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Abstract
The study of optical vortices in stochastic optical fields involves various quantities, including
the vortex density and topological charge density, that are defined in terms of local expectation
values of the distributions of optical vortices. The complexity of these quantities often poses a
formidable challenge. Here, we address this challenge with the aid of the invariance that these
quantities have with respect to rotations of the coordinate axes. This property allows one to
express the quantities in terms of singlets of the SO(2) group that represents the coordinate
rotations, resulting in expressions that are significantly simpler. We also show that the singlets
can help to identify relationships among the different quantities.

Keywords: stochastic singular optics, optical vortex density, topological charge density,
coordinate invariance, SO(2) singlet

1. Introduction

Random optical fields, i.e. speckle [1, 2], are known to contain
phase singularities [3], also called optical vortices [4]. Much
work has been carried out on the statistical properties of
optical vortices in random optical fields [5–14]. The study
of optical vortices and other singularities in optical fields is
called singular optics [15].

A speckle field, which is readily produced as the far-field
diffraction pattern of an optical beam after passing through a
ground glass plate, has statistical properties that are stationary
with respect to propagation distance, up to a possible scaling.
The vortices in a random optical field are evenly distributed,
with a density given by the second derivative of the peak
of its autocorrelation function [5]. Neighbouring vortices
tend to have opposite topological charges [10], leading to a
topological charge density that is on average zero [13, 16].

Nature also provides situations where the statistical
properties of optical fields vary with propagation distance.
One example is found in the scintillation of an optical
beam propagating through a random medium such as
turbulence [17]. In a certain sense one can view the process
whereby random phase modulations turn an optical field
into fully developed speckle as another example of such a
case [18]. Other examples include cases where the initial

optical field contains lateral correlations in its angular
spectrum (far-field distribution) [19–21]. All such optical
fields are here referred to as stochastic optical fields to
distinguish them from random optical fields, which have
stationary statistical properties. The study of the statistical
properties of optical vortices in stochastic optical fields is
referred to as stochastic singular optics.

One of the aims of stochastic singular optics is
to understand the relationships among the various local
quantities, such as the vortex density, topological charge
density, phase gradient, etc, that can be computed from
stochastic optical fields, using statistical optics methods.
However, such an investigation is hampered by the complexity
of the expressions that one often encounters when computing
these local quantities. In this paper we address this challenge
by exploiting the invariance that all such quantities have with
respect to rotations of the transverse coordinate axes, which
can be represented as an SO(2) Lie group. The coordinate
invariance allows one to define SO(2) singlets, in terms of
which the expressions for the relevant quantities become
significantly simpler. The simpler expressions allow one to
find relationships among the different quantities, which would
otherwise be lost in the complexity. The analysis in this paper
is restricted to monochromatic (temporally coherent), paraxial
optical fields.
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The paper is organized as follows. In section 2 we briefly
review the calculation procedure for the local quantities and
show that this process can be divided into two parts. The
SO(2) coordinate invariance is introduced and discussed in
section 3. In section 4 we demonstrate the benefit of using
the SO(2) singlets in these expressions by showing how
they reveal relationships among the local quantities. Some
conclusions are provided in section 5, and for the reader’s
benefit we list some of the SO(2) singlets and SO(2) doublets
in appendices A and B, respectively.

2. The general procedure to calculate the
expectation values of local quantities

One can separate the calculation of the expectation values
of local quantities into two parts. One part is to obtain
an expression for the local quantity in terms of local field
correlation functions. This part needs to be carried out only
once and the result is valid for all stochastic optical fields. The
other part is to compute the local field correlation functions
for a particular stochastic optical field, which can then be
substituted into the general expression for a local quantity to
obtain the local quantity for that stochastic optical field. Here,
we first discuss the local two-point correlation functions and
then provide the general procedure to compute the expressions
for the expectation values of local quantities in terms of these
local two-point correlation functions.

2.1. General local two-point field correlation functions

The simplest and best known example of a local quantity is
the average intensity, given by the expectation value of the
modulus squared of the optical field, I(x, y, z) = 〈gḡ〉. As
such it is a local two-point field correlation function. One can
use the non-local two-point correlation function, which is also
called the mutual coherence function [22, 23],

0full(x1, t1, x2, t2) = 〈g(x1, t1)ḡ(x2, t2)〉 (1)

to compute such local correlation functions. In (1), x =
{x, y, z}, g(·) is the complex scalar optical field, 〈·〉 denotes
the expectation value of a quantity and ḡ indicates the
complex conjugate of g. We assume that the optical field is
monochromatic. Hence, the time dependence is unimportant
and can be dropped. We also consider the correlation functions
on a plane with the same z-coordinate for both points. The
mutual coherence function then becomes

0(x1, y1, x2, y2, z) = 〈g(x1, y1, z)ḡ(x2, y2, z)〉. (2)

The intensity is obtained from this mutual coherence function
by setting x2 = x1 = x and y2 = y1 = y. Hence, I(x, y, z) =
0(x, y, x, y, z).

We are also interested in local correlation functions
between the optical field and derivatives of the optical field.
For instance,

〈gḡx〉 = 〈g(x, y, z)∂xḡ(x, y, z)〉. (3)

Since the derivative and the expectation value both represent
linear operations, they can be interchanged, ∂x〈g〉 = 〈∂xg〉.

Hence, one can use the mutual coherence function in (2)
as a generating function for all such local field correlation
functions, provided that the correlation is made non-locally
prior to the differential operation and only made local
afterwards. For example,

〈gḡx〉 = [∂x〈g(u, v, z)ḡ(x, y, z)〉]u=x,v=y

= [∂x0(u, v, x, y, z)]u=x,v=y . (4)

2.2. The general procedure to calculate expectation values of
local quantities

The expectation value of a quantity W, which is a function of
a set of random variables q = {qn} for n = 1, . . . ,N, is given
by

〈W〉 =
∫

W(q)Fq(q) dNq, (5)

where Fq(q) is the joint probability density function for the
qns.

In the present case, the qns are auxiliary variables
replacing the real and imaginary parts of the optical field and
its derivatives. For the case where we restrict ourselves to
correlation functions involving up to first derivatives of the
optical field, there are six qns, so that N = 6 in (5). The optical
field and its first derivatives can be expressed as a vector

G =
[
g(x), ∂xg(x), ∂yg(x)

]T
, (6)

giving nine local two-point field correlation functions, which
can be expressed in terms of the covariance matrix

〈GG†
〉 = M1 =

 〈gḡ〉 〈gḡx〉 〈gḡy〉

〈gxḡ〉 〈gxḡx〉 〈gxḡy〉

〈gyḡ〉 〈gyḡx〉 〈gyḡy〉

 . (7)

Since the covariance matrix is Hermitian, it only contains nine
real-valued degrees of freedom. The joint probability density
function is then given by [5, 14, 20]

Fq(q) =
exp(−Q†M−1

1 Q)

π3 det(M1)
, (8)

where the qns are combined into a complex vector

Q = [q1 + iq2, q3 + iq4, q5 + iq6]T . (9)

The expression of W(q) depends on the specific quantity
under investigation. For the vortex density, it is

WV(q) = δ(q1)δ(q2)|q3q6 − q4q5|, (10)

for the topological charge density, it is given by

WT(q) = δ(q1)δ(q2)(q3q6 − q4q5) (11)

and for the local phase gradient it reads

WF(q) =
(q3q2 − q4q1)x̂+ (q5q2 − q6q1)ŷ

q2
1 + q2

2

. (12)

The expressions that are obtained by evaluating the qn-
integrals for these quantities are provided in the discussion
below.
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3. Orthogonal SO(2) singlets

3.1. Coordinate invariance

The expressions for the expectation values of local quantities,
such as the topological charge density and the vortex
density, contain multivariate polynomials in terms of the field
correlation functions. These multivariate polynomials consist
of sums of terms, each with a product of field correlation
functions. Naturally, the different terms in such an expansion
carry the same dimensions, which means that the number of
fields and the number of derivatives are the same in all terms.

Consider, for example, the topological charge density,
which is given by

T =
i

2π〈gḡ〉2
(〈gḡ〉〈gxḡy〉 − 〈gḡ〉〈gyḡx〉

+ 〈gḡx〉〈gyḡ〉 − 〈gḡy〉〈gxḡ〉). (13)

The numerator is a multivariate polynomial, in which the dif-
ferent correlation functions represent different ‘variables’—
i.e. different degrees of freedom. Each of the four terms in
the polynomial consists of the product of two field correlation
functions (four optical fields in total) and each term contains
a total of two derivatives.

The choice of coordinate system is arbitrary. In other
words, one may decide to rotate the x- and y-axes of the
coordinate system by an arbitrary angle. The expression of
the expectation value of the local quantity should not be
affected by such a coordinate transformation. This implies
that the multivariate polynomials in the expressions of local
quantities are always invariant with respect to such coordinate
transformations.

Rotations in the (x, y)-plane can be represented by
the elements of the SO(2) Lie group1 and the invariant
multivariate polynomials are singlets of this SO(2) Lie group.

3.2. Transformations of field correlation functions

Under the SO(2) Lie group of rotations in the (x, y)-plane, the
covariance matrix in (7) transforms as follows:

M1 → OM1O−1, (14)

where O−1
= OT and

O =

1 0 0

0 cos(α) − sin(α)

0 sin(α) cos(α)

 (15)

is a reducible element of SO(2), with α being the rotation
angle.

Since (15) is reducible, the transformations that it
imposes on the individual field correlation functions can be
divided into different groups that transform differently. One

1 Since the SO(2) Lie group is isomorphic to the U(1) Lie group, one can
also use the latter. However, for our purposes here it is more convenient to
consider the transformation in terms of two-dimensional real-valued matrices
instead of one-dimensional complex-valued factors.

can extract the transformation rules for the individual field
correlation functions in these different groups from (7), (14)
and (15). The first group has just one element, the intensity,
which does not transform at all 〈gḡ〉 → 〈gḡ〉. The next group
transforms as a doublet under SO(2),

〈gxḡ〉 → 〈gxḡ〉 cos(α)− 〈gyḡ〉 sin(α)

〈gyḡ〉 → 〈gxḡ〉 sin(α)+ 〈gyḡ〉 cos(α).
(16)

The same is true for the group consisting of 〈gḡx〉 and 〈gḡy〉.
The last group, consisting of 〈gxḡx〉, 〈gyḡy〉, 〈gyḡx〉 and 〈gsḡy〉,
and other groups containing higher derivatives, generally
transform as tensor products of doublets.

3.3. Scalar singlets

To be invariant under the coordinate rotation, the multivariate
polynomials must consist of combinations of field correlation
functions, such that their transformations cancel out any
additional terms that are formed individually. Consider, for
example, the combination 〈gḡx〉〈gyḡ〉 − 〈gḡy〉〈gxḡ〉, which
appears in the numerator of the topological charge density in
(13). When one applies the transformations in (16), etc to this
combination, it remains unchanged. The same is true when
one applies the appropriate transformations to the other two
terms, 〈gxḡy〉 − 〈gyḡx〉. Since 〈gḡ〉 does not transform, the
entire expression for the topological charge density in (13) is
invariant with respect to a rotation of the coordinate axes, as
expected.

This invariance is a useful property that can help to
simplify the expressions for the expectation values of local
quantities. In terms of the field correlation functions, these
expressions can be rather complicated, and when differential
operations are performed on them the results become even
more complicated. It is often challenging to make sense of
such a result. With the aid of SO(2) singlets, one can simplify
the expressions and thus be able to recognize the expressions
of particular local quantities.

For this purpose, it is beneficial to identify all the SO(2)
singlets that can be formed as combinations of the field
correlation functions up to an appropriate level. The SO(2)
singlets that consist of the field correlation functions in (7)
are denoted as τns. A list of SO(2) singlets is provided in
appendix A, with the simplest one being the intensity, τ0 =

〈gḡ〉. The topological charge density in (13) can now be
expressed as

T =
τ0τ2 − τ6

2πτ 2
0

, (17)

giving a much simpler expression.

3.4. Vector singlets

The singlets in the topological charge density are all scalars.
One can also have singlets that are vectors on the (x, y)-plane.
Such vectorial quantities include the local phase gradient, as

3
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well as the gradient of any scalar quantity. They transform as
SO(2) singlets, because the unit vectors transform as follows:

x̂→ x̂ cos(α)− ŷ sin(α)

ŷ→ x̂ sin(α)+ ŷ cos(α).
(18)

To define the vectorial quantities in terms of SO(2) singlets,
one also needs to identify all the SO(2) singlets of such
vectorial spaces—i.e. spaces where the terms contain a factor
of x̂ or ŷ.

The local phase gradient can be expressed in terms of
SO(2) singlets as

F =
v2

2τ0
, (19)

where

v2 = −i[(〈gxḡ〉 − 〈gḡx〉)x̂+ (〈gyḡ〉 − 〈gḡy〉)ŷ] (20)

is a vectorial SO(2) singlet. Another vectorial singlet is

v1 = (〈gxḡ〉 + 〈gḡx〉)x̂+ (〈gyḡ〉 + 〈gḡy〉)ŷ, (21)

which we will encounter again later.

3.5. Inner product spaces

The reason why the numerator of the topological charge
density in (17) is expressed in terms of three invariant
combinations instead of just one is because the terms of
one of these combinations cannot transform into the terms
of the other combinations. Consider, for instance, τ2. Its
terms can only transform into 〈gxḡy〉, 〈gyḡx〉, 〈gxḡx〉 or 〈gyḡy〉.
These four terms define a four-dimensional space of possible
combinations. In the case of τ6 the different possible terms
are 〈gxḡ〉〈gḡy〉, 〈gyḡ〉〈gḡx〉, 〈gxḡ〉〈gḡx〉 and 〈gyḡ〉〈gḡy〉. This
is a different four-dimensional space. Only a proper subset of
each of these four-dimensional spaces contains combinations
that are SO(2) singlets. From the group theory perspective,
these four-dimensional spaces consist of disjoint subspaces
that transform under different irreducible representations of
the SO(2) Lie group, with the singlet being the simplest
irreducible representation. We are only interested in the part
of the space that transforms as singlets. However, knowledge
of the doublets is useful in computing all the singlets.

In general, the space defined by the terms of a particular
form could have any number of dimensions and the same
is true for its invariant subspace, which contains all the
singlets of that space. If the invariant subspace has more
than one dimension, which is usually the case, then there
are various different ways to define singlets for that invariant
subspace—all linear combinations of singlets are again
singlets. Therefore, the definitions of these singlets are not
unique. To avoid this ambiguity we define an inner product
for these invariant subspaces and then define an orthogonal
basis for it. The orthogonal basis elements are referred to as
orthogonal singlets. The larger spaces can have some basis
elements that are constructed out of products of the orthogonal
singlets of smaller spaces. Such elements are said to be
reducible—not to be confused with the notion of a reducible

representation in group theory. The irreducible singlets are
listed in appendix A. With the exception of τ7, they are all
orthogonal singlets.

3.6. Complex conjugation

Although the field correlation functions are in general
complex-valued, the expectation values of local quantities
are always real-valued. While one can form complex-valued
combinations that are SO(2) singlets, all the singlets in
appendix A are defined to be real-valued. That is the reason
for the ‘i’s in the definitions in appendix A. Without the ‘i’s,
the singlets in appendix A are eigenfunctions of complex
conjugation with eigenvalues ±1. In other words, they are
either purely real or purely imaginary.

3.7. Mirror transformation

Another property of the orthogonal singlets is that they
are eigenfunctions of the mirror transformation on the
(x, y)-plane. One can define such a mirror transformation
by interchanging the x- and y-derivatives, which implies a
mirror transformation with respect to the line on which x =
y. Due to the invariance with respect to the rotation of the
coordinate axes, this mirror transformation is equivalent to all
mirror transformations with respect to any line through the
origin of the (x, y)-plane. The eigenvalues are either 1 or −1,
which respectively indicate a symmetric or an anti-symmetric
function.

The anti-symmetric orthogonal singlets are closely
related to the topological charge. For instance, both τ2 and
τ6 are anti-symmetric, while the intensity τ0 is symmetric.
This implies that the topological charge density given in (17)
is anti-symmetric as a whole.

3.8. Sets of field correlation functions

The correlation functions in (7) can be divided into three sets,
depending on their number of derivatives. These sets are as
follows.

• Set 0. Contains one element 〈gḡ〉.
• Set 1. Contains four elements of the form 〈gḡ�〉 and 〈g�ḡ〉,

{〈gxḡ〉, 〈gyḡ〉, 〈gḡx〉, 〈gḡy〉}.

• Set 2. Contains four elements of the form 〈g�ḡ�〉,

{〈gxḡx〉, 〈gyḡy〉, 〈gxḡy〉, 〈gyḡx〉}.

Set 0 is a trivial set with only one element, the intensity, which
is already an SO(2) singlet. A general invariant polynomial
can be expressed as a polynomial in 〈gḡ〉, with coefficients
that are themselves SO(2) singlets. As a result, we do not need
to consider multivariate polynomials that contain 〈gḡ〉.

The elements of each of these sets can be transformed
into each other via coordinate rotation, mirror transformation
or complex conjugation, but never into elements of other sets.
These sets are used to distinguish the different spaces for the
invariant polynomials.
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3.9. Computing orthogonal singlets from doublets

We are interested in the singlets that can be formed as
linear combinations of terms consisting of specific products
of the elements from the different sets in section 3.8. The
SO(2) singlets are formed by composing them out of SO(2)
doublets and the doublets are formed by building them up
from the simplest SO(2) doublets, which are provided in
appendix B. All irreducible representations of the SO(2)
coordinate rotations are doublets, with the singlets being the
elements of doublets of spin zero. The spin is defined below.
The simplest doublets are those with components consisting
of linear combinations of the elements of one of the sets in
section 3.8.

The doublets transform as

D→ D′ = On(α)D, (22)

where

On(α) =

[
cos(nα) − sin(nα)

sin(nα) cos(nα)

]
(23)

is a 2× 2 rotation matrix with α being the coordinate rotation
angle and n being an integer, which we refer to as the spin
of the doublet. The doublets, D = [a, b]T and D′ = [a′, b′]T,
have the same spin. A doublet’s two components a and b have
the same eigenvalue under complex conjugation—i.e. they
are either both real or both imaginary. (One can also define
these doublets to be complex-valued, in which case some of
the doublets would be complex conjugates of each other.)
Under the mirror transformation a is always symmetric and
b is always anti-symmetric.

Doublets can be combined to form new doublets, using
the 2× 2 identity matrix

σ0 =

[
1 0

0 1

]
(24)

and the Pauli spin matrices

σ1 =

[
0 1

1 0

]
σ2 =

[
0 −i

i 0

]

σ3 =

[
1 0

0 −1

]
. (25)

Given the two doublets D1 and D2, with spins m and n,
respectively, one can form the following four quantities:

δ0 = DT
1σ0 D2 = a1a2 + b1b2 (26)

δ1 = DT
1σ1 D2 = a1b2 + b1a2 (27)

δ2 = iDT
1σ2 D2 = a1b2 − b1a2 (28)

δ3 = DT
1σ3 D2 = a1a2 − b1b2, (29)

which are combined into two new doublets D3 = [δ0, δ2]
T and

D4 = [δ3, δ1], with spins (n − m) and (n + m), respectively.
If m = n, the elements of D3 are singlets and, if D1 = D2, the
only singlet in D3 is δ0, with δ2 = 0.

4. Relationships among local quantities

To demonstrate the benefit of using orthogonal singlets, we
discuss here a number of relationships that exist among the
local quantities. We also discuss the derivatives of the field
correlation functions, which allow one to find differential
relationships among the quantities.

4.1. Vortex density and related quantities

The expression of the vortex density in terms of orthogonal
singlets is given by

V(x) =
2τ0(τ0τ7 − ε1)+ (τ0τ2 − τ6)

2

2πτ 2
0

√
4τ0(τ0τ7 − ε1)+ (τ0τ2 − τ6)2

, (30)

where

ε1 =
1
2 (τ1τ5 − τ2τ6 − τ9)

= 〈gxḡx〉〈gyḡ〉〈gḡy〉 + 〈gyḡy〉〈gxḡ〉〈gḡx〉

− 〈gxḡy〉〈gyḡ〉〈gḡx〉 − 〈gyḡx〉〈gxḡ〉〈gḡy〉, (31)

τ0 = 〈gḡ〉 and the other τns are provided in appendix A.
The combinations of SO(2) singlets that appear in (30) also
appear in other local quantities. For instance, comparing (17)
and (30), one notices that the same combination (τ0τ2 − τ6)

appears in both. Moreover, the determinant of the covariance
matrix

det(M1) = τ0τ7 − ε1 (32)

appears in the expression for the vortex density. The vortex
density can therefore be simplified to

V =
Q+ 2T2

2
√

Q+ T2
=

1
2

√
Q+ T2 +

T2

2
√

Q+ T2
, (33)

where T is the topological charge density (17) and for
convenience we combined the determinant of the covariance
matrix and the intensity τ0 into

Q =
det(M1)

π2τ 3
0

. (34)

Conversely, the determinant of the covariance matrix can
be given purely in terms of the intensity τ0, the topological
charge density T and the vortex density V ,

det(M1) = 2π2τ 3
0

[
R+

√
R2 + T2R

]
, (35)

where R = V2
−T2. The determinant of the covariance matrix

and the vortex density are positive definite quantities. The
topological charge density can be positive or negative, but
its magnitude cannot exceed the vortex density, V ≥ |T|. For
T = 0, the determinant simplifies to det(M1) = 4π2τ 3

0 V2.
The positive and negative vortex distributions np and nn

are defined in terms of the sums and differences of the vortex
density V and the topological charge density T . Using (33),
one finds the following expression for these quantities:

np

nn

}
=

1
2
(V ± T) =

(
√

Q+ T2 ± T)2

4
√

Q+ T2
. (36)

5
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4.2. Transverse derivatives of field correlation functions

Some of the relationships among the expectation values of
local quantities involve transverse derivatives, i.e. derivatives
with respect to x and y. Transverse derivatives also appear in
the dynamical equations [19–21].

To see the effect of such transverse derivatives on local
field correlation functions, we apply them to the example in
(4),

∂y〈gḡx〉 = ∂y
{
[∂x〈g(u, v, z)ḡ(x, y, z)〉]u=x,v=y

}
= [∂v∂x0(u, v, x, y, z)

+ ∂y∂x0(u, v, x, y, z)]u=x,v=y

= 〈gyḡx〉 + 〈gḡxy〉. (37)

The derivatives that we refer to here need to be distinguished
from those that are applied to the mutual coherence function
to generate the original set of field correlation functions. In
contrast, these derivatives are applied to the field correlation
functions after the coordinates of the two points have been
set equal to each other. Therefore, the new derivatives
operate on both sets of coordinates in the mutual coherence
function. As a result the derivative of a field correlation
function always gives a sum of two other field correlation
functions, each with one more derivative than the original field
correlation function. The second field correlation function
in (37) contains the second derivative of the optical field.
Hence, the transverse derivatives of field correlation functions
generate new field correlation functions beyond those in the
covariance matrix M1 in (7).

The general rule for the transverse derivatives of field
correlation functions is

∂r〈gpḡq〉 = 〈grpḡq〉 + 〈gpḡrq〉, (38)

where r is either x or y and p and q can be any combination of
xs and ys.

If the derivatives are applied as differential operators
∇ ≡ x̂∂x + ŷ∂y, which are defined on the two-dimensional
transverse plane, the result is again a singlet of the SO(2) Lie
group of coordinate rotations. As examples, the gradient of
the intensity becomes

∇τ0 = ∂x〈gḡ〉x̂+ ∂y〈gḡ〉ŷ

= (〈gxḡ〉 + 〈gḡx〉)x̂+ (〈gyḡ〉 + 〈gḡy〉)ŷ

= v1, (39)

where we used the definition of v1 in (21). An example of a
divergence is

∇ · v2 = −i[∂x(〈gxḡ〉 − 〈gḡx〉)+ ∂y(〈gyḡ〉 − 〈gḡy〉)]

= −i(〈gxxḡ〉 − 〈gḡxx〉 + 〈gyyḡ〉 − 〈gḡyy〉), (40)

which is also a singlet. Finally, we consider the curl

∇ × v2 = −i[∂x(〈gyḡ〉 − 〈gḡy〉)− ∂y(〈gxḡ〉 − 〈gḡx〉)]ẑ

= i2(〈gxḡy〉 − 〈gyḡx〉)ẑ = 2τ2ẑ. (41)

We see that in these cases the differential operators turn
orthogonal singlets into other orthogonal singlets. In general,
the result of such a differential operation may be a linear
combination of orthogonal singlets.

4.3. The curl of the local phase gradient

The fact that the phase function of an optical field can contain
a phase singularity is an indication that phase functions
are special kinds of functions. While functions usually have
unbounded, simply connected ranges, the range of a phase
function is compact and not simply connected. In fact, its
range has the topology of a circle. If one considers the
mapping of a closed contour in the domain of the phase
function to this circle for the phase values, one can find
situations where this mapping wraps around the circle. The
continuity of the function now implies that if the closed
contour shrinks continuously to a point in the domain, the
mapping of the contour onto the circle should also shrink to
a point, but because it is wrapped around the circle this is not
possible. Hence, the initial contour in the domain must enclose
a singularity. If the contour passes over this singular point in
the domain, the mapping jumps from one side of the circle to
the other.

The presence of such phase singularities also implies that
derivatives do not commute. For functions with unbounded,
simply connected ranges we have that ∇ ×∇f (x) = 0, but for
phase functions [24, 25]

∇ × ∇θ(x) = 2π
∑

n
νnδ(x− xn)ẑ, (42)

where the xns represent the locations of the phase singularities
and the νns are the topological charges (signed integers)
associated with these respective phase singularities.

For a stochastic optical field, the expression in (42)
translates into a relationship between the local phase gradient
and the topological charge density,

∇ × F(x) = 2π T(x)ẑ. (43)

One can verify (43) by using the expressions for T and F
in terms of orthogonal singlets, (17) and (19), respectively.
Applying the curl to (19), we obtain

∇ ×

(
v2

2τ0

)
=
∇ × v2

2τ0
−
∇τ0 × v2

2τ 2
0

=
(τ0τ2 − τ6)ẑ

τ 2
0

= 2π T(x)ẑ, (44)

where we used (39) and (41), together with the identity

v1 × v2 = 2τ6ẑ, (45)

which can be confirmed from (20) and (21) and the
expressions for τ6 in appendix A. Hence, using orthogonal
singlets, we confirmed that the relationship in (43) is valid
for stochastic optical fields.

4.4. Longitudinal derivatives of field correlation functions

To describe the evolution of local quantities in stochastic
optical fields as a function of the propagation distance one
needs to consider the effect of longitudinal derivatives on
the field correlation functions with respect to the propagation
distance. Under the paraxial approximation the longitudinal
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derivative of an optical field is related to the second order
transverse derivatives via the paraxial wave equation

∂zg(x, y, z) = −i
2k

[
∂2

x g(x, y, z)+ ∂2
y g(x, y, z)

]
∂zḡ(x, y, z) = i

2k

[
∂2

x ḡ(x, y, z)+ ∂2
y ḡ(x, y, z)

]
,

(46)

where k = 2π/λ is the wavenumber. Applying the longitu-
dinal derivative to the example in (4) and using the paraxial
wave equation (46), we obtain

∂z〈gḡx〉 =
[
∂z∂x〈g(u, v, z)ḡ(x, y, z)〉

]
u=x,v=y

=
〈[
∂zg(x, y, z)

] [
∂xḡ(x, y, z)

]〉
+
〈
g(x, y, z)

[
∂x∂zḡ(x, y, z)

]〉
=

i
2k (〈gḡxxx〉 + 〈gḡxyy〉

− 〈gxxḡx〉 − 〈gyyḡx〉). (47)

The result contains four new field correlation functions, each
with two more derivatives than the original field correlation
function.

The general rule for longitudinal derivatives of field
correlation functions is

∂z〈gpḡq〉 =
−i
2k (〈gxxpḡq〉 − 〈gpḡxxq〉

+ 〈gpyyḡq〉 − 〈gpḡqyy〉), (48)

where p and q can be any combination of xs and ys. As a rule
we always put the xs before the ys in the subscripts denoting
derivatives.

4.5. Intensity transport

Applying the longitudinal derivative to the intensity τ0 =

〈gḡ〉, one obtains

∂zτ0 =
−i
2k

(
〈gxxḡ〉 − 〈gḡxx〉 + 〈gyyḡ〉 − 〈gḡyy〉

)
=
∇ · v2

2k
, (49)

where we used (40) to obtain the final expression. Since v2

appears in the local phase gradient (19), let us consider the
divergence of the local phase gradient. We obtain

∇ · F = ∇ ·

(
v2

2τ0

)
=
∇ · v2

2τ0
−
∇τ0 · v2

2τ 2
0

=
k∂zτ0

τ0
−
∇τ0 · F
τ0

, (50)

where we substituted in (49). Hence,

k∂zτ0 = τ0∇ · F+ (∇τ0) · F = ∇ · (τ0F). (51)

The expression in (51) is a dynamical equation that relates
the intensity τ0 and the local phase gradient F. It is a known
result [26] for deterministic optical fields, often referred to
as the intensity transport equation. The use of orthogonal
singlets made it possible to show that it also applies for
stochastic optical fields.

5. Conclusions

Although the local expectation values of quantities that one
can compute from stochastic optical fields often produce
formidably complex expressions, one can mitigate this
complexity by exploiting the invariance that these quantities
have with respect to coordinate rotations. These rotations
form an SO(2) group. All the quantities of interest can
therefore be expressed in terms of singlets of this SO(2)
group. Here we develop a formalism to express the relevant
quantities in terms of these singlets. This formalism includes
the definition the orthogonal singlets and the method to obtain
the expressions for these orthogonal singlets. We also provide
a list of the most common singlets. It is shown that the use
of these orthogonal singlets allows one to find relationships
among the different quantities. These relationships include
pure algebraic relationships, differential relationships and
dynamical equations. Examples are provided for each of them.

Here, we only consider field correlation functions with
up to one derivative of the optical fields. However, orthogonal
singlets can also be defined for correlation functions that
contain higher derivatives. Such higher derivative correlation
functions are required when one considers derivatives of
local quantities, as required in dynamical equations and also
for local quantities that contain higher derivative correlation
functions, such as the distributions of the Poincaré–Hopf
indices [27] and the probability density for annihilation and
creation events. The calculations of these quantities are in
general extremely complex. An indication of this complexity
is the fact that, while the determinant of the covariance matrix
with up to first derivatives of the optical field has six terms,
the determinant of the covariance matrix with up the second
derivatives of the optical field has 720 terms.

Appendix A. List of orthogonal singlets

Here we list the orthogonal bases for the invariant subspaces
that can be formed with up to four transverse derivatives per
term, but with at most one derivative per optical field. These
orthogonal bases can consist of reducible and irreducible
singlets. Reducible singlets are those that can be written
in terms of products of singlets from simpler spaces. The
expressions of the irreducible singlets are provided. While
the simplest singlets are expressed directly in terms of
the correlation functions, the more complicated singlets are
expressed in terms of the ξns that are defined in appendix B.

The orthogonal singlets are grouped according to the
spaces that they belong to. Each space is defined in terms of
the number of times that an element of a particular set from
section 3.8 appears in the terms for that space. The spaces are
denoted by two integers. The first (second) integer denotes the
number of factors from set 1 (set 2). The orthogonal singlets,
which we denote by τ s, are not normalized and are thus not
orthonormal.

• Basis 00: {τ0}

τ0 = 〈gḡ〉.

7
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• Basis 01: {τ1, τ2}

τ1 = 〈gxḡx〉 + 〈gyḡy〉

τ2 = i(〈gxḡy〉 − 〈gyḡx〉).

• Basis 20: {τ3, τ4, τ5, τ6}

τ3 = 〈gxḡ〉2 + 〈gyḡ〉2 + 〈gḡx〉
2
+ 〈gḡy〉

2

τ4 = i
(
〈gxḡ〉2 + 〈gyḡ〉2 − 〈gḡx〉

2
− 〈gḡy〉

2
)

τ5 = 〈gxḡ〉〈gḡx〉 + 〈gyḡ〉〈gḡy〉

τ6 = i
(
〈gxḡ〉〈gḡy〉 − 〈gyḡ〉〈gḡx〉

)
.

• Basis 02:2 {τ 2
1 , τ1τ2, τ

2
2 , τ

2
1 − τ

2
2 − 3τ7}

τ7 = 〈gxḡx〉〈gyḡy〉 − 〈gxḡy〉〈gyḡx〉.

• Basis 21: {τ3τ1, τ3τ2, τ4τ1, τ4τ2, τ5τ1, τ5τ2, τ6τ1, τ6τ2,

τ8, τ9, τ10, τ11, τ12, τ13}

τ8 =
1
4 (ξ

2
1 − ξ

2
2 + ξ

2
3 − ξ

2
4 )ξ5 +

1
2 (ξ1ξ2 + ξ3ξ4)ξ6

τ9 =
1
8 (ξ

2
1 − ξ

2
2 − ξ

2
3 + ξ

2
4 )ξ5 +

1
4 (ξ1ξ2 − ξ3ξ4)ξ6

τ10 =
1
4 (ξ

2
1 − ξ

2
2 + ξ

2
3 − ξ

2
4 )ξ6 −

1
2 (ξ1ξ2 + ξ3ξ4)ξ5

τ11 =
1
8 (ξ

2
1 − ξ

2
2 − ξ

2
3 + ξ

2
4 )ξ6 −

1
4 (ξ1ξ2 − ξ3ξ4)ξ5

τ12 =
i
2 (ξ1ξ3 − ξ4ξ2)ξ5 +

i
2 (ξ4ξ1 + ξ2ξ3)ξ6

τ13 =
i
2 (ξ1ξ3 − ξ4ξ2)ξ6 −

i
2 (ξ4ξ1 + ξ2ξ3)ξ5.

• Basis 40:3 {τ 2
3 + τ 2

4 , τ
2
3 − τ 2

4 , τ3τ4, τ3τ5, τ4τ5, τ3τ6,

τ4τ6, τ
2
5 + τ

2
6 , τ5τ6}.

Appendix B. List of the simplest doublets

The simplest doublets for each of the two sets in section 3.8
are obtained by combining the elements of the set into
quantities that are eigenfunctions of complex conjugation and
mirror transformation, and then pairing them off according
to how they transform under the SO(2) coordinate rotations.
Here we list the simplest doublets (denoted by 1�) for each
of the sets. The elements of the doublets are denoted by ξns,
which are used in some of the expressions in appendix A.

• Set 1: spin-1: 11 = [ξ1, ξ2]
T and 12 = [ξ3, ξ4]

T ,

ξ1 = 〈gxḡ〉 + 〈gḡx〉 + 〈gyḡ〉 + 〈gḡy〉

ξ2 = 〈gxḡ〉 + 〈gḡx〉 − 〈gyḡ〉 − 〈gḡy〉

ξ3 = 〈gxḡ〉 − 〈gḡx〉 + 〈gyḡ〉 − 〈gḡy〉

ξ4 = 〈gxḡ〉 − 〈gḡx〉 − 〈gyḡ〉 + 〈gḡy〉.

• Set 2: spin-2: 13 = [ξ5, ξ6]
T ,

ξ5 = 〈gxḡy〉 + 〈gyḡx〉

ξ6 = 〈gxḡx〉 − 〈gyḡy〉.
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