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Abstract. Classification of different tree species in semiarid areas can be challenging as a result
of the change in leaf structure and orientation due to soil moisture constraints. Tree species
mapping is, however, a key parameter for forest management in semiarid environments.
In this study, we examined the suitability of 5-band RapidEye satellite data for the classification
of five tree species in mopane woodland of Botswana using machine leaning algorithms with
limited training samples.We performed classification using random forest (RF) and support
vector machines (SVM) based on EnMap box. The overall accuracies for classifying the
five tree species was 88.75 and 85% for both SVM and RF, respectively. We also demonstrated
that the new red-edge band in the RapidEye sensor has the potential for classifying tree species in
semiarid environments when integrated with other standard bands. Similarly, we observed that
where there are limited training samples, SVM is preferred over RF. Finally, we demonstrated
that the two accuracy measures of quantity and allocation disagreement are simpler and more
helpful for the vast majority of remote sensing classification process than the kappa coefficient.
Overall, high species classification can be achieved using strategically located RapidEye bands
integrated with advanced processing algorithms. © 2013 Society of Photo-Optical Instrumentation
Engineers (SPIE) [DOI: 10.1117/1.JRS.7.073480]
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1 Introduction

In Southern Africa, natural forest and rangeland resources form an important resource base for
food and medicinal products that form part of people’s subsistence as well as their economic
base and well-being. One such natural forest is the mopane woodland. Mopane trees provide
varied products that include construction and fence poles; wood for tools, carvings, and utensils;
firewood, rope, gum, tannin, medicines and resin, green manure, livestock browse, and edible
caterpillars (commonly referred to as mopane worms).1 The value of mopane woodland in
Botswana alone has been estimated at US $3.3 million per annum, of which ∼40% goes to
producers who are primarily poor rural women.2 Recent studies have, however, shown that
the long-term sustainability of the woodland and its resources is under threat.3,4 Mapping
tree species in mopane woodland are extremely important for forest management purposes.
Up until now, there are no category-specific maps of species distribution in mopane woodland.
Moreover, forest managers need to understand the species diversity to suggest possible man-
agement practices that will enable efficient and sustainable use of the resources emanating
from mopane woodland. This will further support scientific knowledge of environmental
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management practices in Africa and other sites in the world more sensitive to global changes.
However, it is nearly impossible to acquire detailed tree species information over large areas
purely on the basis of field assessments. Therefore, enhanced methods are required to get explicit
information on the tree species composition and distribution patterns.

Remote sensing has been a valuable source of information over the course of the past few
decades in mapping and monitoring forests.5 It provides a cost-effective tool to help forest man-
agers better understand forest characteristics, such as forest area, locations, and species, even
down to the level of characterizing individual trees. The application of remote sensing in forest
management began with the manual interpretation of aerial photographs, but is increasingly
reliant on new data and methods.6 Over the last 20 years, the spectral and spatial resolution
of satellite data has steadily increased. Medium-resolution satellite data such as Landsat and
SPOT can obtain regional-scale forest variables.7 Airborne hyperspectral sensors meet the
requirements regarding spectral and spatial resolution for tree species mapping. However,
due to the high costs and their limited availability, hyperspectral data have gained limited accep-
tance for operational use. As higher-resolution satellite imageries (e.g., RapidEye) become
more available, there is an increasing potential to provide more detailed information. Unlike
medium-resolution satellite imagery, which provides an aggregated response over a region,
individual trees are visible in high-spatial resolution imagery. This provides opportunities to
differentiate species and individual trees.

RapidEye has a relatively higher spatial resolution (5 m) and a new spectral band (red-edge)
in addition to the four standard bands [blue, green, red, and near-infrared (NIR)]. The red-edge
band is supposed to discriminate between healthy trees and trees that are affected by disease and
to enhance the separation between different species and age classes. Recent studies have shown
that with the inclusion of the red-edge channel, RapidEye has large capabilities for enhanced
species mapping;8,9 however, its applicability in species classification, especially in areas of lim-
ited training sites, is still evolving.

Many classification methods have been used for tree species mapping using remote sensing
data. This includes maximum likelihood, minimum distance, discriminant analysis, and spectral
angle mapper classifiers.10–12 Maximum likelihood and minimum distance classifiers are com-
monly used supervised classification methods with conventional multispectral data. However,
there is a limitation with the application of these classifiers for mapping areas with limited train-
ing samples.11 Previous studies in semiarid environments have shown that collecting training
samples is a mammoth task because the terrain and maps produced by vegetation canopy intro-
duces noise to vegetation classification.13 As a solution to this problem, powerful classification
methods are essential for mapping species in semiarid environments.

We assessed two commonly used machine learning classification algorithms, namely, ran-
dom forest (RF) and support vector machines (SVM). Previous studies have shown that the RF or
SVM algorithm can be successfully used for species mapping and classification purposes.14–17

To the best of our knowledge, so far no study has compared the main machine learning algo-
rithms RF and SVM for tree species mapping in a semiarid environment and in particular, using
the new-generation satellite sensors.

This study aims at separating Colophospermum mopane (CM) and its coexisting species in
a semiarid forest using spectral information provided by the RapidEye sensor applying RF and
SVM classification algorithms. We focus on the following research questions: (1) Can CM and
its coexisting species be separated using the RapidEye image with strategically positioned spec-
tral bands? (2) Do the additional red-edge band of RapidEye improve the classification accuracy
(CA) significantly compared to the four standard bands? (3) Which of the classification algo-
rithms (RF or SVM) is better for detailed tree species classification in areas with limited training
samples based on CAs?

2 Study Area

The study was undertaken in and around the Palapye/Tswapong axis of Central Region of
Botswana (longitude 27°00’ E to 27°33’ and latitudes 22°23’ to 22°52’ S). It is situated
along the main north-south highway and is ∼230 km north of Gaborone (Fig. 1), the capital
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city of Botswana.2 Soils around the area are well developed and variable, hence locally referred
to as hardveld region. Temperature and rainfall regimes are highly variable both temporally and
spatially, and are both characterized by seasonality in their occurrence.18 The axis covered by
this study is described as mopane bushveld because mopane tree is found in all its growth forms
and is locally monospecific. However, several other tree species grow in association with
mopane trees. Only the dominant tree species as identified by local ecologists have been
used in this study (Table 1): Grewia bicolar (GB); Dichrostachys cinerea (DC); Acacia
erubiscens (AE); Acacia tortilis (AT). GB and DC are deciduous species with short leafs
and several flowering periods, while AT and AE have a dual flowering period during the
rainy and dry seasons.19 On the other hand, CM is a deciduous slow-growing species, with
an erect narrow crown. The leaves are pinnate with two large leaflets that can vary considerably
in size on the same tree20 and within a growing season.2 C. mopane drops its leaves in an irregu-
lar fashion from the onset of the dry season and is generally leafless from August to October.
However, trees may retain their leaves between successive rainy seasons, depending on the
amount and distribution of rainfall.20

Fig. 1 Location of the study area in Central District of Botswana.

Table 1 The number of sample plots, local names, and the type code for Colophospermum
mopane and its coexisting species.

Species name Local name Type code No. of plots

Grewia bicolar Mogwana GB 53

Dichrostachys cinerea Moselesele DC 51

Acacia erubiscens Moloto AE 53

Acacia tortilis Mosu AT 54

Colophospermum mopane Mopane CM 55
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3 Field Data Acquisition

The field data acquisition was conducted during the summer month of January 2012 coinciding
with the image acquisition date. Field measurements were done following random points that
were generated from an existing land cover map of the study area using Hawth’s analysis tool in
ArcGIS 9.3.21 A handheld Garmin eTrex30 GPS was then used to navigate to the respective
points. Thereafter, vegetation polygons in which one or more of these species (GB, DC,
AE, AT) coexist with CM was created around the centered point. The vegetation polygon
was defined as covering 20 m × 20 m, where the target species were more homogenous and
were representative of >80% of the target species in each plot. This method resulted in 51
to 55 vegetation polygons for each target species. Thereafter, the vegetation polygons were
used to create training areas and then overlaid on the true color composite RapidEye image
using Environment for Visualizing Images (ENVI) software.22 The metadata, such as the site
description (coordinates, altitude, and land cover class) and general weather conditions, were
also recorded.

4 Image Acquisition and Data Preparation

High resolution multispectral imagery was acquired over the study area by the RapidEye sensor
on January 25, 2012. The RapidEye dataset is composed of 5-band multispectral imagery with
5 m ground sampling distance. The five bands include blue (440 to 510 nm), green (520 to
590 nm), red (630 to 685 nm), red-edge (690 to 730 nm), and NIR (760 to 850 nm).
For the purpose of machine learning optimization, spectra pixels from RapidEye image
(5 m × 5 m) were extracted using ENVI software.22 In this study, only pixels that fell completely
within the measured polygons were used in the reference dataset so as to minimize variability
and exclude mixed pixel effects of tree species.23 Before field data were used for analysis, data
for each polygon were then averaged to represent one sample.

The imagery over the study area contained 0% cloud cover, with a relatively clear atmos-
phere. All RapidEye’s products are collected by a 12-bit imager. During on-ground processing,
radiometric corrections are applied and all image data are scaled up to 16-bit dynamic range.24

The scaling is done with a constant factor that converts the (relative) pixel digital number (DNs)
from the sensor into values directly related to absolute radiances. The scaling factor was origi-
nally determined prelaunch. Previous experimentation performed by Naughton et al.25 verified
that the image registration was within a single pixel; hence further geometric processing was
not applied. The image was atmospherically corrected using the quick atmospheric correction
procedure in ENVI 4.7.22

5 Machine Learning Classifiers

5.1 Random Forest Algorithm and Support Vector Machine

RF is a machine learning algorithm that employs a bagging (bootstrap aggregation) operation
where a number of trees (ntree) are constructed based on a random subset of samples derived
from the training data. Each tree is independently grown to maximum size based on a bootstrap
sample from the training dataset without any pruning, and each node is split using the best
among a subset of input variables (mtry).26 The multiple classification trees then vote by plurality
on the correct classification.26,27 The ensemble classifies the data that are not in the trees as out-
of-bag (OOB) data, and by averaging the OOB error rates from all trees, the RF algorithm gives
an error rate called the OOB classification error for each input variable.26 Therefore, as part of the
classification process, the RF algorithm produces a measure of importance of each input variable
by comparing how much the OOB error increases when a variable is removed, while all others
are left unchanged.28 RF algorithm is easy to implement as only two parameters (ntree and mtry)
need to be optimized.26,29 A more detailed discussion on RF can be found in Ref. 26.

SVM, on the other hand, was originally introduced as a binary classifier30 and is extensively
described by Burges31 and Hsu et al.32 However, typical remote sensing problems usually
involve identification of multiple classes (more than two). Adjustments are made to the simple
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SVM binary classifier to operate as a multiclass classifier using methods such as one-against-all,
one-against-others, and directed acyclic graph.17 In its classical implementation, it uses two
classes (e.g., presence/absence) of training samples within a multidimensional feature space
to fit an optimal separating hyperplane (in each dimension, vector component is image gray-
level). In this way, SVM tries to maximize the margin, that is, the distance between the closest
training samples, or support vectors, and the hyperplane itself. SVM consists of projecting vec-
tors into a high-dimensional feature space by means of a kernel trick and then fitting the optimal
hyperplane that separates classes using an optimization function. Several kernels are used in the
literature. According to Hsu et al.32 and supported by many other authors,16,17,30 the Gaussian
radial basis function has both advantages of (1) being very successful since it works in an
infinite-dimensional feature space and (2) having a single parameter contrary to the other
well working kernels (e.g., polynomial). Noise in the data can be accounted for by defining
a distance tolerating the data scattering, thus relaxing the decision constraint.

To demonstrate the effectiveness of RF and SVM for mapping CM and its coexisting species,
classifications of the five species were trained on 70% occurrences and evaluated on the remain-
ing 30%. The same number of pixels was used for the presence class and for the absence class
in order to avoid discrepancies due to unbalanced training sets.30,32 The EnMap box was used
to carry out the RF and SVM analysis. EnMap is an interactive data language (IDL)-based tool
for classification and regression analysis of remote sensing imagery. It can be fully integrated
into the commercially available IDL/ENVI environment. It may also be run as an add-on freely
available, license-free, and platform-independent processing environment for remote sensing
imagery. EnMap uses generic image file formats with an ENVI-type text header for the
image data as well as the continuous or categorical reference data and model outputs, a
two-step image analysis consisting of separate model parameterization and application, and
trained models are saved and may be applied several times, e.g., for transfer to other data
sets and calculate variable importance and accuracy.

5.2 Optimization

Classifier parameters, namely, the number of trees and the number of variables to be randomly
selected from the available set of variables for the RF and the regularization parameter C and the
kernel parameter λ for the SVM, were selected.32 The goal was to identify optimal parameters
so that the classifier could accurately predict unknown data. This method is easy to use, quite
fast, and can be more reliable than more advanced iterative techniques that do not always
consider parameters as independent.

5.3 Classification and Accuracy Assessment

It has become customary in the remote sensing literature to report the kappa index of agreement
for purposes of accuracy assessment since kappa also compares two maps that show a set of
categories. However, recent studies have shown limitations of kappa in that it gives information
that is redundant or misleading for practical decision making. Furthermore, Pontius Jr. and
Millones33 stated that the standard kappa and its variants are frequently complicated to compute,
difficult to understand, and unhelpful to interpret. To solve this problem, Pontius Jr. and
Millones33 recommend that the use of kappa for the purposes of accuracy assessment and
map comparison be abandoned, and instead summarize the cross-tabulation matrix with two
much simpler summary parameters: quantity disagreement and allocation disagreement.

In this study, accuracy assessments were obtained using the kappa analysis and the quantity
disagreement and allocation disagreement as proposed by Pontius Jr. and Millones.33 A con-
fusion matrix was constructed so as to compare the true class with the class assigned by the
classifier and to calculate the overall accuracy (OA) as well as the CA.34 We report on both
statistics using the confusion matrix proposed by Pontius Jr. and Millones,33 which is available
online at http://www.clarku.edu/~rpontius/.

The two machine learning algorithms were compared on the basis of the accuracy they pro-
duce when trained on the same set of training data. Based on the accuracy metrics obtained
for each classifier in each accuracy assessment method, a statistical analysis can be performed
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to test if the difference is significantly equal or different. We compared the confusion matrix
yielded by the RF and the SVM classifications by using the McNemar test with a 95%
confidence interval. McNemar test is a nonparametric test that is simple to understand and
execute. It has been shown to be sensitive and precise in comparing two or more accuracy assess-
ments.35,36 The test is based on chi square (z2) statistics, computed from two error matrices,
given as ðz2Þ ¼ ðf12 − f21Þ2∕ðf12 þ f21Þ;where f12 denotes the number of cases that are
wrongly classified by classifier 1 but correctly classified by classifier 2 and f21 denotes the
number of cases that are correctly classified by classifier 1 and wrongly classified by classifier
2.36 The difference in accuracy between a pair of classifications is viewed as being statistically
significant at a confidence of 95% if the calculated z score in McNemar test is >1.96.36

6 Results

6.1 Optimization

The results of optimizing RF parameters (ntree and mtry) at each split has shown that the setting of
mtry value of 2 yielded the lowest OOB error rates. When examining the ntree parameter, results
indicated that there were relatively stable OOB error rates after setting ntree value of 5000.
Similarly, for the SVM optimization parameters C and λ, the best value was obtained at 0.01
and 10 for C and λ, respectively. The results show that the changes in ntree and mtry for RF
and λ and C for SVM influence the accuracy of the classification results produced. Therefore,
the settings of mtry (2), ntree (5000), C (0.01), and λ (10) were used for all further analyses.

6.2 Classification Result

The vegetation map of RF and SVM classifications are presented in Fig. 2. From the maps,
it is very clear that using both methods of classification (RF and SVM), mapping of CM species
and its coexisting species yielded good results from RapidEye images. The SVM classification
produced higher overall accuracies of 88.75% compared to RF classification of 85%.

Generally, classification results were best in depicting CM and AE using both methods
(Fig. 3). In fact, stands of CM were accurately classified with 100% class accuracy using both
methods. Moreover, we tested the importance of the red-edge band as part of the RapidEye
sensor for species classification in a semiarid environment by running the classification with
and without the red-edge band. Results show that in both methods, when the red-edge band
is excluded, the accuracies decreased by 8%. Furthermore, the relative importance of each
of the RapidEye’s bands (n ¼ 5) in mapping the five species was measured using RF algorithm.

Fig. 2 Map showing the classification of the five tree species using random forest (RF) and sup-
port vector machine (SVM) learning algorithm.
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The result further indicated that band 3 (red band; 630 to 690 nm) had the highest mean
decreasing accuracy, with only the lowest mean decreasing accuracy obtained with band 1
(blue; 440 to 510 nm) [Fig. 4(a)].

Similarly, we also measured the importance of each band in discriminating individual species
among the other species [Fig. 4(b)]. Results indicate that band 3 (red band; 630 to 690 nm) and
band 5 (NIR; 760 to 880 nm) are more important in separating individual species from the other.

6.3 Classification Accuracy and Assessment

The confusion matrix derived from the test dataset for both RF and SVM are presented in
Table 2. The matrix consists of CA and OA. When test data was used to test the RF classification
result, the RF successfully mapped the five species (GB, DC, AE, AT, CM) with an OA of 85%.
On the other hand, when the SVM was used for classification, the confusion matrix yielded an
OA of 88.75%. Similarly, the accuracy assessment results for class pair indicates that AE and GB
appear to be unique among the other species based on the highest CA of 93.75% (AE) and 93.75
and 100% (GB) for the SVM and RF classifications, respectively. Hence, it is easier to discrimi-
nate CM from AE and GB compared with DC, which yielded a class pair accuracy of 82.35 and
76.47% for both the SVM and RF classifications, respectively. Overall class accuracy of CMwas
84.21% for SVM and 72.73% for RF.

The results of the performance of the two classification assessments (kappa and total
disagreement) in mapping the five species are presented in Table 3 for both the SVM and
RF classification methods. The total disagreement is separated into two components: quantity
disagreement and allocation disagreement. Quantity disagreement is the amount of pixels of
a class in the training data that is different from the quantity of pixels of the same class in
the test data, while allocation disagreement is the location of a class of pixel in the training
data that is different from the location of the same class in the test data. Kappa for both

Fig. 4 (a) Comparing the relative importance of each RapidEye band in mapping the five species
using the mean decrease in accuracy. The mean decrease in accuracy was estimated using the
RF algorithm. (b) Comparing the relative importance of each RapidEye band in mapping individual
species relative to other species using the mean decrease in accuracy. The mean decrease in
accuracy was estimated using the RF algorithm.

Fig. 3 Class accuracies for each species using the RF and SVM classification algorithm.
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SVM (0.86) and RF (0.81) in this study represents a strong agreement between the training data
and the test data (Table 3). Table 3 also shows that in both methods the total disagreement as
proposed by Pontius Jr. and Millones33 (11 and 15% for SVM and RF, respectively) is slightly
lower than the disagreement from kappa (14 and 19% for SVM and RF, respectively).

We also used the confusion matrix to compare the accuracies of the two algorithm (RF and
SVM) employed in this study using the McNemar. Table 4 shows that there are no significant
differences in the accuracies obtained from both the RF and SVM classifications. The McNemar
test z score was <1.96, which is required for the two algorithms to be statistically significantly
different at 95% confidence level.

Table 3 Comparing kappa and total disagreement methods of classification assessments.

Parameters SVM RF

Kappa 0.86 0.81

Kappa total disagreement (%) 14 19

Allocation disagreement (%) 5 9

Quantity disagreement (%) 6 6

Total disagreement (%) 11 15

Note: All calculations were done using the confusion matrix proposed by Pontius Jr. and Millones33 and
sourced from http://www.clarku.edu/~rpontius/.

Table 4 Comparison of SVM and RF using McNemar test.

SVM

TotalCorrectly classified Misclassified

RF Correctly classified 67 4 71

Misclassified 1 8 9

Total 68 12 80

Note: McNemar z score ¼ 1.342.

Table 2 Comparison of confusion matrix obtained after the classification of Colophospermum
mopane and its coexisting species from both the support vector machine SVM and random forest
(RF). The confusion matrix includes overall accuracy (OA) and classification accuracy (CA).

SVM RF

AE AT CM DC GB AE AT CM DC GB

AE 15 1 0 0 0 15 0 1 0 0

AT 0 11 1 3 1 0 10 3 3 0

CM 0 0 16 0 0 0 0 16 0 0

DC 1 0 1 14 0 1 0 2 13 0

GB 0 0 1 0 15 0 0 1 1 14

CA (%) 93.75 91.67 84.21 82.35 93.75 93.75 90.91 72.73 76.47 100

OA ¼ 88.75% OA ¼ 85%
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7 Discussion

This study highlights the effect of new generational multispectral image (RapidEye) in mapping
tree species in semiarid environments where there are limited training samples. We also set out to
compare two machine learning algorithms and two CA assessment methods for mapping tree
species in semiarid environment.

7.1 Spectral Classification of the Tree Species

Classification of different tree species in semiarid areas, such as Palapye in Botswana, can be
challenging because of the change in leaf structure and orientation as a result of limited soil
moisture.2,21 However, this study has shown that RapidEye satellite data are highly suitable
for classifying tree species in mopane woodland. The achieved class accuracies of the various
tree species ranged between 72.73 and 100% for RF and 82.35 and 100% for SVM. In both
algorithms, the lowest class values were found for CM (72.73 and 82.35% for RF and SVM,
respectively). The higher observed misclassifications of CM may be due to spectral overlaps
between CM and the other tree species. Similarly, from our observations in the field, a great
deal of the identified misclassifications could be explained by the very complex forest structure
in the test area. Most of the leaves of the tree species investigated in this study look similar. This
characteristic may have led to mixed pixels that may cause misclassifications.

In general, the present studies show an improvement to the works of Sebego et al.,2 which
was able to map mopane and its coexisting species with 74% accuracy. There are two reasons
that may be responsible for this. First, the spatial resolution of the Landsat TM image used for
their study is coarse (30 m) compared with that of the RapidEye (5 m) used in the present study.
Second, the classification algorithms (RF and SVM) used in the present study has been proven to
outperform the one used by the previous study (maximum likelihood).37 We therefore conclude
that spatial resolution and algorithms play an important role in classifying tree species in semi-
arid environments.

7.2 Role of RapidEye Red-Edge Band in Tree Species Classification

Although the five tree species could be separated accurately by using only the four standard
bands (blue, green, red, and NIR), the use of the additional red-edge band led to a significant
improvement of CA. For instance, the CAs increased from 78 and 80.25% to 85 and 88.75% for
RF and SVM, respectively, when the red-edge band was added. The positive effect of the red-
edge band can be explained by its relationship with the chlorophyll content of vegetation.38

Several studies have reported the red-edge spectrum to be specifically sensitive to vegetation
chlorophyll content.38,39 Chlorophyll content can be regarded as an additional factor to explain
particular sensitivities to the red-edge channel. The chlorophyll in green leaves absorbs light for
photosynthesis in the red-edge region of the spectrum.40 For this reason, the red-edge region is
most useful for detecting the absorption of visible light by the chlorophyll pigments. Moreover,
since at any time each of the tree species will be at different health states, the red-edge region will
be efficient in separating the species based on their health status.

However, the present study did not show that the red-edge is the most important band in
classifying the tree species. In fact, the red region and the NIR region outperformed the red-
edge band in classifying the species. Other studies that have found the red and NIR region
more important for classification of forest species using remote sensing data suggest that the
presence of red-edge may only be important when incorporated with other standard bands.8,41

Overall, these results are consistent with the previous studies that have found that RapidEye
bands, with its high spectral resolution, have great potential in terms of classifying and mapping
vegetation species.17,41–43

7.3 Machine Leaning Algorithms for Species Classification
in Semiarid Environment

The RF and SVM were compared on their ability to map CM and its four major coexisting
species. McNemar test shows that there is no statistically significant difference between RF
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and SVM. Nevertheless, SVM slightly outperformed RF by 3.75%. Previous studies have shown
that RF and SVM are the best techniques for mapping tree species using high-spatial resolution
imagery such as RapidEye.44 These techniques are better than conventional classification meth-
ods such as maximum likelihood, minimum distance, etc., in that they handle voluminous,
highly multicollinear, multispectral dataset.45 Moreover, they are very computing time efficient
compared to the conventional methods. To our knowledge, SVM and RF have never been com-
pared for mapping tree species in areas with limited training samples like semiarid environments
reminiscent of ours.

Other studies have shown that SVM generally outperforms RF, especially when the number
of training pixels is small.30,46 The main reason is most likely the result of the paradigm of SVM
based on a small pixel sample (i.e., support vectors).46 Consequently, SVM can be trained with
a few meaningful pixels and is able to fit limited information. The results from this study show
that in our context, SVM is able to map the tree species with higher accuracy from only small
training pixels of each species (presence and absence) compared to RF. Based on the above, we
therefore postulate that SVM should be used for mapping tree species in semiarid environments
with small training pixels.

Furthermore, it is clear from our results that kappa, which incorporates an adjustment for
random allocation agreement, is not a good statistic to determine the level of agreement between
the training dataset and test dataset in classification process. Kappa has numerous conceptual
flaws. Most importantly, it fails to distinguish quantity disagreement from allocation disagree-
ment.45 Therefore, it is far more important to report how much less than perfect the classification
is, rather than how much better than random the classification is.45,47 The quantity disagreement
and allocation therefore present a better option to kappa.

8 Conclusion

This study has demonstrated the effectiveness of using new multispectral sensors with high
spatial resolution and specific bands such as RapidEye when classifying tree species in a semi-
arid environment. Specifically, the study has highlighted three important conclusions.

1. CM and its coexisting species have a strong potential to be mapped using high-resolution
data, such as RapidEye imagery, with high accuracy.

2. The presence of red-edge band in the RapidEye sensor has the potential for classifying
tree species in semiarid environments when incorporated with other standard bands.

3. Considering the relative high accuracies, low cost, simplicity, and few parameters needed
for operation, SVM will be preferred over RF in areas where there are limited training
samples.
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