A Block Structure Laplacian For Hyperspectral
Image Data Clustering

D. Lunga
CSIR Meraka Institute
P O Box 395
Pretoria
South Africa 0001
Email: dlunga@csir.co.za

Abstract—Over the past decade, the problem of hyperspectral
data clustering has generated a growing interest from various
fields including the machine learning community. This paper
presents an analysis of the traditional spectral clustering ap-
proach and points to new directions that boost unsupervised
pattern classification. In particular, the paper offers design
insights on the generation of a well structured graph Laplacian
based on an affinity function that induces context-dependence to
create compact neighborhoods. A novel bilateral-kernel (affinity)
function exploits the spatial information to generate a diagonal-
block structured Laplacian. Experimental validations through the
analysis of eigenvalues and eigenvectors demonstrate the benefits
of seeking block structured affinities in hyperspectral image
clustering and visualization.

I. INTRODUCTION

Hyperspectral image data clustering has received an in-
creased attention from the statistical and machine learning
communities with many applications basing their solutions
on manifold learning algorithms. Such algorithms rely on
the notion of nonlinear dimensionality reduction via a graph
embedding framework [1]. This includes various spectral
based embedding [2]-[4] and iterative gradient updates tech-
niques [5]. In addition to clustering [6], many other benefits
ranging from feature extraction [7], image segmentation [8],
improved classification accuracy [1], [5], anomaly detection
[9], and image visualization [10], have been proposed through
graph embedding frameworks. Clustering based on a graph
embedding framework hinges on the manner in which local
neighborhoods are computed in the high dimensional space.
A very common approach is to make use of the heat-kernel
or Gaussian function to compute the affinity matrix that char-
acterizes hyperspectral neighborhood graphs. The heat-kernel
is known to be efficient. However, the function tends to have
problems, e.g. on data with non-compact clusters and on data
with disjoint classes as is often in many hyperspectral images.
The function requires a yet to be solved problem of tuning the
neighborhood width parameter in order to obtain a selection
that dynamically adapts to the correlation structure of the data.
Such parameters are known to be sensitive to the density of
points in high dimensional space - a severe challenge that
affects the stability of graph embedding algorithms. Even with
a careful choice of the parameters, the computed graphs turn
to have dense edge connections and do not exhibit properties

for enabling non-overlapping clusters. These challenges have
a negative bearing on further analysis that maybe required
on the data, i.e. classification, segmentation etc. This paper
presents a computationally efficient bilateral kernel function
whose properties addresses these challenges. The presentation
extracts insights and further intuition by studying the impact
of a spatially driven graph Laplacian. Further contributions
of the study can be appreciated through its leveraging on the
efficiency offered by spectral embedding and the new direc-
tions pointing towards graphical structures that boosts spectral
clustering. In its assessment, the study reveals that a proper
and high quality spectral decomposition of hyperspectral data
begins with the induction of a block structure affinity matrix.
Block structure matrices have been studied in the context of
block matrices by conductivity methods [11], where instead
of considering two points as similar if they are connected
by a high-weight edge in the graph, an assignment of a high
affinity between them is made if the overall graph conductivity
between the points is high. There, graph conductivity is de-
fined following conductivity as for electrical networks, i.e. the
conductivity of two points depends on all paths between them.
Moreover, this study reveals that for hyperspectral image data,
a clear block-diagonal structure matrix can be achieved via a
bilateral kernel function. A bilateral kernel function simply
computes the similarity between spectral signature instances
by weighting their spectral “distance” using a spatial detailed
term.

Under the notion of a block-diagonal matrix, the problem
of hyperspectral image clustering can now be reformulated
using the similarity graph: that is, we would like to find a
partition of the graph such that the edges between different
groups of spectral signatures have very low weights, i.e.
points in different clusters are dissimilar from each other,
and edge connections within each spectral signature group
have high weights, i.e. points within the same cluster are
similar to each other. While a robust theoretical approach to
motivate the choice of an affinity function is of relevance and
great interest to this work, it is not the main focus of this
presentation. However, an attempt is made to present strong
insights and motivation through an empirical guide that ana-
lyzes and compares properties of three affinity functions that
represents local spectral signature neighborhoods. Even though



our mention of clustering based on various dimensionality
reduction techniques remains relevant, care is taken not to
deluge the presentation with details of such methods but rather
analyze the computed graph Laplacians through a spectral
clustering approach which was chosen solely for its efficiency.

The paper is structured as follows. A description of hy-
perspectral neighborhood graphs based on the heat-kernel, the
normalized heat-kernel and the bilateral kernel functions is
introduced in Section II. Two general approaches on the for-
mulation of graph Laplacians and their properties are presented
in Section III. In Section IV, a description of the data and
experimental analysis on the eigenvalues, eigenvectors, block-
diagonal structures and hyperspectral clusters is presented.
Finally, Section V concludes with a summary and future work
ideas.

II. HYPERSPECTRAL NEIGHBORHOOD GRAPHS

Given an image dataset with training samples X = {xi}?zl
in R™ (m-dimensional spectral feature space) and n is the total
number of training samples, data clustering via dimensionality
reduction algorithms adapts a graph embedding framework
in which G = {X, W} is the undirected weighted graph
and W is the n x n data dependent similarity or affinity
matrix. The algorithms utilize the notion of affinity weights
W, € [0,1] to measure the “distance” between two sam-
ple observations. The affinity functions do not utilize class
label information, but rather characterizes the neighborhood
relationships between all pairs of points based on feature
differences. The characterization of relations in a given data-
set can be pursued in various forms. Determining a suitable
affinity function and eventually the neighborhood graph often
involves complex strategies for tuning parameters that include
for example - setting the width of the neighborhood regions.
As to be illustrated in this paper, neighborhood graphs that
benefits from spectral clustering algorithms tend to conform
to a particular structure, i.e. the block-diagonal structure. This
is a very important insight not only in remote sensing data
but also in other related fields where research efforts in graph
embedding methods continue to emphasize the fine tuning
of various parameters and proposal of nonlinear objective
functions that require complex optimization strategies.

Neighborhood construction for graph embedding starts with
the choice of the affinity function W;;. The commonly
adapted frameworks try to ensure that the local neighborhoods
induced by the affinity function extract coherent and “mean-
ingful” structures. In general, there is no consensus to the
definition of “meaningful” structures. This study adapts on its
reference to groupings of similar observed spectral signatures
as measured by the reflectance values of each image pixel.

A. Heat-Kernel Based Graph

A very popular approach to measure the affinity between
hyperspectral data samples x; and x; is the heat-kernel

function,
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where 7, = [|x; — x; denotes the local scaling of data
samples in the neighborhood of x;, and X,Ek"") is the ky,-nearest
neighbor of x;. Without a threshold set on the affinity values,
construction of graph based on this function results in dense
and in most cases yields a single completely connected graph
component. Although it has been shown to result in effective
locality preserving properties for graph embedding of various
datasets, further improvements towards sparse affinity neigh-
borhoods can be achieved by adapting the scaling parameter
7; to the local data statistics which often provide a stronger
adaptivity to the underlying structure of the embedded image
manifolds.

B. Normalized Heat-Kernel Based Graph

In a stochastic neighbor embedding [12] framework or
technique for preserving probabilities on lower dimensional
coordinate systems that are nonlinear, a normalized variant of
the heat-kernel was proposed. There, the notion of affinities or
similarities was interpreted as the probability of neighboring
instances choosing one another as neighbors. Such proba-
bilities are computed from the normalized Gaussian(or heat-
kernel) functions
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The significance of a normalized affinity value is simply due
to the strategy used to choose the parameter o;. It is computed
using a binary search method ensuring that the entropy of the
distribution W, is approximately log(k), with k& being the
effective number of neighbors. As such, the density of the
data samples is adapted to inform the nature of neighborhood
regions - a very crucial element in determining how far a
neighborhood should stretch in a high dimensional space.
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C. Bilateral Kernel Based Graph

Furthermore, it is well known that spatial preprocessing
methods are often applied to remove noise and smooth images.
In other applications they can also enhance spatial texture
information resulting in features that improve the performance
of classification techniques. For example in [13], nonlinear
diffusion partial differential equations (PDEs) and wavelet
shrinkage were used for spatial preprocessing of hyperspectral
images, and the results obtained demonstrated a significant
improvement on classification performance. Similarly, neigh-
borhood affinities can also be defined by introducing context
in the form of spatial weighting of spectral values. This
can be accomplished by computing the “distance” between
two hyperspectral pixels in a separable approach to introduce
spatially sensitive affinities through a bilateral kernel function
Wij = W(Si, Sj,Xq, Xj) as

—ls; — s.:|2
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where s; denotes the spatial coordinates of pixel ¢, x; denotes
the photometric m-dimensional spectral vector. The expression



ls; — s;||> weights image pixel values as a function of the
spatial distance from the center pixel and o is the variance
parameter. The kernel also employs a nonlinear term:

1
W (xi,x5) :exp{—2(xi —xj)Tzfl(xi —Xj)} “4)

which simply weights relations as a function of spectral
differences between the center pixel and its neighbor pixel.

With additional manipulations as shown in [10], W,(x;,x;)
can be rewritten as

Wy (x4, %) = exp {_ZNtr(Els)} )

where S is the sample covariance, S = %XXT. To compute
W, (x;,x;), decompose the true covariance matrix into a prod-
uct ¥ = EAE”, where E is the orthogonal eigenvector matrix
and A is the corresponding diagonal matrix of eigenvalues.
Adapting the efficient sparse matrix transform (SMT) approach
in estimating the covariance matrix 3 [14], the optimization
problem can be solved as E = argmingq, {|diag(E”SE)|},
and the optimal eigenvalue matrix is obtained from A =
diag(ETSE), where (2 is the set of allowed orthogonal trans-
forms that can be computed using a series of Givens rotations
[14]. A simple manipulation can show that X1 = EA-ET,
This approach to computing the covariance matrix 3 is
efficient and robust in handling the singularities of 3 in the
high dimensional space of hyperspectral image bands.

ITI. GRAPH LAPLACIANS

In general, given neighborhood graph G, the most chal-
lenging issue is the unsupervised classification of measured
patterns into groups according to their similarity. To this
note the graph Laplacian L plays an important role in such
problems as it provides a link for projection of data onto
new coordinate system via graph embedding algorithms. Its
properties, through eigenvalues and eigenvectors information,
can be used to find the number of spanning trees as well
as approximating sparse graph cuts that lead to meaningful
clusters. Two approaches for computing the graph Laplacian
are discussed next.

A. Unnormalized Graph Laplacian

The unnormalized Laplacian matrix is simply computed
from a difference between the degree matrix D, with D;; =
>_; Wi, Vi and the affinity matrix W. Thatis L =D — W.
The few properties that are of interest for unsupervised pattern
classification are summarized as follows.

Proposition 1. (Laplacian Properties). The matrix L satisfies
the following properties:

o For every vector h € RP we have
12
h'Lh = 5 > Wij(h; — hy)?
i,j=1

o L is symmetric and positive semi-definite.

o The smallest eigenvalue of L is 0, whose corresponding
eigenvector is a constant vector 1.

o L has p non-negative, real-valued eigenvalues 0 = A\ <
Ag < KA

Additional properties of unnormalized and normalized
Laplacian matrices including proofs for the above proposition
can be found in [6], [15]-[17]. Of more importance for data
clustering applications is the following:

Proposition 2. (The number of connected components and
spectrum of L). Let G be an undirected graph with non-
negative weights. Then the multiplicity k of the eigenvalue 0 of
L equals the number of connected components Cy,Cs, - -- , Cl
in the graph. The eigenspace of the eigenvalue 0 is spanned
by the indicator vectors 1¢c,,--- ,1c, of those components.

Proof. Case I k = 1. That is consider a graph that is
completely connected. Assume that h is an eigenvector with
eigenvalue 0. Then we know that

P
0=nh'Lh = Z W, (h; — h;)? (6)
ij=1
Since each W;; > 0, h'Lh can only equal zero if all the terms
W,;(h;—h;)? in the summation are equal to zero. This means
that for two hyperspectral pixels with vertices denoted by x;
and x; that are connected, i.e. W;; > 0, their corresponding
functions h; and h; have to be equal for (6) to vanish. With
this intuition, it is simple to deduce that h has to be more or
less constant for all vertices that can be connected by a path
in the graph. For a graph with one giant connected component
we thus only have the constant vector 1 with corresponding
eigenvalue 0.

Case II consider a case of £ > 1 connected components.
Without loss of generality assume that the vertices are ordered
according to the connected components they belong to. In this
case, the affinity matrix W has a block diagonal form, and
the same is true for the Laplacian matrix L:

Ly
Lo
L=L, 0Ly ... GL,=

Ly

where & denotes a direct sum of matrices. Each of the blocks
L; is a well defined graph Laplacian matrix corresponding
to the subgraph of the ¢th connected component. The full
spectrum of L is obtained from the spectra union of all L;
block matrices. The eigenvectors of L are the eigenvectors of
all L; blocks combined. Furthermore, since each L; relates
to a connected component, from Proposition I, we know
that every L; has eigenvalue 0 with multiplicity 1, and its
corresponding eigenvector is the constant 1 vector on the ¢th
connected component. In theory, the matrix L has as many
zero eigenvalues as there are connected components, and the
corresponding eigenvectors are the indicator vectors of the
connected components. O
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Fig. 3. Botswana data Laplacian matrices. Pure blue color indicates small affinity values while red-yellow colors indicates neighborhoods with high weights

in the graph.
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Fig. 1. Colored ground reference of AVIRIS hyperspectral image over
Kennedy Space Center (KSC), Florida.
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Fig. 2. A spatially weighted Laplacian matrix for KSC data. Pure blue color
indicates small affinity values while red-yellow colors indicates neighborhoods

with high edge weights.

B. Normalized Graph Laplacian

A normalized graph Laplacian is commonly studied under
the following two forms:

L, = D YLD '/2=1-D '/?2WD~1/2
L., = I-D'W
where L,, denotes the symmetric matrix and L, relates to

the notion of random walks.

Proposition 3. (Normalized Laplacian properties) Both ver-

sions of the normalized graph Laplacian matrices satisfy the
following,

o For every h € RP, we have

i _ h; )2

VI VG

o A is an eigenvalue of L., with eigenvector u iff )\ is an
eigenvalue of Ly, with eigenvector w = D/?u.

e X is an eigenvalue of L., with eigenvector u iff A\ and
u solve the generalized eigen-problem Lu = A\Du.

o 0 is an eigenvalue of L., with the constant 1 vector. 0
is an eigenvalue of L with eigenvector D'/?1.

e L, and L,,, are positive semi-definite and have p non-
negative real-valued eigenvalues 0 = Ay < --- < A,

1 p
h'L,h = 5 > Wi

4,5=1

Similarly as in the case of unnormalized Laplacian, the
multiplicity of the eigenvalue O is related to the number of
connected components. This can be proved in a similar fashion
to Proposition 2.

IV. EXPERIMENTS

To illustrate the effect of seeking a block diagonal graph
Laplacian for hyperspectral neighborhood graphs, we consider
two separate data sets. First a hyperion data with nine iden-
tified classes of complex natural vegetation acquired over the
Okavango Delta, Botswana, in May 2001, [18]. The general
class groupings include seasonal swamps, occasional swamps,
and woodlands. Signatures of several classes are spectrally
overlapped, typically resulting in poor classification accura-
cies. After removing water absorption, noisy, and overlapping
spectral bands, 145 bands were used for spectral embedding.

A second dataset, shown in Figure 1, consist of a hyper-
spectral data that was acquired by the National Aeronautics
and Space Administration (NASA) Airborne Visible/Infrared
Imaging Spectrometer (AVIRIS) sensor at 18-m spatial res-
olution over Kennedy Space Center during March 1996.
Noisy and water absorption bands were removed, leaving 176
features for thirteen wetland and upland classes of interest.
Cabbage Palm Hammock and Broad Leaf/Oak Hammock are
upland trees; Willow Swamp, Hardwood Swamp, Graminoid
Marsh and Spartina Marsh are trees and grasses in wetlands.



Their spectral signatures are mixed and often exhibit only
subtle differences posing some challenges for clustering al-
gorithms.

A. Hyperspectral Laplacian Eigenspectrum Analysis

Figure 3 shows a result from incorporating spatially weight-
ing. The plot demonstrates that a bilateral kernel function
infuses local adaptivity and spatial sensitivity in affinity
computations. Such an adaptation leads to a block-diagonal
structure graph Laplacian and ultimately enables preservation
of local disjoint neighborhoods that are compact and similar.
Further analysis of the Laplacian matrices, following Proposi-
tion 2, shows that its resulting eigenspectra and corresponding
eigenvectors do contain useful details that can be used in
unsupervised pattern classification.

1) Eigenvalues: The eigenvalues of the graph Laplacian
can be used to identify the number of cluster components.
A widely used eigengap heuristic [6], [17] can be adapted.
The goal is to choose the number k such that all eigenvalues
A1, -+, A, are very small, but A\gyq is relatively large. The
motivation bears on intuition from the perturbation theory,
where an observation can be made in the ideal case of k
completely disconnected clusters, the eigenvalue 0 has mul-
tiplicity k, and then there is a gap to the (k+ 1)th eigenvalue,
where Ag41 > 0. For data with well pronounced clusters the
heuristic is very effective. For example, by zooming-in on the
plots in Figure 4, there are twenty identifiable eigengaps (or
graph cuts/clusters) on the eigenvalues plot obtained with the
bilateral kernel based Laplacian. Only two graph cuts could
be identified from the unnormalized heat-kernel based graph
Laplacian and no cuts where observed on the heat-kernel
based Laplacian. This result demonstrate the superiority of
the proposed bilateral kernel function in capturing distinct
separations for different spectral signatures.

2) Eigenvectors: Given a block structure Laplacian, as
computed by the bilateral kernel, data clustering can be
performed by observing that entry values within selected
eigenvectors corresponding to small valued eigenvalues tend
to have a disjoint density of points that groups similar
spectral signature patterns. This is shown in Figure 5(a) for
the Botswana data set. A similar result, even though with
diminished quality, can be observed from the eigenvectors
computed by the normalized heat kernel. Following the result
in Figure 5 and the analysis of eigenvectors in general, we
can deduce a very simple and important insight, i.e. a block-
diagonal structure Laplacian matrix generates corresponding
eigenvectors that splits the data into a hierarchy of subclusters
corresponding to varying densities in the observation samples.
Such a characteristic could further be exploited for further
studies in data segmentation as well as object classification
applications. Figure 6 illustrates on this further by showing
a 2-dimensional principal component analysis projection of
the Botswana image data that is color-coded by the entry
values of the 3" and 4'" eigenvectors presented in Figure 5. A
similar result that corresponds to computed KSC eigenvectors
is presented in Figure 7. From both figures, it is clear that even

without the ground truth labels, one can simply make use of
the eigenvector values computed from the spatially sensitive
Laplacian, to obtain the graph cuts that correspond to different
spectral signature classes.

B. Hyperspectral Image Data Clustering

Most image data clustering applications seek to project data
onto a coordinate system spanned by smallest eigenvectors of
the graph Laplacian. In this section, we illustrate empirically
that obtaining a block structure Laplacian ultimately enables
preserving local disjoint neighborhoods that are compact and
as such may benefit most clustering algorithms that are based
on the graph embedding framework. Spectral clustering is one
such algorithm that is widely applied. The method has a strong
bearing on the structure of the graph Laplacian. In Figure 4,
the first few eigenvalues of both the spatially weighted and the
normalized kernel based Laplacians are zero, and they have a
corresponding number of cluster indicator eigenvectors that
are constant. The reason for this is simple, i.e. due to the
diagonal-block structure data gets clustered in correspondence
with disconnected neighborhood subgraphs that are associated
with the indicator eigenvectors. Contrary to the widely applied
notion that the first k£ eigenvectors from a spectral embedding
approach often provide the best clustering of data, Figure 8
shows a result that omits the 1% eigenvector (which is obvi-
ously constant from Proposition 1), 2"¢ and 3"¢ eigenvectors
(neglected for lack of detail to establish different clusters)
and a projection of data onto pairwise dimensions spanned
by combinations of 4t 5" 6! and 7t" eigenvectors. The
coordinates based on these eigenvectors reveal a visualization
that identifies meaningful spectral signature separations. As
in most post dimensionality reduction processing, a K-means
algorithm can be applied on the projected coordinates to
further determine cluster means that may be useful in other
applications.

Due to the difficult in providing quantitative analysis for
clustering algorithms, progress in fully appreciating spectral
based algorithms lags as the task of clustering in general
terms is yet to be completely defined. However as shown in
various studies [3], [S], [19]-[21], where ground truth exists,
classification algorithms can be designed to take advantage of
the embedding obtained with a bilateral kernel function.

V. CONCLUSIONS AND FUTURE WORK

Clustering details for hyperspectral image data often lie
on sparse, nonlinear coordinate system whose geometric and
topological structures can be exploited with graph embedding
framework. This study concentrated on demonstrating new
insights and a methodology for achieving high quality clus-
tering results with hyperspectral data. Through experimental
demonstrations, the paper suggests a particular construction
of affinity matrices that achieve a block structure diagonal
Laplacian. A diagonal block affinity matrix is shown to boost
spectral embedding with benefits for unsupervised pattern
classification applications. With the introduction of spatial
details, an automatic induction of sparsity neighborhoods
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with a natural ordering on the rows of the Laplacian matrix
is achieved. Spectral data clustering is pursued through an

analysis of the Laplacian eigenspectrum and its corresponding

eigenvectors, with various levels of class separation displayed

for different paired eigenvectors.
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