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Abstract—In order to stitch tracks together, two tasks are
required, namely tracking and track stitching. In this study track
stitching is performed using a graphical model and message
passing (belief propagation) approach. Tracks are modelled as
nodes in a track graph trellis (lattice) structure. This graph is then
solved using a Viterbi data association algorithm. A Kalman filter
is used to perform tracking, as well as in gating operations and in
determining the track-to-track association probability. Multiple
crossing targets, with fragmented tracks, are simulated. It is then
shown, that the algorithm successfully stitches track fragments
together, even in the presence of false tracks, caused by noisy
observations.

I. INTRODUCTION

Multiple target tracking (MTT) is a challenging problem
that has been encountered in a variety of fields. The require-
ment of turning raw sensor data into long-term tracks of targets
of interest, has application in numerous areas, including civil-
ian surveillance, military target tracking and intent assessment
applications.

The track stitching problem is inherent in many MTT en-
vironments. The problem is usually divided into two sections,
namely tracking and track stitching [1]. During tracking, the
track of a target may be broken for a variety of reasons, these
include a sufficient number of missed updates, caused by a
low detection probability, target occlusions, as well as cases
where the update period might be long. This usually results
in the target track being dropped, and restarted at a later
time. This results in poor long term track maintenance and
may in turn negatively influence target classification, threat
assessment and resource assignment algorithms. The amount
of track fragments and therefore, the number of possible track-
to-track associations scales exponentially with the number of
targets and time, making the problem more challenging.

The track based multiple hypothesis tracking (MHT) [2]
algorithm can be adapted to solve the track stitching problem.
This algorithm builds a tree of possible association hypotheses,
while deferring the association to a later stage, with the intent
of preserving other possible solutions before purging them. The
association trees can be solved by a multitude of algorithms,
including an integer programming algorithm [3] or by using
an N -scan algorithm along with belief propagation [4]. Track
fragments can also be modelled as nodes in a flow networks
such as in [5] and [6]. The flow networks are then solved
by associating the nodes with neighbouring nodes that are
highly correlated. Further advancements include estimating the
missing data between track fragments using rank minimisation
of a Hankel matrix [7] where the missing data is estimated in
such a way that it is maximally consistent with the known
data.

In this study, a track stitching algorithm is developed,
where certain track features are saved. These features are
retained, even if the track has been dropped by the tracking
algorithm. These features are then used to stitch the track
fragments together by modelling the tracks as nodes in a
lattice type track graph. The track graph is solved by using a
Viterbi data association algorithm [8], [9], [10] to find the most
likely paths through the graph, corresponding to the solution
paths. In this study, it is assumed that measurements from
the sensor arrives in sequence. It is also assumed that the
targets are resolved, in that each target can only return one
point observation at any given time.

In Section II, methods and algorithms that were developed
are presented. In Section III, the results and findings are shown
and discussed. Finally, in Section IV, some conclusions are
provided, along with perspective work in this direction.

II. METHODS AND ALGORITHMS

In this section methods and algorithms used to perform
multiple target tracking, as well as track stitching are dis-
cussed. First, it is discussed in this section how tracking is
performed by using a track maintenance algorithm, as well
a Kalman filter. A discussion follows, on how track stitching
is performed through selectively stored information from the
track fragments. The information from the track fragments are
then used to represent nodes in a graphical model. Finally, a
discussion follows on how the graphical model is solved.

A. Tracking and modelling

In order to perform track stitching from track fragments the
following must first be performed to create track fragments:

1) Model linear noisy targets which can either be visible
or occluded, producing bursts of true positions.

2) Model the true positions of the target as noisy sensor
observations, in the presence of false alarms.

3) Run a a track manager and Kalman filter, using
observation gating and data association to generate
track fragments.

The resulting tracks will then be used to perform track
stitching. Figure 1 shows an overview of the short term
tracking algorithm, including target and clutter generation. As
can be seen from the figure, the tracking environment is first
set up, by generating bursts of true targets, and modelling these
targets as radar observations. Clutter is then generated, and the
sensor observations are inserted into the clutter. The clutter
may also create false target tracks.

The sequential track managing algorithm then commences.



Tracks are first initiated based on the observations, next the
observation is filtered, the observations in the following scans
are also gated, and data association is performed with the
observations within the gating area. It is worth noting here,
selective information about the tracks are stored, in order to
perform track stitching in real time.StartTarget ModellingSensor ModellingClutter modelling and target insertionTrack initiation maintenance and deletionFilteringObservation gatingData association

Loop untiltracking timereached
End

Fig. 1. An overview of the short term tracking algorithm, including target
and clutter generation. Note that some track information is retained for use in
the track stitching algorithm.

The details of the tracking algorithm used are as follows
[14]:

1) True targets are simulated using a linear Markov
model with added white Gaussian noise.

2) The sensor is modelled, by adding zero mean Gaus-
sian noise.

3) Sensor observations are in polar coordinates.
4) The amount of clutter at each scan follows a Poison

distribution.
5) The reliability of the sensor is modelled by including

a probability of detection, PD, which determines
whether an observation was received by the sensor.

6) Track maintenance is performed by a M out of N
algorithm.

7) Track initiation is performed using the single point
initiation technique[15].

8) The ellipsoidal gating region, G0, when no attribute
data is contained in the measurement [14], is given
by

d2 ≤ G0 = 2 ln

(
PD

(1− PD)(2π)γ/2βFA

√
|S|

)
.

(1)

Where βFA is the false alarm rate, |S| is the determi-
nant filter residual covariance and γ is the dimension
of the observation vector.

9) Data association is performed using a nearest neigh-
bour approach.

1) Track fragment creation: Track fragments are created
by modelling the target as being in one of two discrete states.
Either visible or occluded. The Markov model in Figure 2
shows this behaviour. The transition probabilities in Figure
2 should be chosen in such a way that the model creates
fragments or burst of tracks. This implies that the transition
probabilities between the two nodes should be relatively low,
when compared to the probabilities of remaining in the same
state, as can be seen in the figure below.
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Fig. 2. The target can be either visible or occluded. By choosing the
transition probabilities appropriately the model will create track fragments.
These probabilities are shown on the transition arrows.

B. Track stitching

In order to perform track stitching, information of the
confirmed tracks needs to be saved. This information includes
the following:

1) Track start state.
2) Filter covariance at the start of the track.
3) Track end state.
4) Filter covariance at the end of the track.
5) The creation time of the track.
6) The termination time of the track.

Owing to the single point initiation technique used in the
tracking algorithm, as mentioned earlier, the very first covari-
ance of the track can not be used as the starting covariance, as
this will be much larger than the consequent covariances after
a following update has been received.

It is also worth noting here that the following is assumed:

1) The sensor measurements arrive in the correct
chronological order, i.e. not out of sequence.

2) A target can generate exactly one measurement at any
given time, i.e. the sensor measurements are resolved.

3) The target will not manoeuvre while occluded, and
will continue in an almost linear fashion.

Given the above assumptions it can be inferred that a
confirmed track can only be the result of exactly one target
at any given time, t. Each track can be associated with exactly
one target, thus multiple tracks, existing at the same time, must



be mutually exclusive to any target.In subsequent subsections
this property is exploited to reduce the number of track-to-
track association hypotheses.

The track stitching algorithm can be explained using a
two target example. The targets are denoted as M1 and M2.
Both targets are partially occluded, according to the model
mentioned earlier, and produced track fragments T1, T2...TN .
These track fragments are represented by a vector containing
the saved track information mentioned earlier in this section.
The state diagram for the two targets, M1 and M2, is shown in
Figure 3. It is assumed that the track fragment indices coincide
with the chronological order of the track fragments for each
target, although the two targets may have overlapped in time. In
Figure 3 the nodes are referred to as states. A state represents
a track fragment. A track fragment can either be stitched to
a previous track fragment, from the same target or a track
fragment can be the result of a new target (false or real). If
a track fragment is not associated with an existing target, it
represents a new target. A transition represents the possibility
that a former track fragment and a later track fragment can
result from the same target. Transitions to the same node are
reserved for the no association hypothesis. In Figure 3 track
fragment T2 can be associated with either target M1 or M2.
It is also important to note that because of the assumption
that observations and therefore the tracks are in the correct
sequence, these diagrams do not allow traversing from a later
state to an earlier one, i.e. the diagrams take the form of
directed graphs.
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T2

T4

M1 M2

Fig. 3. Two targets M1 (left) and M2 (right) with their respective associations
shown as arrows. Track fragment T3 can be assigned to either target M1 or
M2. If a later track fragment is not associated with a former track fragment,
the appearance of new target is assumed (real or false).

The state diagram in Figure 3 can be restructured into a
lattice or trellis like diagram. This configuration is referred to
in this paper as a track graph trellis. For the sake of clarity, the
invalid associations were removed. In implementation however,
the invalid associations are set to have a likelihood of zero.
The resulting graph can be seen in Figure 4. The columns of
the graph represent the time when the track fragments were
inserted, at irregular intervals. A column is only inserted in
the graph when a new track fragment becomes available. This
reduces the computational complexity, in that the graph only

has to be solved once a new track fragment becomes available
or when a track fragment is updated, instead of at every time
step during tracking.

T1 T1 T1 T1 T1

T2 T2 T2 T2 T2

T3 T3 T3 T3 T3

T2 becomes 
available 

T3 becomes 
available 

T4 becomes 
available 

T5 becomes 
available 

T1 becomes 
available 

T4 T4 T4 T4 T4

T5 T5 T5 T5 T5

Fig. 4. The track graph trellis for the state diagram in Figure 3. The grey
nodes represent states that are inserted to preserve the square structure of the
graph.

The association probability of the the track fragment to
itself is set equal to one, p(Tn|Tn) = 1, i.e. no other associa-
tions are possible, up until the column where the fragment was
inserted into the graph (grey horizontal arrows). This is done
to preserve the square structure of the graph, which makes
implementation easier.

1) Solving the track graph trellis: In order to solve the
track graph trellis, the Viterbi algorithm is briefly reviewed.

The Viterbi algorithm: The Viterbi [8] algorithm is
a related algorithm of the sum-product belief propagation
(message passing) algorithm and is often known as the min-
sum, or max-product algorithm. The Viterbi algorithm solves
the problem of maximising the probability of a sequence [9].
The goal is to find the sequence in the set of states, x, that
maximises a global function, g, i.e. the sequence of most
probable states. The most probable sequence in x can be
defined by the term

argmax
x

g(x). (2)

The Viterbi algorithm can be summarised as follows. For
a Hidden Markov Model (HMM) with state space S, initial
probabilities πi of being in state i and transition probabilities
ai,j of transitioning from state i to state j, outputs y1, . . . , yT
are observed. The most likely state sequence, x1, . . . , xT , that
produces the observations is given by the recurrence relations



in the equations [9]

p1,k = p(y1|k)πk, (3)
pn,k = p(yn|k)max

x∈S
(ax,kpt−1,x) . (4)

Where pn,k is the probability of the most probable state
sequence responsible for the first n observations, with the final
state k. The Viterbi path can be retrieved by storing pointers
of which state x was used in equation 4. Let Pt(k, n) be the
function that returns the value of x used to compute pn,k.
Then:

xT = argmax
x∈S

(vT,x)

xn−1 = Pt(xn, n)

The algorithm can now backtrack to find the most probable
state sequence (Viterbi path) using the pointer function, Pt.
The probabilities can of course be implemented as costs
(inverse probabilities), in this case the Viterbi algorithm aims
to minimise the Viterbi cost.

The track graph can now be solved by maximising the
association probability for the associations at each node, in
each column of the track graph. This is akin to finding the most
probable paths (lowest cost) through the track graph, where
the paths are all mutually disjoint [10], i.e. the paths do not
share any common nodes. Assuming that the track graph has
columns, L, and rows, M . The path probability is given in
equation 6, while the path cost is given in equation 5 for a
path terminating at column l.

Dm = Dl−1,m∗ +min(δGm,l−1) (5)

p(m) ∝ 1

Dm
(6)

Where Dl−1,m∗ is the path cost in the previous column, and
was found to terminate in row m∗, and Dm is the new path
cost, terminating in row m. min(δGm,l−1) is the minimum
transition cost from column l − 1 to the node in row m,
column l. p(m) is the probability associated with the path cost
Dm. Again the probabilities can be normalized by ensuring the
probabilities of the paths likelihoods sum to 1.

Any of these two equations can be used to determine the
most likely paths. The solution to the track graph is therefore
similar to a multiple Viterbi algorithm, where the paths are
mutually disjoint.

Messages of the current path likelihood are propagated
from a node in the current column, to nodes in next column in
the graph. These path likelihoods are updated using equation
6.
Once the end of the graph is reached, the algorithm backtracks
through the most likely nodes to obtain the set of most likely
paths. These paths then represent the most likely track-to-
track associations. For the example problem in the previous
subsection two solution paths may found, and can be seen in
Figure 5.

The number of solutions (stitched tracks) need not be
known beforehand, as this is implicitly known. The algorithm
only needs to keep solving for solution paths through the
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T2 T2 T2 T2 T2

T3 T3 T3 T3 T3
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T4 becomes 
available 
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available 

T1 becomes 
available 

T4 T4 T4 T4 T4

T5 T5 T5 T5 T5

Fig. 5. The two most probable solution paths through the trellis. Track
fragments T1 and T5 are associated with target M1, while fragments T2, T3

and T4 are associated with target M2

graph, until all the rows in the graph have been used at least
once.

2) Possible track-to-track associations: To reduce the num-
ber of associations further, ellipsoidal gating is used, as in the
tracking algorithm. When a new track fragment is observed,
the current position of each previous existing track fragment is
predicted using a Kalman filter (i.e. the Kalman filter coasts up
to the current point in time for each previous track fragment).
The coasting operation of the Kalman filter causes the filter
covariance to increase, this in turn increases the size of the
ellipsoidal gate. Each track track fragment is evaluated in turn
and if the estimated starting position of a the current track
fragment falls within this gate of a previous track fragment,
these two fragments may be stitched together, depending on
the association probability (next subsection). This process is
described in Figure 6. In the figure, T1 is the previous track,
while T2 is the current track. A similar ellipsoidal gating region
is used as before, given by

Gi = 2 ln

(
cPD

(1− cPD)(2π)γ/2βFA

√
|S|

)
. (7)

The addition of the constant c is to account for the added
uncertainty added due to the occlusions and small variations in
target bearing. This variable is chosen as close to unity, where
0 < c ≤ 1. Here, γ is the dimension of the estimated state
vector of the tracks.

Given the possible associations that does not violate the
gating condition, and the time restrictions imposed, as de-
scribed earlier, a binary association matrix can be constructed.
The dimensions of the matrix are equal to the number of track
fragments.



T1 (earlier track)

�
KF prediction from
T1 along with the gating region 

T2 (later track)

Fig. 6. The gating region and position prediction from previous track, T1 is
shown in grey. The starting position of the current track, T2, falls within this
gating region, and is therefore considered a possible association.

3) Track-to-track association probability: The track-to-
track association probabilities will now be defined. These
probabilities describe the viability of associating one track
fragment to another.

Equations 8 to 11 describe the costs and likelihoods of
associating an earlier track, Ti to a later track Tj . These
equations hold only when it is assumed that the estimation
errors, x̂i − xi and x̂j − xj are independent [16]. This
assumption does not generally hold for closely spaced targets
from the same target, but is a simplification. In equations 8 to
11, P ij

t is the combined covariance of the two track fragments,
∆̂ij

t is the difference between the state estimations, of the
two tracks, δijt represents an association cost between the two
tracks, and p(Ti|Tj) is the probability of assigning an earlier
track, Ti, to a later track, Tj .

P ij
t = P i

t + P j
t (8)

∆̂ij
t = x̂i

t − x̂j
t (9)

δijt = ∆̂ij⊤
t [P ij

t ]−1∆̂ij
t (10)

p(Ti|Tj) ∝
1

δijt
(11)

All association probabilities, p(Ti|Tj), entering a node
in the graph can be normalised (see Figure 4) by ensuring
that all probabilities sum to 1. In the above equations P i

t

is the covariance at the end of the earlier track, P j
t is the

covariance at the start of the later track and P ij
t is the

combined covariance at time t. x̂i
t is the the estimated end

position of the earlier track, while x̂j
t is the estimated starting

position of the later track. Association costs are converted to
association likelihoods, by inverting the costs.

C. Track fusion and purging

At some point unused tracks need to be purged and associ-
ated tracks need to be permanently fused. This is performed by
a track purging and fusion algorithm, using a sliding window
approach.

Let the size of the window be K. The number of elapsed
time steps since the track ended is is recorded. Once the
amount of time steps elapsed, where no association was made
to the particular track, is larger than the window size, K, the
track is purged from memory. If an association was made
to a particular track, the amount of time steps in which the
association is confirmed is recorded. If this is greater than K/2,

the two tracks are fused together according to the following
rules:

1) The new track has the starting parameters of the
earlier track.

2) The new track has the ending parameters of the later
track.

3) The missing data is determined using linear interpo-
lation.

4) The two separate tracks are removed from memory,
and replaced with the new track.

5) All of the assumptions regarding time constraints,
track independence and gating techniques mentioned
earlier now applies to the new track.

III. RESULTS AND FINDINGS

In this section the results and findings are provided. It is
shown that track fragments can be stitched together using the
methods discussed in the previous sections.

A. Track fragment generation

The result of two fragmented crossing true target tracks is
shown in Figure 7.
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Fig. 7. The true track of a single target, with fragmentation. As can be seen
the Markov model described in the previous section creates bursts of visible
true tracks.

The following transition probabilities were used for each
target:

p(V isible|V isible) = 0.8,

p(V isible|Occluded) = 0.2,

p(Occluded|V isible) = 0.4,

p(Occluded|Occluded) = 0.6

as shown in Figure 2 in the previous section.
As can be seen from Figure 7, this created bursts of the

true target tracks. Tracking observations generated from such
a target, created track fragments that is ordinarily dropped by
a tracking algorithm.



B. Tracking and track stitching results

The short term tracking algorithm was applied to the
scenario in Figure 8. The tracks were repeatedly dropped, and
then reinitialised at a later stage, only to be dropped again. The
estimated track fragments for the true target tracks in Figure 7
are shown in Figure 8. The original true tracks are also shown
in Figure 8, along with false tracks and false observations
(shown as dots).
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Fig. 8. The estimated track fragments caused by target occlusions for two
crossing targets, as estimated by the tracking algorithm.

A gate from one track predicted forward into time is shown
in Figure 9. The size of the gate increases as the time to which
the prediction is made increases. This not only accounts the
uncertainty of where the target will reappear, but also accounts
for small deviations from the linear trajectory that was assumed
the target would follow.
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Fig. 9. A track fragment gate shown around a prediction from an earlier
track to a later track.

As it is assumed that the observations arrive in sequence, of
particular interest is the time intervals during which the tracks
existed. For the scenario in Figure 8, the time intervals during
which these tracks existed are shown in Figure 10. As can be

seen overlapping occurs between the survival times of certain
tracks, therefore these tracks could not have been generated by
the same target. This fact is exploited to reduce the number of
valid associations.
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Fig. 10. The time intervals during which the track fragments existed.

The binary association matrix for the scenario in Figure
8 can be constructed using the gating and time information.
This is shown in Figure 11. The matrix is symmetric around
the diagonal, so only one half needs to be considered.
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Fig. 11. The possible associations for the scenario in Figure 8. White blocks
are possible associations.

Using the track graph model described in the previous
section and the above information, the most probable sequence
of track fragments can be determined, with the missing data
linearly interpolated. The result of stitching the tracks in Figure
8 is shown in Figure 12.

The number of track-to-track associations in Figure 11
can be considerably reduced by using the purging and fusion
algorithm described earlier. This is merely used to increase
performance, and is not shown here.
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Fig. 12. The stitched tracks with the missing data linearly interpolated, for
the scenario in Figure 8.

IV. CONCLUSION

In this paper it was shown that track stitching can be
performed by using graphical models and message passing.
The tracks were modelled as nodes in a lattice track graph
structure. A method to solve the track graph was also provided.
Finally the results were presented and discussed.

Future work includes simulating different target crossing
scenarios, to evaluate the effectiveness of the algorithm. It also
includes adapting a multiple hypothesis tracking algorithm to
perform track stitching, with the aim to evaluate the algorithm
against an MHT implementation using Monte Carlo simula-
tions. Future work also includes extending this model to a
more general graphical model. Lastly, it includes validating the
developed algorithm with real world data, with an increased
target density.
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