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ABSTRACT 
Studies directed at investigating the role of nanomaterial substrates with varying properties in 

tissue engineering research are essential. In this research arena, pluripotent stem cells are 

popular for their self renewing ability and are widely applicable as they can be specifically 

differentiated into different tissue cells. Availability of new biocompatible scaffold materials is a 

critical requirement in the tissue engineering research field. Due to its promotion of cell viability 

and cell proliferation, graphene has attracted much attention in this front. Remarkably, optical 

transfection has been previously demonstrated to successfully deliver transgenes into a host of 

mammalian cells and non-invasively drive pluripotent stem cell differentiation. In this work, we 

have capitalised upon the biocompatible properties of graphene merged with the non-invasive 

nature of optical transfection to significantly enhance pluripotent stem cell transfection efficiency.  
 

Figure 2 A graphical 

representation of the 

generation of a transient hole 

on the cell plasma 

membrane by fs laser beam 

irradiation.  Through the 

transient hole, membrane 

impermeable materials are 

able to translocate into the 

cell. 

Figure 3 (A) Bar graph representation of the effect of growing CHO-K1 cells on neat glass and 

that coated with graphene, assessing the changes in ATP and LDH enzyme activity. (B) and (C) 

are images of CHO-K1 cells grown on glass and graphene coated glass respectively 36 hours 

after seeding [1]. 

EXPERIMENTAL SETUP 
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Figure 4 (A) Transfection efficiencies of CHO-K1 cells performed using 1064 nm and 532 

nm laser pulses. (B), (C) and (D) are micrographs of CHO-K1 cells expressing green 

fluorescent protein genes as captured using brightfield, brightfield – fluorescent and 

fluorescent microscopy respectively [1]. 
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Figure 5 (A) and (B) show graphs depicting an enhancement of the optical transfection of 

pluripotent stem cells when grown on graphene coated glass using both 1064 and 532 nm 

laser pulses as opposed to those grown on neat glass.  Symbols (●,*, ▬ and▲) indicate that 

data sets are significantly different from each other.  (C) and (E) show brightfield 

micrographs of ES-E14TG2a cells grown on neat glass and glass coated with graphene 

respectively.  (D) and (F) show fluorescent counterpart micrographs of (C) and (E) [1]. 

CONCLUSION  
In our study, growing and transfecting CHO-K1 and mES cells on graphene coated glass 

resulted in an improvement in optical transfection efficiencies.  Future perspectives involve 

the testing of cytokines, growth factors and integrins to investigate the stimulation of 

extracellular matrix through graphene.   

 

The effects of growing CHO-K1 cells on graphene coated glass as opposed to neat glass was 

evaluated here. By monitoring mitochondrial activity through adenosine triphosphate (ATP) 

luminescence, the cell viability was determined.  Cytosolic lactate dehydrogenase (LDH) was 

evaluated to determine the level of breakages on the cell membrane [1].  

  

 

Fs laser sources in the near infrared region have shown great transfection efficiencies of 

mouse embryonic stem (mES) cells without compromising the integrity of the cells [2-3].  

When a green laser source at a 532 nm wavelength was  employed, a decrease in 

transfection efficiency was observed.  However, after optical transfection of mES grown on 

graphene coated glass, an increase in transfection efficiencies was observed (Figure 5) [1]. 

  

  

Pluripotent stem cell optical transfection on graphene 

 

Figure 4 shows results obtained following laser transfections of CHO-K1 cells with different 

wavelengths.  The results indicate an increase in transfection efficiencies for both 1064 nm 

and  532 nm laser pulses when cells were grown and optically  transfected on graphene 

coated glass.  

 

 

Optical transfection efficiency of CHO-K1 on graphene 
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EXPERIMENTAL RESULTS 

Figure 1 Arrangement of photo-translocation set up. The NIR Gaussian beam is emitted by a 

Fianium Femtosecond laser where it travels through an electronic shutter before being expanded 

by a two lens telescope to fit into the back aperture of a 60X objective lens.  

A near infrared (NIR) beam was originally emitted at a 1064 nm wavelength with a repetition rate 

of 80 MHz and pulse duration of 320 femtoseconds (fs), measured at the focus (Figure 1). A 

potassium titanyl phosphate (KTP) crystal was employed in frequency doubling a 1064 nm fs 

laser beam for all optical transfection experiments performed at 532 nm. The beam was reflected 

by three mirrors M1, M2 and M3 before being reflected by a dichroic mirror (DM) which 

transmitted white light from the Koehler illumination system.  The white light and the laser light 

bounced off mirror M4 and was focused onto a tube lens (TL) and directed onto a sensor of a 

charge coupled device (CCD) camera. 

KTP crystal 


