutes for each speaker.

The phonetic transcriptions of each book are obtained using
the Carnegie Mellon University North American English Pro-
nunciation Dictionary (http://www.speech.cs.cmu.edu/cgi-bin/
cmudict). The forced alignment of the audio to the phonetic
transcriptions is done with the Hidden Markov Model Toolkit
(HTK) [17]. The TTS system Speect [18] processes the NLP
and phonetic information to produce synthesised speech with
a plugin of the HMM-Based Speech Synthesis System (HTS)
engine [19].
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1. E-motif

A new model, named e-motif, will now be put forth in
an attempt to improve upon the OCC model implementation
of [11]. Its name is a three-fold word play on the important
components of this research: (e)lectronic motif, that is theme,
contributes to emotive modelling. In other words, e-motif
takes advantage of the discourse and information structure
(“theme™) in (“electronic”) audiobook text to model affect
(“emotion”) according to the OCC theory in a more flexible
way. This it does by specifying the three cognitive features
of judgment, focus and tense, and the three social features of
power, interaction and rhetoric.

A, Judgment

The OCC model neatly defines the concepts necessary for
the eliciting conditions of emotional appraisal—on the one
hand the environmental factors of events, agents and objects,
and on the other the cognitive antecedents of goals, standards
and attitudes. The former group can be inferred from text
in a straightforward manner using shallow semantic parsing
that identifies the predicate, or action (typically the verb), and
assigns roles to the arguments of the predicate. These are
predominantly an AGENT role to the entity who performs
the action, and a PATIENT role to the entity who undergoes
the action. Hence, semantic predicates map to OCC events and
semantic AGENTs and PATIENTSs to OCC agents or objects.

The difficulty lies with the cognitive antecedents. It is nec-
essary to rethink the semantically-complex high-level concepts
of goals, standards and attitudes in order to come to a tractable
solution for the eliciting conditions of the OCC model. Like
[11], e-motif aggregates the OCC goals, standards and atti-
tudes into a single sense, or judgment, of right and wrong,
good and bad. However, it departs from their implementation
in that the belief system of the person is purely subjective.

Informally, e-motif appraises an emotion from how one
reacts to a good/bad person doing a good/bad deed to another
good/bad person. Formally, the model appraises a given event
in terms of the good (1) and bad (0) valences of its semantic
AGENT (A), verb predicate (v) and PATIENT (P). It is impor-
tant to note that e-motif defines an emotion anonymously based
on the inferaction among the underlying semantic variables A,
v and P, and does not commit to their composition according
to a particular objective belief system. The number of possible
affective states produced by e-motif is 2% = 8, as illustrated
in Table 1. The discourse context for the examples in the table
is “Policemen are good. Criminals are bad. To save someone
is good. To kill someone is bad”.

TABLE I
POSSIBLE COMBINATIONS OF VALENCED SEMANTIC STATES
AvP | Gloss Example
000 | bad A doing bad to bad P criminal kills criminal
001 | bad A doing bad to good P criminal kills policeman
010 | bad A doing good to bad P criminal saves criminal

criminal saves policeman
policeman kills criminal
policeman kills policeman
policeman saves criniinal
policeman saves policeman

bad A doing good to good P
good A doing bad to bad P
good A doing bad to good P
good A doing good to bad P
good A doing good to good P




The implementation of e-motif for discourse text involves
certain key design decisions (inter alia assumptions) to put
the theory of a person’s judgment of right and wrong into
practice successfully. Firstly, right and wrong, good and bad
are represented by the boolean values of true (1) and false (0).

The discourse is divided into clauses delimited by
verbs—the semantic predicate—that may have a semantic
AGENT and/or PATIENT. The AGENT is typically the nom-
inal subject and the PATIENT the direct object, complement
or copula.

The good or bad valence of a discourse entiry (a
coreference-resolved semantic AGENT or PATIENT) repre-
sented by a noun phrase defaults to the entry of (the lemma
of) the head noun in the SentiWordNet lexicon. SentiWordNet
[20] assigns a positive or negative sentiment score to each
WordNet [21] entry. If no entry is available, a good valence
is assigned. e-motif follows the methodology of [11] to
determine the polarity of a word from SentiWordNet—namely
using the net positive sentiment count of all the senses of the
particular word found in WordNet—since no WordNet word-
sense disambiguation functionality is available in Stanford
CoreNLP.

The entity valence may be altered by the SentiWordNet
valences of (the lemmas of) modifiers to the head noun (such
as adjectives) or negated by negators (such as not). Asin [11],
modification happens in a “once bad, always bad” fashion:
once a bad valence occurs in the modifier-head noun chain,
the entity valence becomes bad. Logically, this is by boolean
conjunction (AND). Negation is applied straightforwardly
after modification by boolean negation (NOT).

The good or bad valence of a discourse action (a semantic
predicate) represented by a verb phrase defaults to the Senti-
WordNet entry of (the lemma of) the head verb. If no entry is
available, a good valence is assigned.

The action valence may also be altered by the SentiWordNet
valences of (the lemmas of) modifiers to the head verb (such
as adverbs) or negated by negators (such as not). Modifica-
tion and negation follow the same principles as their entity
counterparts.

As the discourse progresses, the entities and actions can be
reassigned valences when they appear in assertive statements
as the subjects of copular verbs (for example to be). The
copula (SentiWordNet entry modified and negated) determines
the new valence.

B. Focus

It is very useful to note that, in the linguistic domain,
information structure can readily be applied to determine
whether the focus of attention in the OCC model lies on either
one of the agents and/or objects, or on the event itself, e-
motif specifies the three focus areas of the consequence for
the semantic AGENT, the action of the semantic AGENT (the
semantic verb predicate) and the consequence for the semantic
PATIENT. These areas can be distinguished indirectly based
on the interaction among the information status of the dis-
course entity represented by the AGENT (A), the discourse
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action represented by the verb (v) and the discourse entity
represented by the PATIENT (P). The information status is
simplified to a given/new dichotomy, where a discourse entity
or action is given (0) in the current discourse if it is present
in the immediately preceding discourse, and new (1) if it is
not. Table II shows how the information status values can
combine to form proper theme and/or rtheme phrase sequences
according to [7]. Importantly, this cognitive feature of focus in
e-motif subsumes the prosodic effects of information structure
under those of affect.

TABLE II

TRUTH TABLE FOR THE FOCUS AREAS IN E-motif
A v P | Information Structure
000 given given given|iheme
001 given given|iheme [€W]rheme
010 Given]theme [new] heme  [given]theme
011 given|ineme [new new|iheme
100 | [new]pheme [given givenliheme
101 newlrheme  [giVeN]theme [new] heme
110 | [new newlrheme [91ven)theme
111 new new newl,heme

The “current discourse™ is defined as the current AvP clause
and the “immediately preceding discourse” as the previous
AvVP clause. If the coreference-resolved discourse entity in the
current AGENT role is found in either one of the previous
AGENT, verb or PATIENT roles (a verb can also be an
AGENT), then it is marked as given, otherwise as new. The
same applies to the discourse action in the current verb role
and the discourse entity in the current PATIENT role.

C. Tense

As in [11], e-motif models the temporal aspects of the
emotions by noting the tense of the verbs in the clauses. The
past tense loosely indicates retrospective consequences of the
event, present tense the action of the agent and future tense
prospective consequences of the event. Negation for discon-
firmation of prospects is covered in the valence calculation of
the judgment feature. Tense is captured in the POS tags of the
verbs as output by Stanford CoreNLFP.

D. Power

The social factor of power can influence the emotional
responses of two interlocutors in a conversation. This is the
power, or status, that one interlocutor can have over the other
to trigger social dynamics such as authority and submission,
for example in parent-child, teacher-student or policeman-
criminal relationships.

Now, the narrative of a novel alternates between the in-
direct speech of the narrator and the direct speech of the
characters in the story. In order to capture and make use
of this flow computationally, the discourse is grouped into
speech reports, or turns, each anchored by the direct speech
of one of the characters. Paragraph structure gives clues to
cluster successive statements by the same character, since
intermittent indirect speech narratives (usually short) may be
present. These narratives, as well as any introductory ones
(usually longer), are included in a speech report.



e-motif identifies the coreference-resolved SPEAKER (S)
and LISTENER (L) of each speech report and determines their
good (1) or bad (1) valence through the judgment feature. It
then sets up the power feature as illustrated in Table III

TABLE III
POSSIBLE COMBINATIONS OF SPEAKER-LISTENER POWER
Gloss Example

criminal said to criminal
criminal shouted at policenan
policeman reprimanded criminal
policeman answered policeman

bad S speaking to bad L
bad § speaking to good L
good S speaking to bad L
good S speaking to good L

— e O | T
— S — ol

An interesting by-product of the power feature is that the
subjectivity of the judgment feature is additionally refined
in case the narrator wants to appraise the emotions of the
interlocutors vicariously on their behalf. Suppose the situation
where “a bad AGENT does a bad deed to a good PATIENT”.
If it occurs in indirect speech narrative, the narrator always
appraises from his own belief system. However, if it occurs
in direct speech dialogue, the narrator has a choice. Suppose
he chooses the vicarious option. Then, if a bad SPEAKER
is talking about it (admiration/camaraderie), he should sound
different to when a good SPEAKER is talking about it (re-
proach/disassociation). The situation can similarly be extended
to differently valenced LISTENERs. All of this can now be
modelled.

All text within quotation marks are assumed to be direct
speech that forms part of a dialogue. This means that a con-
versation is always interpreted as between a single SPEAKER
and a single LISTENER, with dialogue turns between the
two until a new SPEAKER and/or LISTENER is explicitly
introduced. The SPEAKER and LISTENER are identified
using the following heuristics.

The first sentence in the indirect speech narrative imme-
diately succeeding the direct speech in a speech report is
searched for a reporting verb. A reporting verb here is a verb
that is typically used to introduce direct speech, for example
said, shout, ask and answer, If that sentence does not
contain a reporting verb, then the final sentence in the indirect
speech narrative immediately preceding the direct speech in
the speech report is searched.

The SPEAKER is set to the discourse entity that is the
subject of the reporting verb and the LISTENER to the
discourse entity that is the indirect object or object of the
prepositions to, at and of in a dependency relationship with
the reporting verb. If no SPEAKER is found for the current
speech report, look in the dialogue turn history and assign the
previous LISTENER.

If no LISTENER is found for the current speech report,
look in the indirect speech narrative for a discouse entity with
whom the SPEAKER interacts. Here, interaction is defined
as the LISTENER being the direct object, indirect object or
prepositional object of a verb of which the SPEAKER is the
subject. If still no LISTENER is found, look in the dialogue
turn history and assign the previous SPEAKER, else assume
the SPEAKER is talking to himself.
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E. Interaction

This feature models the social responses of the characters
in their direct speech interaction with one another and the en-
vironment. Adaptation captures the adjustment of a character
in response to the environment—it is set for the initial direct
speech clause of a character in response to events that occurred
in the “environment” of the indirect speech narrative,

Coordination captures the reaction of one character in
response to the emotional expressions of another—it is set at
each dialogue turn, in other words, for the initial direct speech
clause of one character that follows immediately after the final
direct speech clause of another character, with no interrupting
indirect speech narrative.

Regulation captures the reaction of a character based on
his understanding of his own emotional state and relationship
with the environment—it is set for each non-initial clause in
the direct speech monologue sequence of a character in his
dialogue turn.

E Rhetoric

The name of the feature alludes to “rhetorical question™. It is
a simple binary feature that distinguishes between statements
and questions as a form of rhetoric. The main reason for its
inclusion is its pronounced effect on sentence-final prosody,
namely an FO downstep for statements versus an upstep for
questions.

IV. EXPERIMENTS

The following experimental investigation evaluates the ac-
curacy of e-motif in predicting the linguistic features from
text and accounting for the prosody in natural and synthesised
speech.

A. Affect Detection from Text

In order to test the accuracy of e-motif, 100 sentences are
selected from the “The Emerald City of Oz” test set. The sen-
tences are strict single AGENT-verb-PATIENT clauses spread
over the test set, in order to optimise the semantic precondi-
tions of the model. Each sentence is manually annotated with
the correct feature values, where “correct” is not restricted by
the correctness of preceding components in the NLP pipeline.
In particular, character valences are not determined by copular
induction, but assigned on a human intuitive basis according
to the protagonistic or antagonistic role of the character in the
story. Furthermore, human intuitive coreference resolution is
done to track characters in the preceding discourse up to the
point of the particular sentence when focus is assigned.

The automatically predicted feature values are compared
against the gold standard to produce the accuracies in Table IV,
The six features are indicated in normal roman script. The bold
“All” signifies all features strictly correct, “Cognitive” signifies
all cognitive features (tense, judgment and focus) strictly
correct, and “Social” signifies all social features (power,
interaction and rhetoric) strictly correct. The italicised “agent,
verb, patient, speaker, listener” signify individual role slots
within the compound features.



TABLE IV
E-motif ACCURACY

Feature Accuracy (%)
All 11
Cognitive 15
Judgment 41

- agent 56

- verb 81

- patient 73

Focus 31

- agent 48

- verb 86

- patient 71

Tense 83
Social 47
Power 51

- speaker | 63

- listener | 64

Interaction 89
Rhetoric 100

The rhetoric feature has a 100% accuracy since it is a direct
mapping from the text. Interaction is also a direct mapping,
but does not obtain a full score, since the gold standard
considered successive direct speech segments in some contexts
still to be coordinated, not yet regulated. Tense has a high
accuracy due to the well-performing underlying POS tagging
algorithm in Stanford CoreNLP. The features of judgment,
focus and power, however, all have much lower accuracies
because they have compound values that are furthermore
dependent on the coreference resolution performance, which
is only 58.3% (Section II). In fact, the individual agent,
speaker and listener slot accuracies reflect this region. The verb
slots score much higher because the verb predicates need not
be coreference-resolved—their lemmas are simply considered
as canon. The patient slot is in between the agent and the
verb slots because the semantic PATIENT can often be an
adjectival complement—canonised by lemma—instead of a
noun object—which needs to be coreference-resolved. The
model performs very poorly when strict correctness of the
feature subsets are required, both for the cognitive subset and
the social subset, and thus overall.

The next section investigates the acoustic effects of the e-
motif features in audiobook speech and discuss the ramifica-
tions of the low predictive ability of the model.

B. Affective Prosody in Natural Speech

[12] examine the changes in speech rate, pitch average,
pitch range and intensity when they compare emotional natural
speech to neutral natural speech. They evaluate the effects of
the six basic emotions of joy, sadness, fear, anger, disgust and
surprise. In the case of e-motif, the question is asked not about
the consequential discrete emotions, but about the antecedental
linguistic features.

The modelling adequacy of e-mofif is evaluated on the
aligned natural speech in the audiobook test set, for each
speaker, by comparing the means of the distributions of the
duration, average FO and average intensity measures, with and
without the linguistic features. The discrete linguistic features
need to be binarised in a “one versus many” fashion, resulting
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in 30 binary features to be considered. For each acoustic mea-
sure, a f-test delivers a verdict on the statistical significance
of the difference between the means. The independent two-
sample t-test statistic for unequal sample sizes and unequal
variances is calculated as follows [22]:
- H1— M2

2 2
EJL+EB.
1 o

where py, 67 and n; are the standard sample mean and
variance and number of samples in the test set for the
distribution with the binary linguistic feature deactivated,
Correspondingly, o, 02 and ns are for the distribution with
the binary feature activated.

To test for significance, ¢ is compared to the appropriate ¢-
test table value. The traditional significance level of p < 0.05
is adjusted for non-direction (two-tailedness) and Bonferroni-
corrected for the 30 binary features to p < 2"*%50 = 0.001.
The degrees of freedom typically approximate infinity, so the
threshold r-value is 3.090.

In addition to the #-test, a sanity check compares the
difference between the distribution means to the just noticeable
difference (JND), a threshold for perceptual discrimination.
With regard to complex signals such as speech, the JND for
duration (tempo) is 5%, for FO it is 1Hz and for intensity it is
1dB [23], [24).

The acoustics are measured on the phonetic level and only
segments that fall under AGENT-verb-PATIENT semantics are
considered. The duration values of the segments are available
from the alignment information; the FO and intensity values
are extracted with Praat [25].

Most of the activity takes place in the FO domain. Table V
and Table VI list the sample distribution means of the average
FO for each automatically calculated binary linguistic feature
when the latter is deactivated (“off””) and activated (“on”). The
difference (“diff”’) between the means and its ¢-statistic follow.
If the difference is both statistically significant and larger than
or equal to the JND, it is highlighted in bold. If it is only
significant, it is italicised. If neither, it is normally styled.

In the Phil Chenevert speech (Table V), regarding the
judgment features, only judgmenty;; and judgment;;p have
effects that are both statistically significant and perceptually
distinguishable, albeit the FO differences are not much larger
than the JND. If a judicial viewpoint by the speaker can
be assumed, the two effects might indicate strong cognitive
disbelief that motivates extraordinary prosody over the un-
expected situations of a bad agent doing a good deed to
a good patient and a good agent doing a good deed to a
bad patient, respectively. The same surface emotion is not
manifested, however, since judgmenty;; results in a lower tone
and judgment;io in a higher tone. The features of focusgs,
focusyp; and focus;;; are prominent (also only just), though
for no apparent reasons other than their intended function,
except that focus;;; also indicates a discourse-new clause, and
seemingly by a lowering in tone.

All the tense, power, interaction and rhetoric features are
statistically and perceptually significant. The contrast between

(1




TABLE V
t-TESTS ON THE MEANS OF THE AVERAGE F(Q MEASURE FOR THE
AUTOMATIC LINGUISTIC FEATURES, FROM THE Phil Chenevert SPEECH OF
THE FULL TEST SET (128481 AvP SEGMENTS)

TABLE VI
I-TESTS ON THE MEANS OF THE AVERAGE F0 MEASURE FOR THE
AUTOMATIC LINGUISTIC FEATURES, FROM THE Judy Bieber SPEECH OF
THE FULL TEST SET (132870 AvP SEGMENTS)

Linguistic Feature F0 Means (Hz) Linguistic Feature F0 Means (Hz)

off on diff f off on diff 3
judgmentgoo 126.428 | 127.764 1.336 1.120 Jjudgmentopg 236.175 | 244.876 8.701 5.182
judgmentgo 126.584 | 124.640 -1.944 2.515 judgmentpg; 236.247 | 238.888 2.641 2.368
judgmentgig 126.476 | 126.334 -0.142 0.198 judgmentpio 236.119 | 239.938 3.819 3.737
judgmentgi; 127.081 | 123.121 -3.960 7.369 judgmentpiy 237.085 | 232.710 -4.375 5.924
judgmentypg 126.415 | 128.787 2.372 1.745 judgment;go 236.211 | 245.506 9.295 4.935
judgment; oy 126.331 | 127.504 1.173 1.937 judgment; g1 236.180 | 238.119 1.939 2338
judgmentyig 126.218 | 128.334 2.116 3.558 judgment;ip 235.979 | 239551 3.571 4.372
judgmenty ;1 126.080 | 126.979 0.899 2.289 judgmentiy 237.830 | 234.518 -3.312 6.210
focusgoo 126477 | 122.166 -4.311 1.087 focusaoo 236.467 | 213.834 | -22.633 4.445
focuspos 126.502 125.697 -0.805 0.866 focusgos 237.056 | 222584 | -14.472 11.448
focusgig 126.305 | 128.666 2.361 2.956 focusgig 236.523 | 234.711 -1.812 1.749
focusg1l 126.178 | 127.865 1.687 3.280 focusgi 236.056 | 238.096 2.039 2.924
focusigo 126.437 | 131.169 4,732 1.722 focusop 236.457 | 227.606 -8.851 2.559
focusig1 126.288 | 129.062 2.774 3.504 focusiol 236.893 | 229.083 -7.810 7.418
focusyp 126.423 | 126.888 0.465 0.686 focusyig 236.186 | 238.609 2.422 2.610
focusii1 127.746 | 125.430 -2.316 5.937 focusiii 234.525 | 237.892 3.368 6.338
tensepa st 131.802 | 122.486 -9.316 | 23.710 tensepast 237.690 | 235.414 -2.275 4.264
tensepresent 123.462 | 131.183 7.721 19.275 tensepresent 236.218 | 236.684 0.466 0.861
tense future 126.003 | 138.117 12.114 12.432 teNSe £y pure 235.937 | 248.252 12.314 9.419
powergp 126.262 | 130.142 3.879 4,388 powergo 236.112 | 241.594 5.482 4.624
powergy 125.621 | 136.993 11.372 14.713 powergy 235.759 | 244.220 8.461 8.373
poweryg 125.510 | 137.302 11.792 16.777 powerig 235.593 | 245.441 9.848 10.074
power; 124.122 | 136.193 12,071 | 23.960 power1y 236.165 | 237.347 1.182 1.784
POWET g rrative 135.777 | 120.218 | -15.559 | 39.169 POWELn arrative 240.777 | 233.338 -7.439 13.805
interaction g ptation 125.687 | 144.235 18.549 17.710 interactiony daptation 235.483 | 255.809 20.326 14.954
interaction qprdination 125.893 | 138.346 12.454 13.285 interaction qordination 235.536 | 253.391 17.855 13.708
interaction, e gyuiation 122.900 | 134.269 11.368 | 26.958 interaction,egulation 236.256 | 236.717 0.462 0.818
interaction, uy-rative 135777 | 120.218 | -15.559 39.169 interactionparrative 240.777 | 233.338 -7.439 13.805
rhetoricstatement 141.659 | 126.011 -15.648 13.561 rhetoricstatement 243.336 | 236.163 -7.173 4.961
thetoriCguestion 126.011 | 141.659 15.648 13.561 rhetoriCgyestion 236.163 | 243.336 7.173 4.961

the vocalisation of indirect and direct speech is clear in
the effects of the interaction features. The speaker uses
a lower tone for indirect speech narrative (represented by
interactionperrative) than for direct speech dialogue of the
story characters (represented by the other interaction features).
The rhetoric features correctly model statements with a down-
step and questions with an upstep.

Confounding factors are probably present in the tense and
power features. The past tense is mostly used in indirect
speech narrative (a common writing technique), explaining
the decreasing effect on F0 of tense,,s, as opposed to the
increasing effect of tensepresen: and tensegyiyre in direct
speech dialogue. The power features exhibit the same be-
haviour, since they all occur in direct speech dialogue, except
for powernayrative.

In the Judy Bieber speech (Table VI), the cognitive
features show greater cohesion, especially judgment; focus
less so, but still more than in the Phil Chenevert speech.
Tense, power and interaction behave more or less the same
as in the Phil Chenevert case. The features of tensepqs,
POWET, 4 rative aDd Interaction,,,rrqtive decrease FO as a result
of indirect speech narrative, whereas interaction,daptation and
interactionegerdination increase FQ to denote direct speech
dialogue turns. The features of powergg, powery; and poweryg
behave accordingly. Once again, the rhetoric features perform
as expected.

Since the automatically calculated features have a low
accuracy (Section IV-A) that can influence the interpretation of
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the effects, the gold standard features of the 100 sentence test
subset are also evaluated. However, they generally confirm the
automatic case and do not show any other significant trends.

Despite their poor accuracy, the cognitive features of judg-
ment and focus appear to have a cohesive effect on the natural
speech of Judy Bieber, but are only able to model extreme
affective states in the Phil Chenevert speech. This is most
likely due to the predisposition of Phil Chenevert being more
animated in his speech, as compared to Judy Bieber who is
calmer. Phil Chenevert displays a type of speaker choice that
overpowers the finer prosodic nuances being modelled by e-
motif.

The social features seem to be more robust, as they fare well
across the board. However, whereas the interaction features are
explicitly defined to model the differences between indirect
speech narrative and direct speech dialogue, these speech
phenomena have a confounding effect on the tense and power
features.

The next section explores whether the e-mortif features can
be used successfully in speech synthesis, despite their spurious
relationships with natural speech.

C. Affective Prosody in Synthesised Speech

[12] takes a hand-crafted rule-based approach to model
prosody explicitly in their TTS system. The consequential
discrete emotions of their model are mapped to acoustic
parameters that alter the prosodic behaviour of the system ap-
propriately. Although improvement is shown in the perception



of dichotomous sentiment, the perception of discrete emotions
in their synthesised speech do not nearly match those in natural
speech accurately enough.

e-motif attempts a different route via the HTS framework.
The antecedental linguistic features are included in the HTS
context labels and the corresponding decision tree questions
are defined, in order to model the prosodic effects of e-motif
implicitly through the data separation process. Table VII lists
the format of the HTS labels. The traditional positional and
counting features, as suggested by the HTS documentation, are
included on the syllable (P context), word (A context), phrase
(B context) and clause (C context) levels. They are a naive,
but effective way of capturing physiological factors in speech
planning—the longer the phrase is in its syllable count, the
greater the effort (breath/pitch/energy) is required to realise
it; the position of each syllable within the phrase determines
what portion of the effort that syllable will receive; et cetera.
The labels furthermore contain lexical and phrase stress infor-
mation. Finally, the e-motif cognitive and social features are
specified in their own contexts (D and E, respectively).

TABLE VII
FEATURES USED IN THE HTS CONTEXT LABELS

P context: syllable-level phonetic features
p1: left triphone context (previous phone)
p2: center triphone context (current phone)
p3: right triphone context (next phone)
Pp4: phone position in syllable: initial, medial, final
ps: phone count in syllable: isolated, short, medium, long
A context: word-level lexical features
a1: syllable position in word: initial, medial, final
ay: syllable count in word: isolated, short, medium, long
a3: syllable lexical function in word: primary, secondary, none
B context: phrase-level syntactic features
b1: syllable position in phrase: initial, medial, final
ba: syllable count in phrase: isolated, short, medium, long
b3: word position in phrase: initial, medial, final
b4: word count in phrase: isolated, short, medium, long
bs: word syntactic function in phrase: head, modifier
C context: clause-level semantic features
cy: syllable position in clause: initial, medial, final
¢! syllable count in clause: isolated, short, medium, long
ca: phrase position in clause: initial, medial, final
cq4: phrase count in clause: isolated, short, medium, long
c5: phrase semantic function in clause: agent, verb, patient, other
D context: discourse-level cognitive/pragmatic features
d1: cognitive/individual clause tense: past, present, future
dp: cognitive/individual clause judgment: 000, 001, 010, 011,
100, 101, 110, I11
d3: cognitive/individual clause focus: 000, 001, 010, 011,
100, 101, 110, 111
E context: discourse-level social/pragmatic features
ey social clause power: 00, 01, 10, 1], narrative
e2: social clause interaction: adaptation, coordination, regulation,
narrative
e3: social clause rhetoric: statement, question

Three distinct synthetic voices are trained on the audiobook
training set, for each speaker, with the e-motif features auto-
matically calculated. A “Baseline” version uses only the P, A,
B and C contexts in the HTS labels. A “Cognitive” version
adds the D context to the “Baseline” defaults. A “Social”
version adds the final E context to the “Cognitive” ones. The
contribution of the cognitive and social contexts are separately
evaluated because of their unique effects (or non-effects) on
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natural speech noted in the previous section.

The synthetic voices are successively compared to each
other—that is “Cognitive” to “Baseline”, and “Social” to
“Cognitive”, for each speaker—by determining which voice
synthesises speech from the text in the full audiobook test
set that is closer to the original natural speech in the same.
Once again, this happens on the phonetic level and only
segments that fall under AGENT-verb-PATIENT semantics are
considered. The distances between the synthesised and natural
segments are calculated for the acoustic measures of duration,
F0 and intensity, where the distances for the latter two time-
series are represented by their dynamic time warping (DTW)
costs (Euclidean distance-based).

The statistical significance of the voice comparisons are
determined with McNemar’s test, a chi-square test for paired
sample data [22]:

2 _ (In1 — e - 05)
o B —— 2)
1 + 1ip

where n; is the number of samples in the test set accredited
to the first synthetic voice and 75 to the second synthetic voice.

x? has a chi-squared distribution with one degree of free-
dom (if n; + ny is large enough, which is true for the full test
set). To test for significance, x? is compared to the appropriate
chi-square table value. For a significance level of p < 0.05
and one degree of freedom, the table gives a threshold value
of 3.841. If x> > 3.841 the synthetic voice with the most
votes is significantly closer to the natural voice than the other
synthetic voice. If x? < 3.841 the result is insignificant and
the two synthetic voices can be said to be similar in closeness
to the natural voice.

The results of the synthetic voice comparisons are listed in
Table VIII and Table IX. Each table lists the test set sample
allocations to the different voices (or “Equal”) for the acoustic
measures ‘“Duration”, “F0" and “Intensity”. The last column
in the table indicates the x2-value for each comparison. If the
“Cognitive” voice is significantly closer than the “Baseline”
voice or the “Social” voice is significantly closer than the
“Cognitive” voice, the entry is highlighted in bold.

TABLE VIII

MCNEMAR COMPARISONS BETWEEN THE SYNTHETIC VOICES ON THE
FULL TEST SET, FOR THE Phil Chenevert SPEECH

Measure AvP Segments x2
Total | Baseline | Cognitive | Equal

Duration 128481 49632 49510 | 29339 0.149

Fo 128481 57450 57164 | 13867 0.711

Intensity 128481 63921 64559 1 3.163

Measure AvP Segments P%
Total | Cognitive Social | Equal

Duration 128481 48291 47421 | 32769 7.899

FO 128481 55841 59200 | 13440 || 98.048

Intensity 128481 63629 64851 1 11.613

The synthesised voices trained on the Phil Chenevert speech
perform as expected. The cognitive features do not contribute
significantly enough to the quality of the HTS data separa-
tion process, since the e-motif judgment and focus features
generally have no discernable effect on the Phil Chenevert
natural speech, and the tense feature effects are confounded by



TABLE IX
MCNEMAR COMPARISONS BETWEEN THE SYNTHETIC VOICES ON THE
FULL TEST SET, FOR THE Judy Bieber SPEECH

Z

Measure AvP Segments P%
Total Baseline | Cognitive | Equal

Duration 132870 46333 45598 | 40939 5.868

FO 132870 59704 60173 | 12993 1.831

Intensity 132870 67532 65299 39 37.522

Measure AvP Segments x2
Total | Cognitive Social | Equal

Duration 132870 45078 44741 | 43051 1.261

FO 132870 60046 59649 | 13175 1.313

Intensity || 132870 66296 66535 39 0.428

direct speech dialogue factors. The more robust social features,
which model the strong differences between indirect speech
narrative and direct speech dialogue, do improve the quality.

The Judy Bieber case is different for the worse, since the
cognitive version of the synthetic voices is not an improvement
over the baseline version, even though the cognitive features
have an effect on the natural speech. Furthermore, the social
version shows the same quality, despite the social features also
being prominent in the natural speech. The HTS framework
is most likely smoothing out the finer prosodic nuances in the
more evenly toned speech of Judy Bieber, as a consequence
of the positional and counting features in the HTS labels that
model the speech more robustly than the e-motif features
during the decision tree clustering process. The strength of
these positional and counting features has been noted in a
previous study [26].

V. CONCLUSION

The experiments reveal a few important antitheses in the
ability of e-motif to model prosodic behaviour in speech.
e-motif is able to model the prosodic differences between
indirect speech narrative and direct speech dialogue via the
indirect effects of its social features. Phil Chenevert makes
strong use of such prosody, since the effects are significant in
his natural speech and impact the HTS data separation process
well enough to produce better quality synthesised speech. On
the contrary, Judy Bieber appears to moderate her tone in
such a way that the naturally significant social features do
not influence the quality of her synthesised speech.

e-motif is able to model cognitively-based prosody in the
evenly toned natural speech of Judy Bieber, but is at a loss in
the variably toned natural speech of Phil Chenevert. However,
that same even tone is the downfall in speech synthesis, since
the computationally much simpler positional and counting
features can account for such prosody with similar quality
as the complex e-motif features do. Since the positional and
counting information might be viewed as a naive kind of
syntactic structure, the question arises of whether the cognitive
features show an effect in the natural speech because of
cognition’s sake or because of confounding structural factors.

If the latter is true, the implication is then that prosodic
phenomena can and need only be robustly explained by
superficial structure at the current grain of NLP analysis—that
is sentence-internal syntactic-like structure, and sentence-
external dialogue structure.
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