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Optical vortices are always created or annihilated as vortex dipoles — pairs with opposite topological charge.

Here a quantity, consisting of the transverse first and second derivatives of the optical field, is derived with

which one can distinguish between vortex dipole annihilation and creation events. Analytical and numerical

examples are provided as demonstration of the method.

Stochastic optical fields, such as speckle fields, contain
numerous dark points where the intensity vanishes and
the phase is undefined. These points are phase singular-
ities or optical vortices [1–3]. The statistical properties
of optical vortices in speckle fields have been studied ex-
tensively [4–13]. The phase around a phase singularity
changes by an integer multiple of 2π, resulting in a he-
lical wavefront, which gives rise to a twisted motion in
the flow of the optical power. Hence, the term ‘optical
vortex.’ The handedness of the phase circulation around
the phase singularities allows optical vortices to be sep-
arated into either positive or negative vortices. The sign
is associated with the topological charge of the optical
vortices, which can be any integer. However, only optical
vortices with topological charges of ν = ±1 are stable in
stochastic optical fields. Vortices with higher topological
charges quickly decay into those with ν = ±1.
Optical vortices are topologically stable and cannot

be removed or destroyed by local perturbations in the
optical field. They can only be created and annihilated
in pairs of opposite topological charge. This property
of optical vortices presents a challenge in applications
where light propagates through a turbulent atmosphere.
If the resulting scintillation is weak, the distortion can
be represented by a single random phase modulation,
which can be corrected in an adaptive optics system. On
the other hand, if the scintillation is strong, the phase
distortions will eventually produce optical vortices. In
principle one can remove such vortices by multiplying
the optical field with the conjugate phase [14, 15]. How-
ever, one cannot use the continuous deformable mirror of
an adaptive optics system for this. It is necessary to re-
move the vortices before the remaining continuous phase
distortions can be corrected [16]. Part of the problem is
to distinguish between vortices that will annihilate by
themselves and those that won’t. It would be unreason-
able to expect that one can make exact predictions for
each and every vortex in a stochastic optical field, but
an ability to assign probabilities for the annihilation of
vortex pairs would already be helpful.
The evolution of the vortex density in stochastic opti-

cal fields is closely related to the difference in the rates
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of pair creation and annihilation. As a result, the abil-
ity to distinguish between pair creation and annihilation
events is vital for an understanding of the evolution of
the vortex densities.
In this letter we provide a method to distinguish be-

tween annihilation and creation events. The points in an
optical field where a pair of optical vortices are created
or annihilated are, for the purpose of this paper, referred
to as critical points. Here we study the properties of the
optical fields in the vicinity of critical points and propose
a method to distinguish between points of annihilation
and those associated with pair creation. Such a dis-
tinction may help to identify which pairs of vortices will
disappear by themselves and which pairs need additional
processing to force them to annihilate. Previously, Fre-
und has identified the topologies of the Poincarè-Hopf
indices in the region of critical points [17]. Unfortu-
nately, these topologies do not provide an unambiguous
identification of the type of critical point.
To demonstrate the challenge in identifying whether

a pair of oppositely charged optical vortices (vortex
dipole), is about to be annihilated or has just been cre-
ated, we start with a simple illustrative example. The
analyses of second-order polynomial Gaussian beams
[18, 19] allow one to construct examples of beams con-
taining vortex dipoles that will either be annihilated or
created in the waist of the beam. The general form of a
second-order polynomial Gaussian beam is [20]

g(x, y, z) =
P (x, y, z)

(1− iz)3
exp

(

−x2 + y2

1− iz

)

, (1)

where the transverse coordinates x and y are measured
in units of the beam waist radius and the propagation
distance z is measured in units of the Rayleigh range.
The prefactor P (x, y, z) is a second-order bivariate poly-
nomial in x and y with complex z-dependent coefficients.
Here we consider two examples where the prefactor

either contains a vortex dipole that is annihilated in the
beam waist,

Pan(x, y, z) = x2 + y2 +

√
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or contains one that is created in the beam waist,

Pcr(x, y, z) = x2+y2−
√
3

5
(4−2i)(1−iz)y−iz(1−iz). (3)

In Fig. 1 we compare the phase functions of these two
beams, respectively prior to annihilation and just after
creation of the vortex dipole. The resulting phase func-
tions both contain a pair for phase singularities. Al-
though the optical fields must contain properties that
would cause the one vortex dipole to annihilate and the
other one not to annihilate, one can not say which is
which from a casual observation of their phase functions.
Therefore, a need exists for a method with which this
distinction can be made.
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Fig. 1. Comparison of the phase functions of polynomial
Gaussian beams that contain vortices dipoles (a) prior to an-
nihilation and (b) after pair creation. The diagrams beneath
the phase functions show the respective beams propagating
upward, with the locations of the observation planes and the
trajectories of the vortex dipoles as indicated.

In the three-dimensional space occupied by a paraxial
optical field, the phase singularities appear as directed
lines, threading back and forth along the direction of
propagation. The direction of the lines are defined by
the direction of topological charge flow, which can be
defined with a right-hand rule to link the handedness of
the phase circulation with the direction of topological
charge flow. One can also define the topological charge
flow vector using the vorticity [12], given by

Ω = ∇a(x, y, z)×∇b(x, y, z)

=
i

2
∇g(x, y, z)×∇g∗(x, y, z), (4)

where the complex optical field and its real and imagi-
nary parts are related by g = a+ ib. For the purpose of
the current discussion we define the topological charge

flow vector as the normalized vorticity vector

T =
Ω

|Ω| =
∇a(x, y, z)×∇b(x, y, z)

|∇a(x, y, z)×∇b(x, y, z)| . (5)

Note that the definition of T only contains derivatives
of the optical field and not the optical field itself. As a
result, T is invariant to any constant complex field that
may be added to the optical field. The effect of such an
added constant field is to shift the vortex trajectories to
other locations in the optical field. The new vortex loca-
tions are found where the added complex constant can-
cels the amplitude in the optical field to produce zeros.
Every point in the optical field can thus be associated
with a vortex trajectory. The topological charge flow is
therefore a vector field that is defined at every point in
the optical field.
Critical points are located where vortex trajectories

turn around. (This is analogous to the sign-change of
the C-point polarization index [21].) Provided that the
normal vector of the observation planes (for which we
use the propagation vector ẑ), is defined unambiguously,
the locations of these critical points are also unambigu-
ous. At such points the topological charge flow is per-
pendicular to the propagation direction. Hence, the z-
component of the vorticity becomes zero,

Ωz = axby − aybx =
i

2
(gxg

∗

y − gyg
∗

x) = 0, (6)

where the subscripts x and y, respectively indicate the x-
and y-derivatives of the field. The zeros of Ωz generally
describe planes in the three-dimensional region of the
optical field. Critical points are those points where the
optical vortex lines cross the planes of zero Ωz.
These critical points can either represent annihilation

or creation events. To distinguish between these types
of critical points, we start by noting that the topological
charge flow, as defined in Eq. (5), is a tangent vector
along the trajectory of the vortex line. As such, for the
sake of this discussion, it can be regarded as a velocity
vector with a constant magnitude and a varying direc-
tion. A change in the direction of such a velocity vec-
tor requires an acceleration vector that is perpendicular
to the velocity vector. Assuming that the topological
charge flow for a particular vortex trajectory is param-
eterized by a variable t, so that

T(t) = x(t)x̂ + y(t)ŷ + z(t)ẑ, (7)

one can compute the acceleration vector as

a(t) = ∂tT(t) = ∂tx(t)x̂ + ∂ty(t)ŷ + ∂tz(t)ẑ. (8)

where ∂t = ∂/∂t. Since the topological charge flow is a
vector field defined for every point in the optical field,
the acceleration vector is also a vector field. At any par-
ticular point in the optical field the acceleration vector
field is associated with the vortex trajectory that passes
through that point for the appropriate complex constant
that gives a zero at that point.



The sign of the z-component of the acceleration vector
(i.e. the component along the direction of the propaga-
tion vector) can be used to distinguish between creation
and annihilation events. If the z-component of the ac-
celeration vector at a critical point is positive (negative),
then it points in the same direction as (opposite direction
to) the propagation vector, which means that the crit-
ical point represents a creation (an annihilation) event.
As the z-component of the acceleration vector gives us
information about the births or deaths of vortex dipoles,
we’ll refer to it as the optical vortex dipole vitality, or
just the vitality.
To derive an expression for the vitality, we expand the

optical field around an arbitrary point on the transverse
plane at a fixed value of z as a Taylor series up to sec-
ond order in the transverse coordinates. Without loss
of generality we choose the point at (x, y) = (0, 0) on
the plane where z = 0. The z-dependence at this point
is determined by adding gzz to the expansion and us-
ing the Helmholtz equation to solve for gz. [A factor of
exp(−ikz) is multiplied with g(x, y, z) before subjecting
it to the Helmholtz equation.] The constant term is set
equal to zero, because we assume that the point con-
tains a vortex and the acceleration is invariant to such
a constant. The resulting expansion is given by

g(x, y, z) = gxx+ gyy +
1

2
gxxx

2 + gxyxy +
1

2
gyyy

2

−i
gxx + gyy

k
z. (9)

We now use Eq. (9) to compute the z-component of
the acceleration (the vitality). The result is

az =
2k [(A1H0 −A2H5)Ωz + (H3H1 −H4H2)A0]

(4k2Ω2
z +A0)

2
,

(10)
where Ωz is given in Eq. (6) and

H0 = axxaxy + ayyaxy + bxxbxy + byybxy (11a)

H1 = ayaxx + ayayy + bybyy + bybxx (11b)

H2 = bxbxx + axaxx + bxbyy + axayy (11c)

H3 = aybxx − axbxy + bxaxy − byaxx (11d)

H4 = aybxy − axbyy + bxayy − byaxy (11e)

H5 = a2xx + b2xx − a2yy − b2yy (11f)

A0 = H2

1 +H2

2 (11g)

A1 = H2

1
−H2

2
(11h)

A2 = H1H2, (11i)

with the subscripts x and y representing derivatives as
in Eq. (6) and with the real and imaginary parts of the
derivatives of the optical field g� given in terms of a�
and b�, such that g� = a� + ib�.
Although the acceleration vector is defined for every

point in the optical field, it is only at critical points
(Ωz = 0) where the sign of its z-component distinguishes
between creation and annihilation events. When we set

Ωz = 0 in Eq. (10), it simplifies to

az =
2k(H3H1 −H4H2)

(H2

1
+H2

2
)

. (12)

The sign of the vitality is then given by the sign of
(H3H1 − H4H2), indicating whether the critical point
represents an annihilation event or a creation event:

annihilation event ⇒ az < 0

creation event ⇒ az > 0. (13)

To test whether the proposed expression for the vital-
ity in Eq. (10) can successfully distinguish between an-
nihilation and creation events, we apply it to the second-
order polynomial Gaussian beams, with prefactors given
in Eqs. (2) and (3). All the critical points in these two
beams (five in total) are correctly distinguished based
on the sign of the vitality. We also applied the vitality
to numerical simulations of speckle fields and obtained
the same successful results.
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Fig. 2. A sequence of four color coded phase functions of a
polynomial Gaussian beam is shown. Regions with positive
(negative) vitality are shown in red (turquoise). The four
images in the sequence denote consecutive slices of the phase
of the beam along the propagation direction, separated by a
tenth of a Rayleigh range (δz = zR/10). The phase function
in (a) represents a case just prior to the creation of a vortex
pair. In (b) the vortex pair has just been created in the
positive (red) region. The vortices crossed the boundary in
(c), moving in a negative (turquoise) region. In (d) we see
the phase function just after the vortices annihilated in the
negative (turquoise) region.

A sequence of color-coded phase functions, taken from
the beam associated with Eq. (2), is shown in Fig. 2,
demonstrating that the vitality is successful in distin-
guishing between creation and annihilation events. Cre-
ations always appear in positive regions and annihila-
tions always appear in negative regions.



Due to the continuity of the vitality in Eq. (10) as
a function in three dimensions, we extended the iden-
tification of the event at a critical point in Fig. 2 to a
region surrounding that critical point where the vital-
ity has the same sign as at the critical point. In this
way we used such an extension to associate the type of
event with the vortex dipole that exists before or after
the event while they lie in a region with the same sign.
This may suggest that one can use the sign of a region in
which a vortex dipole is located to predict whether this
dipole will annihilate or not. However, such a prediction
can at best be made with a certain probability of suc-
cess. The sizes of regions on the transverse plane with
a particular sign are often relatively small compared to
the typical separation distances between vortices. On
the other hand, these regions tend to extend relatively
far along the propagation direction. The regions change
slower along the z-direction than the movement of the
vortices, so that vortices tend to move across boundaries
between regions. Therefore, when two vortices with op-
posite charges appear in the same region (with a nega-
tive sign) one cannot conclude that their annihilation is
imminent. Occasionally they may linger for a while and
even move away into other regions. Moreover, in prac-
tical applications, noise would add some uncertainty to
the value of the vitality, which one would need to take
into consideration before making any predictions.
It is reasonable to argue that the probability of annihi-

lation would increase as the separation distance between
oppositely charged vortices decreases while both lie in-
side a region of negative vitality. If the separation dis-
tance is much small than the transverse scale (coherence
distance) of the optical field, then the probability that
the vortex pair would annihilate within an distance on
the order of the longitudinal scale (the Rayleigh range),
should be fairly high. By taking all these aspects into
account, it may be possible to give an estimate of the
probability for annihilation, but such an estimate is not
known yet.
The main purpose of the vitality is to distinguish be-

tween vortex dipole creation and annihilation events.
Although one can compute the vitality as a three-
dimensional continuous function for the whole optical
field, the vitality only gives an unambiguous identifica-
tion of the type of event at the location of a critical

point. Critical points are readily identified as points on
a vortex line where Ωz = 0 and the vortex lines are given
by the zeros of the complex optical field.

In conclusion, we derived an expression in terms of
the transverse first and second derivatives of the opti-
cal field, with which one can distinguish between vortex
dipole creation and annihilation events. The successful
application of this quantity, which we call the vitality,
is demonstrated for the case of second-order polynomial
Gaussian beams.
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