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Abstract—Mismatches between application and training data
greatly reduce the performance of automatic speech recognition
(ASR) systems. However, collecting suitable amounts of in-domain
and application-specific data for training is resource intensive and
may not be feasible for resource-scarce environments, Utilising
limited amounts of in-domain data and a combination of feature
normalisation and acoustic model adaptation techniques has
therefore found wide use in ASR systems. Various approaches
have been proposed, and it is not clear when to make use of
a particular approach given a specific amount of adaptation
data. In this work we investigate the use of standard feature
normalisation and model adaptation techniques, for the scenario
where adaptation between narrow- and wide-band environments
must be performed. Qur investigation focuses on the dependence
of the adaptation data amount and various adaptation techniques
by systematically varying the adaptation data amount and com-
paring the performance of various adaptation technigques. From
this we establish a guideline which can be used by an ASR
developer to choose the best adaptation technique given a size
constraint on the adaptation data. In addition, we investigate
the effectiveness of a novel channel normalisation technigque
and compare the performance with standard normalisation and
adaptation techniques.

I. INTRODUCTION

It is well known that speech recognition systems perform
poorly when there is a mismatch between the acoustic models
and testing audio data. The mismatch can manifest itself in
several ways; the leading causes are environmental noise,
channel differences, various speaking styles and different di-
alects. A system’s performance can be greatly increased if the
mismatch is sufficiently reduced. Using task-specific corpora
could negate the acoustic mismatch, but these corpora are
often difficult to come by and for resource-scarce languages
the choices are severely limited. Alternatively, acoustic model
adaptation and feature normalisation techniques provide a
means to reduce the mismatch and play a crucial role in
speech recognition system deployment. Feature normalisation
improves the feature robustness by trying to remove channel
or environmental distortions while acoustic model adaptation
shifts the model’s means and scales the variances to accom-
modate for the change in data statistics. In general, model-
based adaptations perform better than feature normalisation
approaches but require transcriptions to estimate the class-
specific mismatches and apply the appropriate transforms.

In a resource-scarce environment, adaptation techniques are
particularly important as one often has to develop ASR systems
using available data which is not matched to the applica-
tion: for instance, using high-bandwidth data to train acoustic
models for an application that operates on telephone quality
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audio data — over the course of using the system, application-
specific data can be collected and used to adapt or create
new acoustic models and thereby improve the performance.
Generally, given access to a language-specific corpus, it would
be highly efficient to train acoustic models with the available
data and then apply task-specific optimisations. When moving
between different operating environments, the optimisations
would have to take into consideration the data mismatch which
leads to performance degradations.

Thus, we will investigate unsupervised techniques for
channel normalisation, which can be applied to mismatched
data applications. In addition, current ASR model adaptation
techniques learn a set of transformations or update acoustic
model parameters from provided adaptation data. The per-
formance gains which are attained by the various techniques
are dependent on the amount of adaptation data from which
the statistics are estimated. Therefore, a comparative inves-
tigation will be performed to determine the effectiveness of
current model adaptation techniques based on the amount of
available adaptation data. The specific scenario that will be
investigated is one in which plentiful speech data resources
of either telephone (narrow) bandwidth or high bandwidth
are available. We will investigate how feature normalisation
and model adaptation techniques can increase the ASR system
performance gains given increasing amounts of adaptation data
from the less-resourced bandwidth.

IL.

Leggetter and Woodland [1] showed in their speaker-
adaptation experiments that mean-only Maximum Likelihood
Linear Regression (MLLR) adaptation, using a full global
regression matrix, yielded improvements after three adaptation
utterances (roughly 11 seconds of speech). The performance
gain saturates at about 15 utterances. To make better use of the
additional adaptation data, additional regression classes were
suggested.

BACKGROUND

Gauvain and Lee [2] managed to achieve significant im-
provements in word-error-rates (WER) using Maximum a-
Posteriori (MAP) adapted models compared to Maximum
Likelihood Estimation (MLE) trained models. In their exper-
iments they used three model types: (1) speaker-dependent
(SD) models trained on a specific speaker’s data only, using
MLE training, (2) speaker-adapted models (SA-1) which were
created by MAP adapting a speaker-independent model - a
model trained on data sourced from many speakers —, and,
(3) a second set of speaker-adapted models (SA-2), created
by MAP adapting gender-dependent models — models trained
on female or male data only. Table I shows a summary of



the results using the various acoustic models MAP adapted or
MLE trained at different data amounts (adapted from Gauvain
and Lee [2]).

TABLE 1. WERS FOR MAP-ADAPTED AND MLE-TRAINED ACOUSTIC
MODELS AT DIFFERENT DATA AMOUNTS. ADAPTED FROM GAUVAIN AND
LEE [2].

Model Type 0 Min 2Min | 5Min | 30 Min
SA-T 135% | 87% | 69% 34 %

SA-2 119% | 75% | 60% | 35%

SD - 315 121% | 35%

Wallace et. al. [3] investigated various supervised and unsu-
pervised adaptation techniques to improve automatic transcrip-
tion generation using speech recognition to extract transcrip-
tions from telephony-quality audio data. Their experiments
focused on speaker-dependent adaptation. The supervised
adaptation experiments used hand normalised transcriptions
while the unsupervised adaptation approach used transcriptions
generated by the baseline non-adapted acoustic models. The
supervised techniques showed continued WER reductions for
the following order of adaptation techniques: global MLLR,
regression tree MLLR, MAP, cascaded global plus regression
tree MLLR, and, cascaded global plus regression tree MLLR
plus MAP. For the unsupervised adaptation experiments the
order is somewhat different: global MLLR, MAP, regression
tree MLLR, cascaded global plus regression tree MLLR, and,
cascaded global plus regression tree MLLR plus MAP. The
unsupervised experiments highlight the sensitivity of MAP
to inaccurate transcriptions and robustness of the MLLR ap-
proach. The adaptation amount experiments, which used 10, 30
and 60 minutes of adaptation data, showed for both supervised
and unsupervised adaptation, the global MLLR approach could
not provide further performance gains after 30 minutes of data.
The cascaded global plus regression tree MLLR and cascaded
global plus regression tree MLLR plus MAP showed continued
improvements as more adaptation was data added.

Wang et. al. [4] showed that for non-native speaker adap-
tation and for a fixed number of speakers, MAP adaptation
consistently performed better than MLLR, independent of
adaptation data amount. The only scenaric where MLLR
provided a performance gain over MAP was when the number
of speakers found in the adaptation data were varied; however,
even in that case MAP proved a better choice once the
adaptation data amount exceeded 20 minutes.

For the specific ASR scenario describe by Bocchieri et.
al. [5], MAP adaptation provided the best results for fewer
than 1500 sentences, which equated to 3.5 hours of audio
data and roughly 2 hours of speech data. Between 1500 and
6000 sentences, training the context-trees on in-domain data
and estimating the state distributions on both in- and out-
domain data resulted in the best performance — 6000 sentences
corresponded to 14.4 hours of audio data and approximately 9
hours of speech data. For 6000 sentences and above, retraining
the Hidden Markov Model (HMM) acoustic models on the in-
domain data provided the best results. However, no data thresh-
old was provided for the use of MLLR. In summary, Bocchieri
et al. [5] described a strategy to port existing acoustic models
to new applications. Their approach for increasing amounts of
in-domain data ¢ is (adapted from [5]):

° If 0 < t <ty use out-of-domain acoustic models,
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o If tmyr <t < trmap use MLLR adapted out-of-domain acoustic
models.

° If tmap < t < tentr use MAP adapted out-of-domain acoustic
models.

° If tents < t < tnew retrain acoustic models on in-domain and
out-of-domain data (building context-trees on in-domain data).

° If tpew < t retrain acoustic models on in-domain data.

We can, in summary, state that the expected order of
increasing performance gains provided by the use of various
adaptation techniques is: feature normalisation, adaptation by
MLLR transformation, MAP adaptation and retraining the
models. We can see, however, that the boundaries where one
would chose a specific adaptation technique over another are
quite varied. The transition boundaries are dependent on the
ASR task where parameters such as speaker number and
adaptation type (environment, dialect or speaker) have an
influence over the transitions. The boundary measure is usually
specified by duration, generally measured in minutes or hours.
This can be misleading, as adaptation performance is likely
to depend on how much speech data is actually available
within the audio data. For instance read, conversational or
distressed speech would all have different ratios of speech to
non-speech. In terms of current HMM-based ASR systems a
more informative unit would be the total number of words,
phones or triphones found in the adaptation data. Table II
shows the duration (in seconds) of audio per 1000 phones
for various corpora — as can be seen the numbers vary, thus
specifying adaptation data amount in time units will result in
differing training unit amounts across the corpora.

TABLE II DURATION, IN SECONDS, OF AUDIO PER 1000 PHONES FOR
VARIOUS CORPORA.
Caorpus Type Duration per 1000 phones (seconds)
TIMIT {train) Read 78.92
WSJ0 (train) Read 91.82
MoncyWeb (train) Conversational 98.21
Lwazi English Read 90.94
NCHLT English (RAW) Read 129.77
BN (high-fidelity speech) Read 78.44

For the course of our experiments we make use of standard
normalisation (investigating an unsupervised transfer-function
filtering approach in addition) and adaptation techniques and
report on additional evidence regarding the relative contribu-
tions of different adaptation methods. Some of these findings
confirm facts that are already known in the literature. The
amount of adaptation data will be specified by the number
of triphones which provides a standard calibration unit for
ASR systems. As stated, our experiments will focus on mixed
narrow-bandwidth telephone-quality and high-bandwidth high-
quality audio data applications and investigate how to port
acoustic models starting from a narrow-bandwidth scenario
and progress towards a high-bandwidth one and vice versa
— a scenario of great relevance in developing-world contexts.

Lastly, from the literature survey, the cited work made
use of standard acoustic model adaptation techniques to ei-
ther adapted speaker-independent models to speaker-dependent
models or adapted out-of-domain models using in-domain data.
In all cases, however, the in- and out-domain data had similar
channel and environmental characteristics and the purpose
of their research was to reduce the mismatch caused by




speaker characteristics and differing triphonic content. Since
our work focuses on model adaptation and data normalisation
between mixed-bandwidth and differing quality audio data,
we are provided with an opportunity to investigate whether
the established data-related performance gains of the various
adaptation techniques hold for bandwidth adaptation as well.

The format of the work is structured in the following
manner: a description of the various feature normalisation and
adaptation techniques used in our experiments can be found
in Section (III), the corpora used, the data selection strategy,
ASR system and performance gain curves are described in Sec-
tion (IV), results are presented in Section (V) and concluding
remarks can be found in Section (VI).

III. METHOD
A. Feature Normalisation

Feature normalisation techniques strive to remove biases
in data statistics introduced by environmental or channel
variations. This is achieved by applying a set of transforms to
the feature vectors which either normalise the feature vectors
to a standard set of values or transform them to the training
set values.

A simple feature normalisation strategy is to band-limit
the spectral content of the audio signals. Moreno and Stern
[6] demonstrated the importance of matching the portion of
speech bandwidth which is used to extract speech features on
the Timit and NTimit corpora.

In the cepstral domain, cepstral mean normalisation (CMN)
is widely used. This method estimates an average cepstral
vector over a set of cepstral observations and removes the bias
from each vector — the technique performs well in removing
convolutional noise and constant channel distortions.

Chen and Bilmes [7] showed through their in-depth analy-
sis that CMN worked well at removing convolution noise but
performed poorly in removing additive noise. It was further
shown that the effects of additive noise, depending on the
noise level, can be reduced if variance normalisation was
applied to the cepstral coefficients. Lastly, Chen and Bilmes
re-introduced filtering of the cepstral coefficients which limits
the modulation frequencies and improves the dynamic range
of the cepstral trajectories by suppressing noise effects. The
cepstral trajectories were filtered using a finite length auto-
regression moving average (ARMA) filter. Based on the gains
reported by Chen and Bilmes [7], all extracted feature vectors
are normalised using their approach (referred to as MVA).

1) Transfer-Function Filtering: Gelbart and Morgan [g]
showed that feature normalisation can be achieved by remov-
ing a long-term average log spectral estimate from spectral
analysis frames. Their technique, however, required lengthy
speech segments to estimate the average log spectrum and
relatively longer analysis windows. Such delays would be im-
practical for real-time ASR systems. It was shown previously
[9] that channel normalisation can be performed by inverse
filtering the short-term spectra.

Starting with the basic idea we formulated a slightly difter-
ent approach. If it is assumed that the discrete cosine transform
(DCT) of the logarithmic short-term spectra are drawn from a
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multivariate Gaussian distribution, then channel normalisation
can be realised by the mapping of normal distributions. The
first step is to estimate the mean () and covariance (%)
statistical moments, which, using the MLE, are given by

N
1
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where p is the mean value, 3 is the covariance and EJ| is

the expected value operator. The measures are extracted from
channel-specific data and require no transcriptions. The manner
in which the estimates are obtained are as follows;

e  Block the audio in 25 ms frames and overlap consecutive frames
by 10 ms (standard values used in current ASR feature extraction).

° Firstly apply the logarithmic transform to short-term frame spectra
then apply the discrete cosine transform.

° Update the mean and covariance accumulators.

° Once all frames have been processed, calculate the final mean and
covariance values,

Given various mean and covariance statistics estimated
from different channels, one set of feature vectors (in our case
the DCT of the logarithmically mapped short-term spectra) can
be normalised to another distribution by firstly normalising the
feature vectors to zero mean and unit covariance distribution
N(0,1), then applying an affine transform to the feature
vectors to shift their statistics such that they will produce
the target mean and covariance measures. This is achieved by
applying the following steps to each feature vector:

¢ Ziero = Ani(Zore — Jore)s Where Ag.. is given by the
Cholesky decomposition of Zerc, AsrcAL,. = Bsre.

° Zigt = AtgtZzero + My, Where A¢gy is given by the Cholesky
decomposition of Z¢gq, AtgtA;‘;t = Bigt.

After transforming a feature vector to the most likely target
vector, the inverse discrete transform is applied and the values
mapped by the exponential function. This channel normalised
linear spectrum is sent through to the feature extraction unit for
final processing. This technique is similar to the one proposed
by Gelbart and Morgan [8] but differs in the following ways:
(1) applied to short-term spectrum 25 ms, and, (2) extends log
spectral subtraction by assuming the analysis frames are drawn
from a Gaussian distribution and applies mean and variance
normalisation.

B. Model Adaptation

1) Maximum Likelihood Linear Regression. The MLLR
technique estimates a set of linear transforms from adaptation
data, then updates the model parameters by applying the
transforms to the mean and variance parameters. The technique
also requires relatively small amounts of adaptation data since
it uses binary regression class trees to group similar models
together and thus create larger class-specific pools of adapta-
tion data. The MLLR implementation is elegant since multiple
transforms can be applied to model parameters. For instance a
typical transform estimation process would initially estimate a
set of mean transforms, then apply these mean transforms to



the models, estimate a set of variance transforms — forming a
cascade of transforms.

For our MLLR experiments we used the following ap-
proach;

1) Estimate a 40-class regression tree.

2) Estimate 40-class-specific semi-tied transforms{10].

3)  Using the semi-tied transforms as parent transforms, estimate 40-
class-specific mean transforms,

4) Using the mean transforms as parent transforms, estimate 40-class-
specific variance transforms.

The number of regression classes was set to 40 which
correlates well to the average number of sound classes in a
language. These mean and variance transforms are stored in
separate files and are loaded and applied to the models during
recognition.

2) Maximum A-Posteriori adaptation: MAP adaptation
provides a means to adapt the model parameters without
having to retrain the models from scratch. The MAP training
procedure incorporates prior information which provides a
parameter estimation benefit compared to standard MLE pa-
rameter estimates [2]. The effectiveness of MAP adaptation is
only fully realised at relatively large data amounts as the tech-
nique updates different model components separately. Thus,
the adaptation data must cover quite a large set of different
training examples and each example a sufficient number of
times. Gauvain and Lee [2] showed, however, that using MAP
adaptation to speaker adapt existing speaker-independent mod-
els requires much less data to gain substantial improvements
in the WERSs (compared to retraining the models). Therefore,
it does seem that MAP possesses a lower critical data limit
than the limit needed to train robust acoustic models.

HTK [11] provides a mechanism to update the weights,
means, variances and various combinations of the these. The
MAP adaptation experiments that we performed either adapted
the weights-means combination or weights-means-variances
combination and used 10 adaptation iterations.

IV. EXPERIMENTAL SETUP

A. Corpora

The various feature normalisation and model adaptation
experiments were performed on pairs of American English
and IsiNdebele read-speech corpora. To ensure a mismatch
between corpora a narrow- and high-bandwidth version of each
language were chosen, and to simulate the typical environment
for low-resource languages, we experimented using within-
language cross-channel adaptation.

1) Wall Street Journal: The Wall Street Journal (WSJ)
Continuous Speech Recognition (CSR) corpus contains high-
bandwidth American English read-speech utterances and or-
thographic transcriptions [12]. For our purposes we sourced
the speaker-independent sub-corpus which contains a separate
training and testing set with no speaker overlap. The audio
was recorded with a Sennheiser microphone at a sample rate
of 16 kHz and contains financially oriented content. The
transcriptions contain three text subsets: a small set spoken by
all the speakers, a few sentences which have limited speaker
overlap and a unique sentence set. There are an equal number
of male and female speakers. Table III shows the make-up of
the WSIJ corpus.
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THE WSJ CORPUS STATISTICS FOR THE TRAINING AND
TESTING SETS.

TABLE III.

Set Type [ # utterances | # hours | # speakers
‘Train 12776 24.9 101
Test 1142 22 10

2) NTimit: NTimit (Network Timit) is a narrow-bandwidth
telephone-quality read-speech corpus [13]. NTimit was created
by transmitting the Timit corpus data through “local” and
“long-distance™ telephone networks in the United States. The
purpose of the NTimit corpus was to aid in the investigation of
telephone network distortions on speech. The Timit corpus is
an high-bandwidth American English read-speech corpus [14].
The main corpus design criteria ensured phonetic diversity
which enables the study of general speech characteristics. The
data was collected across the United States and encompassed
the eight main dialect regions of the country. Each speaker
contributed ten sentences; two were common to all speakers
and were used to investigate dialect variations, five were
selected to provide phonetic diversity and the last three were
sourced from the Brown corpus. Table IV shows the NTimit
corpus statistics.

TABLE IV, THE NTIMIT CORPUS STATISTICS FOR THE TRAINING AND

TESTING SETS.

Set Type | # utterances | # howrs | # speakers
Train 4617 39 462
Test 1675 14 168

3) NCHLT: The NCHLT corpus is high-bandwidth read-
speech corpus containing audio data and transcriptions col-
lected from eleven South African languages [15]. The audio
data was recorded using mobile devices. The transcriptions
contain short sentences and were derived from large text
corpora in order to attain coverage of the most common
triphones of the target language. For our cross-channel ex-
periments we limited ourselves to using the IsiNdebele sub-
corpus (which was the only completed sub-corpus at the
initiation of our experiments). The initial corpus contained
90297 utterances collected from 209 speakers. After running
pre-processing, which removed utterances that contained En-
glish words, clipped audio data and audio files containing
incorrect header information, the corpus was reduced to 60687
utterances and 169 speakers. For English word detection we
employed an in-house English pronunciation dictionary and
created a lookup table containing a list of all the words found
in the dictionary. The NCHLT corpus does not have a dedicated
training and testing set; hence, five-fold cross validation was
used to partition the corpus and create the desired sets. Table
V shows the five-fold training/adaptation and testing corpus
statistics.

4) Lwazi: The Lwazi corpus contains read and elicited
speech recordings collected from eleven South African lan-
guages [16]. There are approximately 200 speakers per lan-
guage and the audio data was recorded over the telephone
network. Each speaker contributed thirty utterances; sixteen
sentences were sourced from phonetically rich text while
the remaining 14 sentences were elicited by questions that
produced either short phrases or single words (e.g. yes/no
answers, digits, etc...). To create a counterpart for the NCHLT
corpus we chose the IsiNdebele sentences. As with the NCHLT



TABLE V. THE NCHLT-ISINDEBELE TRAINING / ADAPTATION AND
TESTING CORPORA. THE CORPORA STATISTICS ARE REPORTED BY
CROSS-VALIDATION FOLDS.

Training / Adaptation

Fold | # utterances | # hours | # speakers
1 47348 61.78 136
2 49206 63.31 136
3 49710 63.28 136
4 49128 64.36 136
5 48847 63.05 136
Testing
Fold | # utterances | # hours | # speakers
1 13339 16.61 33
2 11481 15.08 33
3 10977 15.11 33
4 11559 14.03 33
5 11840 15.34 Bk

corpus, we had to create a speaker-independent training and
testing sets - we did this by partitioning the corpus into five
sub-corpora. Table VI shows the sub-corpus statistics for the
training/adaptation and testing sets respectively.

TABLE VI. The Lwazi-IsiNdebele training/adaptation and testing

cross-validation corpora.

Training / Adaptation

Fold | # utterances | # hours | # speakers
1 4817 4.09 160
2 4804 4.11 160
3 4813 4.08 160
4 4807 4.11 160
5 4811 4.11 160
Testing
1 1196 1.03 40
2 1209 1.01 40
3 1200 1.05 40
4 1206 1.02 40
5 1202 1.02 40

B. Data Selection

To investigate the relationship between the amount of adap-
tation data and the performance of each adaptation method,
we needed to devise an algorithm that would grow adaptation
data pools from a given data set. Additionally, we needed
to obtain an average accuracy value so we decided to repeat
each experiment five times, which meant five adaptation data
pools had to be created. Our simple data growing algorithm
performed the following steps:

e Randomly partition the data into five sub-corpora and
ensure each pool has unique speakers.

e  For each sub-corpus (sub-corpora are processed inde-
pendently), start at the first file and sum up the number
of triphones contained in each subsequent file added
to the data pool. At specified triphone counts, save the
file list up to that point.

e If the desired triphone counts cannot be achieved.
within a given data pool, randomly select data from
the other sub-corpora until the count is reached.

It must be noted that the algorithm “grows” the adaptation
pool. For example, if we would like to create two lists which
contain files contributing 100 and 250 randomly selected
triphone counts, then the 250 triphone count file list will
contain all the files present in the 100 triphone counts file
list as well as additional files which make up the difference.
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C. Baseline ASR systems

The speech recognition system, was based on a standard
HMM-based system [17]. Firstly, the audio data was converted
to a set of standard Mel-Frequency Cepstral Coefficients
(MFCC) vectors. The vectors were estimated from a 25 ms
audio window and a 100 vectors per second of speech were
calculated. Each vector was constructed by concatenating 13
static, 13 first derivative and 13 second derivative coefficients.
Band-limiting was implemented by limiting MFCC extraction
to a frequency range of 250 to 3400 Hz. MVA was applied
on a per utterance basis and all coefficients were normalised.
The HMMs, used to model the cross-word context-dependent
triphones, were of a three state left-to-right structure and
each state contained 8 mixture diagonal covariance Gaussian
models. A question-based tying scheme was followed to create
a tied-state data sharing system [18] - where any context-
dependent triphone having the same central context could be
tied together. As a last step a 40-class binary regression tree
was estimated and a semi-tied transform was estimated for
each class.

The pronunciation dictionaries for the NCHLT and Lwazi
corpora were source from previous work as outlined in Davel
and Martirosian [19]. The American English systems made use
of the CMUDict pronunciation dictionary [20].

The performance of the various ASR systems will be
measured using phone-level accuracies. Flat-phone language
models were used during the decoding phase.

D. Performance Gain Curves

To create performance gain curves for the various adapta-
tion techniques a set of cross-channel adaptation experiments
were performed on both the WSJ-NTimit and the NCHLT-
Lwazi corpus pairs. To generate the performance gain curves,
the following procedure was used:

e An ASR system was trained on band-limited audio
data sourced from one of aforementioned corpora’s
training set.

e A portion of adaptation data was selected from the
corresponding cross-channel training corpus set. The
data selection approach is outlined in Section (IV-B).

e The ASR system was adapted using the adaptation
techniques and the selected adaptation data. The
adaptation techniques under investigation are transfer-
function filtering, MLLR and MAP. In addition, an
ASR system was trained on the adaptation data with-
out the use any adaptation techniques.

e The adapted and retrained ASR systems were used
to recognise the corresponding cross-channel testing
dataset.

e The process was repeated on increasing amounts of
adaptation data.

The adapted and retrained ASR system performances were
measured using phone-level accuracies. For a specific adap-
tation technique, the WSJ and NTimit experiment results
were averaged over the five adapted ASR systems created
at each triphone count interval. For the NCHLT and Lwazi



experiments, the results were averaged over the five folds
and five adapted ASR systems created at each triphone count
interval for a chosen adaptation approach.

V. RESULTS
A. Performance Gain: WSJ - NTimit

Figure 1 shows the accuracies obtained from NTimit acous-
tic models trained on band-limited (250 to 3400 Hz) audio
data and adapted using different adaptation techniques and
various amounts of adaptation data sourced from the WSJ
training data. The experiments represent a scenario where
an ASR system initially uses acoustic models trained on
narrow-bandwidth telephone-quality data and the application
has to recognize high-bandwidth high-quality data. For all
experiments MVA feature normalisation and band-limiting was
utilized unless otherwise stated. In the figure the following tags
appear in the legend:

e  NTIMIT_WSJ_BP - Acoustic models trained on all the band-
limited NTimit training data and recognised band-limited WSJ test
data.

° WSJ_BP - Acoustic models trained on all the band-limited WSJ
training data and recognised band-limited WSJ test data,

° WSJ_16k - Acoustic models trained on all the 16 kHz WSJ training
data and recognised 16 kHz WSJ test dara.

e  NTIMIT_WSJ_TFF - Acoustic models trained on band-limited
NTimit data which was normalised using transfer-function filtering
(TFF) which uses increasing amounts of WSJ to estimate the
filtering function. The test data was band-limited WSJ data.

° NTIMIT_WSJ_MLLR_BP - Acoustic models trained on band-
limited NTimit data and then adapted using MLLR which is
estimated on increasing amounts of band-limited WSJ data. The
test data was band-limited WSJ data.

° NTIMIT_WSJ_MLLR_16k - Acoustic models trained on band-
limited NTimit data and then adapted using MLLR which is
estimated on increasing amounts of 16 kHz WSJ data. The test
data was 16kHz WSJ data.

° NTIMIT_WSJ _MAP_BP - Acoustic models trained on band-
limited NTimit data and then adapted using MAP for increasing
amounts of band-limited WSJ data, The test data was band-limited
WSJ data.

° NTIMIT WSJ MAP_I6k - Acoustic models trained on band-
limited NTimit data and then adapted using MAP for increasing
amounts of 16 kHz WSJ data. The test data was 16kHz WS]J data.

o  WSJ_RETRAIN_16k - Acoustic models trained on increasing
amounts of 16 kHz WSJ training data and recognised 16kHz WSJ
test data.

Interpreting the plots we can see at really low adaptation
data levels (fewer than 400 triphone examples) the transfer-
function feature normalisation gives the best performance gain.
Around 400 triphone examples MLLR starts to give better
performance gains as the transfer-function feature normalisa-
tion gain has saturated. MLLR continues to give the best gain
until 7000 triphone examples where retraining the acoustic
models with the 16 kHz WSJ data starts to deliver the best
performance. The 16 kHz WSJ acoustic models performance
improves considerably between 7000 and 200000 triphone
training examples. Surprisingly the MAP adaptation method
did not out-perform the retrained models at any stage. Even
though the MAP adapted models did not give the desired per-
formance (the expected TFF — MLLR — MAP — RETRAIN
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Fig. 1. A narrow-bandwidth to high-bandwidth scenario and accuracies
obtained using various acoustic models and adaptation techniques.

transition), the MAP adapted band-limited acoustic models
initially performed better (from about 2000 — 10000 triphone
examples) compared to the MAP adapted 16k models. It is
also interesting to see how quickly the MAP adaptation per-
formance gain plateaus: the phase of linear accuracy improve-
ments as data increases starts to end around 80000 triphones.
Lastly, the MLLR adaptation using the 16 kHz WSJ data did
not perform well at all — producing accuracies well below
the non-adapted ASR setup NTIMIT WSI_BP. This shows
that MLLR performs better when there is a smaller mismatch
between acoustic models and adaptation data whereas MAP
has a better ability to deal with large data mismatches.

Figure 2 shows accuracies obtained using WSJ acoustic
models trained on band-limited data and adapted using increas-
ing amounts of NTimit training data and various adaptation
techniques. The scenario is now an ASR system initially using
acoustic models trained on band-limited high-quality audio
data and the application has to recognise narrow-bandwidth
telephone-quality data. For these experiments, all audio was
band-limited and MVA feature processing was applied. Each
experiment was repeated five times to obtain average accuracy
values.

As with the narrow- to high-bandwidth scenario we see
regular trends. The transfer-function feature normalisation per-
forms the best at low triphone counts. Around 100 triphone
examples MLLR starts producing better gains and continues
as the best option to around 35000 training examples. At this
point the retrained models start delivering the best gains.

B. Performance Gain NCHLT - Lwazi

To corroborate the data dependence trends obtained with
the WSJ-NTimit corpora, we repeated the cross-channel ex-
periments on the NCHLT-Lwazi corpora. The only difference
is that the transfer-function normalisation was dropped as the
MLLR appears to give approximately the same performance
gains at really low data amounts. As with the WSJ-NTimit
experiments, each experiment was repeated five times and
in addition, the experiments were run independently on each
cross-validation fold. Figure 3 shows the average improvement
in accuracies (across folds) as more adaptation data is used
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Fig. 3. The average accuracies obtained using various adaptation methods to
port high-bandwidth (NCHLT) acoustic models to narrow-bandwidth (Lwazi)
telephonic environment.

to adapt the high-bandwidth acoustic models to the narrow-
bandwidth environment using various techniques.

As can be seen in figure 3, unexpectedly, the MLLR (mean
and variance) initial performance is worse than applying no
model adaptation, which implies that the limited adaptation
data does not generalize well. For a triphone count between
6000 to 9000 the MLLR starts producing a performance gain
but saturates relatively quickly around 12000 triphones. As
with the WSJ-NTimit results the retrained acoustic models
out-perform the MAP adapted models. The retrained acoustic
models start to produce better results around 70000 — 80000
triphones.

Figure 4 shows the average performance gains, as the
adaptation data amount is systematically increased and used
to adapt the narrow-bandwidth acoustic models to high-
bandwidth environment.

Figure 4 is quite similar to the NTimit to WSJ transition
experiments. At 100 triphone counts, MLLR provides a gain
in performance and continues to produce the best gain in
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Fig. 4. The average accuracies obtained using various adaptation methods to
port narrow-bandwidth (Lwazi) telephonic acoustic models to high-bandwidth
(NCHLT) clean environment.

performance until a triphone count of around 18000, where
the retrained models start providing the best accuracy. Again,
the 16k MAP performs better than its band-limited counterpart
but does not improve on the retrained models.

VI. CONCLUSION

We have analysed the performance gains afforded by the
use of several standard feature normalisation and model adap-
tation techniques for adapting between narrow-band and wide-
band speech corpora. The feature normalisation approaches
investigated were bandwidth limiting, cepstral mean and vari-
ance normalisation with arma filtering (MVA) and a novel
transfer-function filtering normalisation. Amongst the model
adaptation techniques, we evaluated MLLR for mean and
variance adaptation and MAP adaptation of the weights, means
and variances. The main conclusions that may be drawn from
the work are:

e  The novel transfer-function filtering feature normali-
sation approach performed comparably to MLLR for
low adaptation counts but the observed gains plateau
quickly as more data was added. Other benefits of
the transfer-function normalisation method are that it
does not require transcriptions to perform the normali-
sation and can be applied independently of the various
model-based adaptations.

e  For low adaptation data amounts MLLR provides the
best accuracy gain.

e MLLR works well in reducing the mismatch for
bandwidth matched adaptations but failed to achieve
improved ASR system accuracies when transforming
band limited acoustic models to full bandwidth models
(16kHz).

e As the adaptation data count approaches 10000 to
100000 triphone examples, retraining the acoustic
models becomes a viable option — out-performing
MLLR and MAP.



e  Around the 10000 to 100000 adaptation triphone count
MAP starts to perform better than MLLR but never
beats the retraining the acoustic models.

e Our findings are in agreement with many results in
the literature (e.g. MLLR performs better at low data
amounts compared to MAP), but also in conflict with
some other findings (retraining models out-performs
MAP adaptation); this emphasises the fact that some
of the strengths and weaknesses of the various adapta-
tion techniques depend on the particular use case (e.g.
speaker adaptation vs. dialect adaptation vs. channel
adaptation). The main contribution of the this work is
to arrive at a consistent picture of the behaviour that
can be expected for the specific case of adaptation
between narrow- and high-bandwidth applications.

We have demonstrated the efficiency of feature normalisa-
tion and model adaptation techniques to reduce the mismatch
between telephone-quality and high-bandwidth speech audio.
To obtain the best results for channel mismatched scenarios
one should employ bandwidth matching, MVA feature nor-
malisation, apply MLLR mean and variance transformation
at relatively low adaptation data amounts and after 10000
triphone training examples, retrain the acoustic models on data
sourced from the operating environment.

Similar to previously published work we have seen MLLR
provide the best adaptation for low data amounts but the
observed gains become saturated relatively quickly as more
data is added. At this saturation point MAP adapting and
retraining the acoustic models become better adaptation op-
tions. For channel and environmental adaptation, retraining
the acoustic models provides better results compared to MAP
adaptation. This is contrary to the speaker-adaptation task
where the channel and environment characteristics are similar
and the only substantial difference is the triphonic content and
speaker characteristics. In this case MAP has a much greater
window of data amounts where it is the best adaptation option.
We believe that this picture will be particularly useful for
system developers in the developing world, who are likely to
be confronted with this scenario in practice.
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