Belief-node Condensation for Online POMDP
Algorithms

Gavin Rens*}

Centre for Artificial Intelligence Research
*CSIR Meraka, South Africa
IUniversity of KwaZulu-Natal, South Africa
Email: grens@csir.co.za

Abstract—We consider online partially observable Markov
decision processes (POMDPs) which compute policies by local
look-ahead from the current belief-state. One problem is that
belief-nodes deeper in the decision-tree increase in the number
of states with non-zero probability they contain. Computation
time of updating a belief-state is exponential in the number of
states contained by the belief. Belief-update occurs for each node
in a search tree. It would thus pay to reduce the size of the
nodes while keeping the information they contain. In this paper,
we compare four fast and frugal methods to reduce the size of
belief-nodes in the search tree, hence improving the running-time
of online POMDP algorithms.

I. INTRODUCTION

Online partially observable Markov decision process
(POMDP) algorithms typically perform forward search up to
a fixed horizon in the belief space for selecting an agent’s
next action. Forward search in the belief space generates
a belief-decision-tree, where the nodes in the tree represent
belief-states (belief-nodes). One of the major problems with
these belief-decision-trees is the exponential growth of the
node-size with increasing depth of the tree. Assume node b
is at tier h of a decision-tree, and a stochastic action with
n probabilistic outcomes performed in b, with a subsequent
observation. A successor node b’ computed by a belief-update
function (see Eq. 1 in Sec. II-A), contains n - |b| states (in
the worst case). Then node b” reached from b could have
n - [b'| = n? - |b| states and so on. Computation of the belief-
update is quadratic in the size of the belief-node. Hence, in
general, there are O(n?"|bg|?) = O(n?") computations for
the belief-update at depth h, where b, is the root node (the
agent’s initial belief). The problem is compounded by belief-
update occurring for each node in the search tree. Moreover,
due to online algorithms usually being used in real-time, belief-
update during search is required to be very fast.

Consider the following scenario: A robot is deployed in a
courtyard after a party to pick up paper plates and empty beer
and soft-drink cans. The wind may blow; the harder the wind
blows, the more the plates and cans move around. Suppose
the robot has its sites on a plate; the longer it takes to plan its
route to the plate, the longer it will take to get there. And the
longer it takes to reach the plate, the more likely it is that the
plate will have blown away by the time the robot reaches the
place where the plate was lying. If the robot is able to take
some reasoning shortcuts, it could plan its route faster and
reach the position of a plate or a can faster, perhaps before

Alexander Ferreint?
tAachen University of Applied Sciences
Aachen, Germany
iUniversity of KwaZulu-Natal, South Africa
Email: ferrein@fh-aachen.de

the littered item blows away. However, due to inaccuracies
in its route planning, the robot may not end up in the desired
location anyway. Nevertheless, if the items are blowing around
at quite a rate (but not so much as to make the robot useless),
it is reasonable to want the robot to be more reactive at the
cost of accuracy. In a laboratory, for instance, actions must
be accurate and mistakes are hardly tolerated. However, in
many dynamic environments, like cleaning up after a party,
inaccuracy is easily tolerated, as long as the job gets done.

In this work, we assume that the agents take into account
the imperfections of their actuators and sensors, which causes
the agents to have noisy data about them. The actions and
sensors of such agents could be modeled and controlled by
the POMDP framework. In particular, an online POMDP
algorithms may be used. In this paper, we investigate four fast
and frugal methods to condense (reduce) the size of belief-
nodes in a belief-decision-tree and thus improve the running-
time of online POMDP algorithms. We investigate the trade-
off between rewards returned and running-time (i.e., reactivity)
for different levels of dynamism in the environment. Through
experiments, we show that some of the condensation methods
make algorithms significantly more effective.

The paper is organized as follows. In the next section, we
formally define partial observable Markov decision processes
and sketch the idea behind online POMDP planning methods.
Next, we mention the related work. Then we introduce the four
different belief-state size reduction methods. Finally, our ex-
periments are explained, the results discussed and conclusions
drawn.

II. PRELIMINARIES
A. Finite Horizon POMDPs

In a partially observable Markov decision process
(POMDP), the actions the agent performs have non-
deterministic effects in the sense that the agent can only predict
with a likelihood in which state it will end up after performing
an action. What is more, its perception is noisy. That is, when
the agent uses its sensors to determine in which state it is, it
will have a probability distribution over a set of possible states
to reflect the conviction it has that it is in a state.

Formally, a POMDP is a tuple (S, A, T, R, Z, 0, b°) with
S a finite set of states of the world (that the agent can be
in), A a finite set of actions (that the agent can choose to

execute), 7 (s,a,s’) denoting the probability of being in s’
after performing action a in state s, R(a,s) the immediate
reward gained for executing action a while in state s, Z a
finite set of observations the agent can perceive in its world,
O(s',a, z) denoting the probability of observing z in state s’
resulting from performing action @ in some other state, and b°
the initial probability distribution over all states in S.

A belief-state b is a set of pairs (s, p) where each state s
in b is associated with a probability p. All probabilities must
sum up to one, hence, b forms a probability distribution over
the set S of all states. To update the agent’s beliefs about the
world, a special function 7(z,a,b) = b, is defined as

b () = 2202) Taes T(s,0,5)b(s)
)= Pr(z|a,b) ’
where b, (s’) denotes the probability of the agent being in

state s’ in the ‘new’ belief-state b,,. Note that Pr(z|a,b) is a
normalizing constant.

ey

Let the planning horizon h (also called the look-ahead
depth) be the number of future steps the agent plans ahead each
time it selects its next action. V*(b, h) is the optimal value of
future courses of actions the agent can take with respect to a
finite horizon h starting in belief-state b. This function assumes
that at each step the action that will maximize the state’s value
will be selected.

V*(b,h) = max {RB(a, b)

+ Z Pr(z|a,b)V*(r(z,a,b),h — 1)],)
2€Z

where Rp(a,b) “ Y. sR(as)b(s), 0 < v < 1

is a factor to discount the value of future rewards and
Pr(z]a,b) denotes the probability of reaching belief-state
b, = 7(z,a,b). While V* denotes the optimal state-value,
function Q* denotes the state-action value: Q*(a,b,h) =
Rp(a,b)+7> . cz Pr(z|a,b)V*(r(z,a,b), h—1) is the value
of executing a in the current belief-state, plus the total expected
value of belief-states reached thereafter.

B. Online POMDP Algorithms

Online POMDP methods consist of two phases, a planning
phase where a finite sequence of actions is computed, and an
execution phase where the actions are executed in the real
environment. After executing the actions, the agent switches
back to the planning phase.

In the planning phase, a tree with belief-states as nodes is
generated, with the current belief-state as the root node. It is
expanded up to the given depth D. Arcs represent actions and
their resulting observations. At each node (belief-state), certain
action executions are considered, and a decision can be made
about which action the agent would execute if it were in the
projected belief-state. Such a tree for planning with belief-
states is called belief-decision-tree. Figure 1 depicts a belief-
decision-tree of depth 1. The actions that are considered are
the action left and right, the observations the agent can make
are o to o4, leading to four new different nodes. Planning
continues until (i) the time for planning runs out, (ii) the value
of the best action so far is satisfactory (e-optimal) or (iii) the
decision process has completed. If cases (i) or (ii) are not

new belief state

left new belief state
current e

belief
state

new belief state

new belief state

Fig. 1. A belief-decision-tree, with two actions, left and right, and two
corresponding possible observations each, 01,02 and respectively o3, 04.
Triangles represent belief-states, and circles represent points when the agent
processes its perception.

satisfied, a node from the fringe of the current tree is set as
the root of a new tree which will be searched to depth D
again, and so on. In case (iii), search will proceed to depth
D, independent of time or whether the action considered for
execution is satisfactory according to some prior knowledge.
During planning with a belief-decision-tree, it is assumed that,
at each node, the action that maximizes the expected rewards
will be executed. That is, a* = argmax,c 4 @*(a,b',h’) is
employed at the node representing b’, where A’ is the number
of steps to go. Once the whole tree is created, node values are
propagated backwards from the leaf nodes to ancestors, upto
the root node, using Equation (2).

In this work, we use two online POMDP algorithms: the
Monte Carlo (MC) Sampling approach of McAllester and
Singh [1], and a version of Real-Time Belief Space Search
(RTBSS), which was first proposed by Paquet, Tobin and
Chaib-draa [2].

III. RELATED WORK

Two sources for the intractability of solving POMDPs
optimally are usually cited in the literature [3]. First is the
curse of dimensionality, which refers to (in the case of a
model with discrete states) a belief space having a dimension
equal to the number of states. For instance, a domain modeled
with 1000 states has a 1000-dimensional belief space! Poupart
and Boutilier [4] show how to compress the state space
such that the value function finds (almost) the same policies
when referring to the compressed and original state spaces.
Compression is steered by finding the Krylov subspace for
the reward function. Roy, Gordon and Thrun [5] show how
to compress a state space by applying a variant of Principal
Components Analysis to a set of samples from beliefs that
the agent can expect to experience in the higher-dimensional
space. Planning is then done in the lower-dimensional space.

Second is the curse of history, which refers to the num-
ber of possible belief-states that must be considered during
planning increases exponentially with the planning horizon.
Kurniawati et al. [6] reduce the effective horizon in robot
motion planning by using a particular (offline) point-based
POMDP solver: a compact representation of the state space
is constructed by sampling “milestones” from the state space,
and then uses this representation to guide sampling in the belief
space. He, Brunskill and Roy [7] tackle the horizon problem
for online planning for large systems (“many state variables,

where each variable may take on a large or infinite number
of potential values”) that need predictions for actions many
steps into the future. Their work uses macro-actions, which are
pre-defined or learned meaningful sequences of action. Single
actions are selected by doing forward search in a restricted
policy space defined by a set of macro-actions.

A strategy for policy generation in dynamic environments
that deals with the two ‘curses’ mentioned is continuous
planning or agent-centered search [8]. Agents employing this
strategy compute future actions with only local look-ahead.
Online POMDP algorithms, as discussed in Section II-B use
this strategy [9]. But the curse of outcomes—exponential
growth of belief-state size in the number of steps—can be
considered as a third source of potential intractability in
POMDP algorithms. While much work is focused on over-
coming the curse of dimensionality and some work focuses on
overcoming the curse of history, we focus on overcoming the
curse of outcomes. Much work has been done to represent the
POMDP more compactly, either the dynamics of the process
are factored into independent structures [10], [1], [11] or
the states are specified/identified in some logical formalism
[12], [13], [14]. These approached usually reduce the effective
number of outcomes.

All these approaches want to reduce the computation
by reducing the problem representation size directly or by
identifying the informational structure of the problem. Our
approach does not require any special representation and it
does not require pre-computations on the belief space. Our
approach does local online optimization. That is, to condense
a belief-node, the nature of each node is considered as it is
‘encountered’ during planning. This has the advantage that
no matter how dynamic the domain, that is, no matter how
often the domain model changes, nothing extra needs to be
done for planning to continue. Nevertheless, just as methods
to overcome the first two curses do not necessarily compete
against each other, methods to overcome the third curse does
not necessarily compete with the other two.

IV. THE FOUR CONDENSATION METHODS

In this paper, we assume that the small local policy sought
by an online algorithm is simply one action. Hence, an agent
will deal with its environment as follows: using an online
POMDP algorithm with the agent’s current belief-state as
input, a single action is selected and immediately executed.
When the current observation is obtained, the belief-state is
updated and the process repeats. The basic idea is to reduce
the size of a belief-state by retaining only a small number
of representative states. As the number of states in a belief
reduces, performing belief-update on the ‘condensed’ belief
will be significantly faster.

Four fast and frugal methods will be investigated:
(1) Mean-as-threshold (MT): retain all states with probability
greater than or equal to the mean of the probabilities of
all the states. (2) Most-expected-medoid (MEM): retain only
the single state that is closest to the center, weighted by its
probability. (3) Centroids-of-dense-regions (CDR): retain states
that are the centroids of dense regions, according to some
measure of density. (4) Random-states (R(n)): randomly select
n states from each belief-node during search.

In the case when no condensation method is applied to the
planning algorithm, we call it the “baseline” method (BL).
Except for the ‘random’ method, which needs no further
explanation, we motivate and describe the other four methods
in the following subsections. Methods MEM and CDR require
a measure of distance between states. We define the distance
between two states as the sum of ‘differences’ in state variables
between two states s; and so. Formally,

||
dist(s1, s2) “ Z diff (vi(s1),vi(s2)), 3
i=1
where |s| is the number of features describing a state (i.e., the
number of variables), v;(s) is the value of variable i for state s
and diff (v,v’) is the user-defined difference between variable
values v and v’. Of course, other distance measures can also
be applied.

A. Mean as Threshold

For each belief-node generated, a subset of states with
probabilities above a certain threshold are retained. Using the
mean of the probabilities p; of the states in b as a threshold
seems to be a reasonable heuristic for selecting states with
probabilities relatively high compared to all the states in the
node. We define the set of most probable states of a set b as
mp(S) o {s € S|s > pp}. The computational complexity
of MT is in O(2]b]).

B. Most Expected Medoid

Given a set of data points, the set’s medoid is the point
in the set that is on average closest to all points in the set
[15]. Here we define the most representative state of a belief
as the most expected medoid (MEM). Let m = mem(b),
where b is a belief-state. Then m is the most expected medoid

of b: mem(b) = arg max, (Db((z)), where D(s,b) =

ﬁ lebz‘l dist(s,s;). D(s,b) is the average distance of s to
every state in b. Note that if the probability distribution over
b is uniform, m = argmin,(D(s,b)), that is, when the
likelihoods of states are not considered, then m is the ‘regular’
medoid. Hence, with the MEM method, the condensed belief-
state b’ = {(mem(b),1)}. The computational complexity of
MEM is in O(|b]?).

C. Centroids of Dense Regions

This method retains the states at the centers of groups
of states, where such groups have a particular property.
The center state is called the centroid, and the group is
all the states that are within a radius r around the cen-
troid (i.e., the r-region). The value of r is chosen such
that, on average for the states s in belief b, the density
of the r-region around s is maximal. Let neibs(s,r,b) be
the neighboring states of centroid s within the r-region, in
belief-state b: neibs(s,r,b) o {s’ € bldist(s',s) < r}.

Then, density(s,,b) o 1 > seneibs(s,rp) 0(8). The property

mentioned above—that a region must have for its centroid s
to be retained—is that the density of s’s r-region must be

greater than or equal to the average density of r-regions in b:
def

densityAvg(r,b) = \Tl)|Zs€b density(s,r,b). Determining

which radius maximizes densityAvg(r,b) is estimated by
choosing r € Radii that maximizes densityAvg(r,b), where
Radii is a set of radii. Radii is determined as follows. Let
dpmin be the distance (using dist(-), Eq. 3) of the nearest
neighbor, on average for states in b. Let n be a user-supplied
parameter from the natural numbers. Then, Radii = {dipn ¥
k € R|k = 1,2,...,n}. Our experimental result suggests

a number of n = 3. We define the estimated density factor

of belief-state b, given a set of Radii as edf (b, Radii) =

max,e jadi; density Avg(r,b). The computational complexity
of CDR is quadratic in the size of the belief-state being
reduced. In the worst case, an r-region will contain all states
in b. Determining d,,;,, is in O(|b|?); calculating the estimated
density factor is in O(|Radii||b|*) in the worst case and
deciding which states to retain lies in O(|b|?) in the worst
case. Normalizing b’ is linear in |b'|. Therefore, CDR is in
O((2 + | Radii])|b|? + 2|¢’|) in the worst case.

V. EXPERIMENTS

We performed experiments in a POMDP domains called
CleanUp (presented for the first time in this paper).
CleanUp[M, N] is a M x M grid-world with N scattered
items to collect. The aim in this domain is for the agent
to collect as many items as possible. But depending on the
dynamism of the domain, items may move. In CleanUp,
states are quadruples (z,y,d,t), with z,y € {1,---,M}
being the coordinates of the agent’s position in the world,
d € {North, East, West, South} the direction it is facing,
and ¢ € {0,1}, t = 1 if an item is present in the cell
with the agent, else ¢ = 0. The agent can perform five
actions {left, right, forward, see, collect}, meaning, turn left,
turn right, move one cell forward, see whether an item is
present and collect an item. The only observation possible
when executing one of the ontic actions is obsNil, the null
observation, and see has possible observations from the set
{0,1} for whether the agent sees the presence of an item (1)
or not (0). Next, we define the possible outcomes for each
action: When the agent turns left or right, it can get stuck in
the same direction, turn 90° or overshoots by 90°. When the
agent moves forward, it can get stuck or move one cell too far,
the agent can see an item or see nothing (no item in the cell)
and collecting is deterministic (if there is an item present, it
will be collected with certainty, if the agent executes collect).

So that the agent does not get lost too quickly, we have
included an automatic localization action, that is, a sensing
action returns information about the agent’s approximate loca-
tion. The action is automatic because the agent cannot choose
to perform it or not to perform it; the agent localizes itself
after every regular/chosen action is executed. However, just
as with regular actions, the localization sensor is noisy, and
it correctly reports the agent’s location with probability 0.95,
else the sensor reports a location adjacent to the agent with
probability uniformly distributed over 0.05. To avoid the agent
getting stuck (making stupid decisions), the agent would get
punished for visiting cells, in proportion to the number of
times the cell has been visited in the present trial. Rewards
are given in proportion to the Manhattan distance from the
closest item and a big (2200 units) reward for collecting an
item. We found that the agent performs better when it gets
ten units for seeing, else it tends not to want to perform see.

Actions cost nothing. The measure used in MEM and CDR
for the distance between two states is the Manhattan distance
between the positions represented in the respective states,
plus Angle/90°, where Angle is the lesser angle between
two directions (e.g., difference between North and Fast is
one, and between West and Fast is two). Tables I and II
show the results for CleanUp[6,12] (288 states, 5 actions, 3
observations). The agent’s initial position and direction per
trial are random.

We shall define three levels of dynamism: low, medium and
high. Dynamism is low when no items move. When dynamism
is medium, an item moves every 4.83 seconds (for MC) or
every 1.08 seconds (for BB). When dynamism is high, an item
moves every 2.42 seconds (for MC) or every 0.54 seconds (for
BB). Parameters were set as follows: discount factor of v =
0.9, number of samples ¢ = 20 (for MC) and horizon h = 5.
Results are provided for the average number of items collected
per hour per trial (ic/h), the average number of rewards per
action executed (R/a), the average time (in seconds) it takes
to select an action (sec/a), the average rewards gained per
second (R/sec) and the average number of states per node
(#sn). For each of the four condensation methods, for both
of the POMDP algorithms, ten trials were run for each of the
three levels of dynamism. Due to the extreme running times
of the baseline method, only five trials could be run (for each
level of dynamism). The agent was allowed to execute thirty-
six actions per trial. All experiments were conducted on an
Intel CORE i7 CPU, 2.0 GHz (boosting to 2.8 GHz), with
4 GB RAM.

VI. DISCUSSION OF RESULTS

In each of the six tables, results were ranked according
to items collected per hour (ic/h)—a method and its results
are placed higher in a table if it causes the agent to collect
more items per hour on average per trial. It is important to
note, however, that ic/h is only one of many measures of
effectiveness. Using ic/h assigns more or less equal weight to
accuracy (R/a) and reactivity (sec/a). In every case, apply-
ing either Mean-as-threshold or randomly selecting one state
(R(1)) yields the best performance according to our simple
ic/h metric. We also recorded standard deviation of R/a
(not shown). When dynamism is medium (e.g.), with the MC
algorithm, the percentage standard deviation for MT was 24
and for R(1) was 73, and with the BB algorithm, the percentage
standard deviation for MT was 64 and for R(1) was 62.
Applying no condensation (the baseline method) or the MEM
method always results in the worst performance according to
our metric. Employing the Monte Carlo algorithm, the CDR
method yields average performance for all three levels of
dynamism. However, when employing the Branch-and-Bound
algorithm, the method fares poorly. Ignoring BL, actions are
executed (planned for) at the same speed on average for
all three levels of dynamism (for both algorithms). Again,
ignoring BL, items collected per hour increase on average, with
the increase in dynamism—slightly for MC and noticeably for
BB. However, the rank orders remain more or less the same
for all the experiments.

TABLE 1. EXPERIMENT RESULTS FOR THE MONTE CARLO ALGORITHM. (A) LOW DYNAMISM. (B) MEDIUM DYNAMISM (C) HIGH DYNAMISM.

(@) (b) (©
Method ic/h R/a sec/a #sb #sa Method ic/h R/a sec/a #sb #sa Method ic/h R/a sec/a #sb #sa
MT 16.7 274 263 252 132 MT 19.0 263 205 260 136 R(1) 29.0 229 123 201 1.00
R(1) 11.1 112 153 200 100 R(1) 114 127 166 199 1.00 MT 152 210 203 249 130
CDR 10.7 262 393 418 241 CDR 7.12 197 435 429 247 CDR 13.0 268 301 406 233
R(3) 5.26 111 342 519 296 R(3) 6.36 165 361 519 295 R(3) 8.82 233 374 521 295
R(5) 3.4 767 478 813 486 R(5) 6.02 231 548 818 4386 R(5) 6.15 235 585 826 4.87
MEM 2.98 108 168 198 100 MEM 0947 644 106 197 100 MEM 494 810 121 199 100
BL 0.490 217 737 557 557 BL 0.520 180 538 539 539 BL 0.511 153 430 568 5638
TABLE II. EXPERIMENT RESULTS FOR THE BRANCH-AND-BOUND ALGORITHM. (A) LOW DYNAMISM. (B) MEDIUM DYNAMISM (C) HIGH DYNAMISM.
(@) (®) (©
Method ic/h R/a sec/a #sb #sa Method ic/h R/a sec/a #sb #sa Method ic/h R/a sec/a #sb #sa
MT 114 163 260 199 188 R(1) 121 97.2 124 175 1.00 MT 190 157 121 193 1.30
R(1) 718 765 1.67 172 1.00 R(5) 82.9 120 253 725 478 R(1) 126 191 223 1.66 1.00
R(3) 703 797 185 495 294 MT 82.1 193 317 282 146 R(3) 86.6 206 346 489 296
R(5) 486 88.0 268 782 482 R(3) 734 151 313 385 294 R(5) 74.6 140 228 816 485
CDR 35.2 132 681 372 225 CDR 54.2 188 572 320 187 CDR 52.0 195 558 375 221
BL 630 988 270 370 370 MEM 8.59 944 582 197 100 BL 6.81 210 470 344 344
MEM 455 927 440 212 1.00 BL 6.52 176 414 463 463 MEM 500 712 401 191 1.00
VII. CONCLUSION [3] J. Pineau, G. Gordon, and S. Thrun, “Point-based value iteration: An

Four methods to reduce the size of belief-nodes in POMDP
decision-trees were investigated. The motivation for the meth-
ods being frugal is that processes applied online should be fast
when the agent being controlled must be reactive. In general, (5]
planning can be up to almost 26 times faster with relatively
little reduction in task quality, in the CleanUp domain. The
performance metric we used will not suit all domains. Never- (6]
theless, there are surely domains for which at least a variant
of the metric is applicable. And in these domains, the agent
designer may consider employing the MT or R(1) condensation 7]
method, especially if the agent will be controlled with an
online POMDP algorithm. An interesting/unexpected result is
that on avg, more rewards are gained as the system’s dynamism (8]
increases. This could be explained by the possibility that the
agent has to travel more when the items are stationary; the
items tend to be closer to the agent when they move more

(4]

(9]

For future work, it would be interesting to see the influence
of other distance measures (where applicable) than the one
we have used (Eq. 3). Also, could condensation methods be
applied in offline value or policy iteration algorithms, and (1]
what would the effects be? Another question we want to
address in the future is how such methods could be used
beneficially to determine heuristics in POMDP algorithms [12]
which use heuristics as discussed, for example, in research
by Smith and Simmons [16] and Paquet, Tobin and Chaib-
draa [2]. Intuition says that condensation by the MT method (13]
leaves a belief-state with states which are more relevant than
if the R(1) method were employed. Yet, this observation is not
born out by our results. We should find out the reasons for this [14]
unintuitive result.

[10]

REFERENCES [15]

[11 D. McAllester and S. Singh, “Approximate planning for factored
POMDPs using belief state simplification,” in Proc. of 15th Conf. on [16]
Uncertainty in Artificial Intelligence (UAI-99). San Francisco, CA:

Morgan Kaufmann, 1999, pp. 409-416.

[2] S. Paquet, L. Tobin, and B. Chaib-draa, “Real-time decision making
for large POMDPs,” in Adv. in Artif. Intell.: Proc. of 18th Conf. of the
Canadian Society for Compl. Studies of Intell., ser. LNCS, vol. 3501.
Springer, 2005, pp. 450-455.

anytime algorithm for POMDPs,” in Proc. IJCAI, 2003, pp. 1025-1032.

P. Poupart and C. Boutilier, “Value-directed compression of POMDPs,”
in Advances in Neural Information Processing Systems (NIPS 2003).
Massachusetts/England: MIT Press, 2003, pp. 1547-1554.

N. Roy, G. Gordon, and S. Thrun, “Finding approximate POMDP
solutions through belief compressions,” J. Artif. Intell. Res. (JAIR),
vol. 23, pp. 1-40, 2005.

H. Kurniawati, Y. Du, D. Hsu, and W. S. Lee, “Motion planning
under uncertainty for robotic tasks with long time horizons,” Intl. J.
Robotics. Res., vol. 30, no. 3, pp. 308-323, 2011. [Online]. Available:
http://dx.doi.org/10.1177/0278364910386986

R. He, E. Brunskill, and N. Roy, “Efficient planning under uncertainty
with macro-actions,” J. Artif. Intell. Res. (JAIR), vol. 40, pp. 523-570,
2011.

S. Koenig, “Agent-centered search,” Al Mag., vol. 22, pp. 109-131,
2001. [Online]. Available: http://dl.acm.org/citation.cfm?id=567363.
567371

S. Ross, J. Pineau, S. Paquet, and B. Chaib-draa, “Online planning
algorithms for POMDPs,” J. Artif. Intell. Res. (JAIR), vol. 32, pp. 663—
704, 2008.

C. Boutilier and D. Poole, “Computing optimal policies for partially
observable decision processes using compact representations,” in Proc.
of 13th Natl. Conf. on Artificial Intelligence, 1996, pp. 1168-1175.

E. Hansen and Z. Feng, “Dynamic programming for POMDPs using a
factored state representation,” in Proc. of 5th Intl. Conf. on Artificial
Intelligence, Planning and Scheduling (AIPS-00), 2000.

D. Poole, “Decision theory, the situation calculus and conditional plans,”
Linkoping Electronic Articles in Computer and Information Science,
vol. 8, no. 3, 1998.

C. Wang and J. Schmolze, “Planning with POMDPs using a compact,
logic-based representation,” in Proc. of 17th IEEE Intl. Conf. on Tools
with Artif. Intell. (ICTAI’05). Los Alamitos, CA, USA: IEEE Computer
Society, 2005, pp. 523-530.

S. Sanner and K. Kersting, “Symbolic dynamic programming for first-
order POMDPs,” in Proc. of 24th Natl. Conf. on Artificial Intelligence
(AAAI-10). AAALI Press, 2010, pp. 1140-1146.

F. Gullo, G. Ponti, and A. Tagarelli, “Clustering uncertain data via k-
medoids,” in Scalable Uncertainty Management, ser. LNCS, S. Greco
and T. Lukasiewicz, Eds. Springer, 2008, vol. 5291, pp. 229-242.

T. Smith and R. Simmons, “Heuristic search value iteration for
POMDPs,” in Proceedings of the 20th conference on Uncertainty
in artificial intelligence, ser. UAI ’04. AUAI Press, 2004, pp.
520-527. [Online]. Available: http://portal.acm.org/citation.cfm?id=
1036843.1036906

