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ABSTRACT: 

 
Recent developments in agent-based transport simulation provide promising results. 
However, the agent-based approach is frequently criticized for its apparent dependence 
on vast amounts of, mostly unattainable, data. In this paper we show that the required 
data is mostly available, even for a country like South Africa. This paper addresses 
demand generation, the first step in a two-part series, and focuses on three components. 
Firstly, we demonstrate how a synthetic population of private individual agents is 
generated using existing and available data. Using iterative proportional fitting (IPF), the 
population is generated for the Nelson Mandela Bay Metropolitan, and includes 24-hour 
activity chains for both primary activities such as home, work and education, and also 
secondary activities: shopping, leisure and other. Secondly, a commercial vehicle 
population is generated, a novel contribution in an agent-based setting. The commercial 
vehicles include both intra- and inter-provincial vehicles with different activity chain 
characteristics. Lastly, the paper demonstrates how an accurate road network is extracted 
for the Multi Agent Transport Simulation (MATSim) using open data.  
 
1 INTRODUCTION 
 
Two contributions, one by Fourie (2010) and the other by Gao et al. (2010), showed the 
benefit of using disaggregate agent-based transport simulations over the state of practice 
equilibrium assignment models. Agent-based models are indeed slower, but the overall 
duration is still more than acceptable in large decision-making scenarios. Agent-based 
models are, for one, capable of providing more accurate estimations of the overall travel 
time distributions. One reason is that the Multi-Agent Transport Simulation (MATSim) 
model is able to realistically model spillbacks, which is a major contributing factor in the 
travel times of individuals. Also, the disaggregate approach allows for much richer result 
sets that can assist in the decision-making process that are not possible with current 
models. 
 
In this paper we present the typical process followed to generate the necessary inputs 
required to run an agent-based transport simulation. Instead of using fictitious data, we opt 
for a real case study, and will use the Nelson Mandela Bay Metropolitan (NMBM). Our 
choice for study area is based on the scale of the scenario: the metro is home to more 
than a million inhabitants, making it a fairly large city. Also, the NMBM is rather isolated 
with not too much through-traffic that may require additional modelling tricks. 
 
The contribution of this paper is methodological. We describe in detail what is necessary 
and how modellers should proceed to prepare the input data for agent-based models. The 
objective is to make the new generation of modelling tools more accessible to planners 



and modellers, and debunk some of the myths, most notably that developing countries do 
not have the necessary data to establish such state of the art transport models. Indeed, 
these models remain sophisticated and require experts to maintain and execute them. But, 
given the significant infrastructure decisions that are influenced, is more than justified. 
 
The paper is structured as follows. In Section 2 we generate a synthetic population of 
agents, and we distinguish between private individuals and commercial vehicles, 
describing the two distinct processes followed. Section 3 describes the use of free and 
open network data in the form of OpenStreetMap, and how the data is converted into a 
MATSim network, where after we conclude in Section 4. 
 
2 POPULATION SYNTHESIS 
 
A transport simulation model is used to support decisions and what-if analyses regarding 
scenarios that are considered in real life. It is therefore plausible and commonly expected 
that the model of choice should accurately represent the reality that it is supposed to 
influence.  
 
In the case of an agent-based simulation, each agent represents an actor participating in 
transport in the real world, such as a person who wants to travel from home to work. In this 
paper we distinguish between two sub-populations, namely private individuals and 
commercial vehicles, because the two are generated quite differently, and their travel 
demands are distinct. In the remainder of this section we will address the two sub-
populations separately.  
 
The result for both are the same: a set of agents, each with an activity chain made up of 
activities at (most likely) different locations, with each activity pair linked with a travel leg. 
The activity-leg-activity-leg-…  sequence for each agent is referred to as the agent’s plan. 
 
2.1 Private Individuals 
 
When generating a synthetic population of agents that represent the private individuals, 
there are two steps. Firstly, creating the individuals and the households they represent to 
resemble the demographics in reality. Secondly, assigning travel demand for each 
individual so that each behaves in a realistic manner in the model. For example, in reality a 
child of age 7 is most likely (legally required) to go to school. An agent that is of age 7 is 
therefore also expected to have an educational activity in its activity chain. 
 
2.1.1 Generating the population  
The 2001 census data in South Africa was captured at the resolution of an enumeration 
area, a small area of manageable size in terms of both population and land area that a 
single official was able to handle during the census count. When census data is reported, 
aggregating the individual records to sub place level ensured anonymity. Sub places, in 
turn, can be aggregated to main places, which in turn can be aggregated to municipalities, 
district or metropolitan councils, provinces, and ultimately national level. 
 
The sub place tables provided in census data give us, for example, the number of males 
and females in the area, or the number of Blacks, Coloureds, Asian/Indian and Whites. 
The tables also tell us how many households there are with one, two, three, etc. 
individuals in the household, and how many people speak Afrikaans, English, Sepedi, etc. 
as first language. The tables, however, report independently on each characteristic. It 



therefore does not tell us, for example, how many Setswana-speaking black males 
between 15 and 18 years of age there are in a household or sub place. 
 
Census did provide the detailed records for an anonymous 10% sample of unit records. 
The sample is representative of the geographic distribution, as well as the different 
demographic characteristics. For each record in the 10% sample, we know all of the 
census attributes: age, gender, race, language, household size, etc. In this paper, we 
made use of the household size, age, gender, race, relation/role in the household, 
employment and level of school an individual is currently attending. 
 
To generate an entire 100% synthetic population for a sub place we use a two-stage 
approach. The first stage uses Iterative Proportional Fitting (IPF), an iterative algorithm 
that adapts the weights (also referred to as expansion factors) associated with a reference 
sample of observed individuals, i.e. the 10% sample, so that an overall target population 
can be created that adheres to some control totals, i.e the sub place table totals. That is, 
how many times should each individual record be duplicated so that, when aggregated, 
the totals for each attribute category is within a given error margin of the observed 
category totals. The observed totals were inflated to account for the population growth 
between the 2001 census and the base year for which the population is generated. It is 
assumed in this paper that growth was even across all sub places, although individual 
growth factors could have been used if reliable disaggregate growth figures were 
available. 
 
In this paper we use an extension to the IPF called Iterative Proportional Updating (IPU) 
that addresses two IPF limitations: the zero-cell problem and the fact that IPF cannot 
control the population at both household and individual levels (Mueller & Axhausen, 2011). 
We used as control totals the gender and race at the individual level, and the household 
income at the household level. 
 
The second stage is generating the population from the weights fitted in the first stage. We 
employ Monte-Carlo simulation to sample (with replacement) from the weights: the higher 
the weight, the higher the probability of that individual being chosen. If we want to 

generate a synthetic population of n individuals for an area, the random sampling is 

repeated n times. We will use small capital letters to indicate MATSim-specific data 

structures. 
 
We start by sampling an individual, the head of the household, and create a MATSim 

PERSON. We note its household size attribute, h. A MATSim HOUSEHOLD is created, and 

the head of the household is added. Then, h-1 more individuals are sampled. For each, a 

PERSON is created with all the attributes associated with it, and the individuals are also 
added to the HOUSEHOLD. We keep on sampling heads of households, and their 

subsequent household members, until we have a population that is just larger than n. The 

difference between the required population size, n, and the actual synthetic population can 

therefore be as much as one minus the largest household size, which is capped to be 10. 
This difference is still negligible in the overall population size. 
 
The process of fitting and generation is repeated for each area, and we chose the sub 
place as appropriate demarcation. In the case of the Nelson Mandela Bay Metropole 
(NMBM), we created the population for 223 sub places, each with its unique fit. The overall 
population for the NMBM was XXXX households containing a total of YYYY individuals. 



For each household we know the annual income and the members of the household. For 
each individual we know the age, gender, race and employment status. 
 
The home location for each household was a randomly sampled point within the sub place 
in which the household was created. 
 
2.1.2 Travel demand 
During 2004 a detailed travel survey was conducted for the NMBM that included a travel 
diary. A sample of 1% of the households was surveyed for demographic data, as well as 
transport-specific behavior and choices. The travel diary portion of the survey asked the 
respondents to relay the detailed travel information for the previous day. The result was an 
activity chain of pre-categorized activities for which the location and start- and end times 
were known. The location’s level of accuracy was the transport analysis zone (TAZ), a 
demarcation different from the census sub place, and in general having finer granularity. A 
total of 589 TAZs were used in the NMBM. The travel mode used between activities is also 
indicated in the diary. 
 
Since entire households were surveyed, we had the demographics of each household, as 
well as the travel patterns of each individual in the household. The first step was to parse 
the travel survey data into a population in the MATSim format. We created a HOUSEHOLD in 
MATSim and assigned the household income to it. We next created, for each individual in 
the household, a PERSON, and created a PLAN for the person that represented that 
individual’s observed travel behaviour. A valid PLAN is required to start and end with an 
ACTIVITY, and the PLAN elements must be alternating between an ACTIVITY and LEG. 
 
The survey distinguished between 19 different activity types, which we’ve aggregated to 8, 
namely home (h), work (w), primary and secondary education (e1), tertiary education (e2), 
dropping or collecting children from school (e3), shopping (s), leisure (l) and other (o). The 
inclusion of e3 was justified since many children in South Africa are dropped at school 
using private vehicles, which have a plausibly significant impact on traffic patterns. 
 
A total of 7,129 chains were observed, of which there were 518 unique chains. The five 
most common chains are indicated in Table 1. 
 

Table 1 – Five most common activity chain structures observed in the Nelson 
Mandela Bay Metropolitan travel survey. 

 

Activity chain Number of observations 

h-e1-h 1926 
h-w-h 1177 

h-o-w-o-h 380 
h-o-h 301 
h-l-h 243 

 
For each ACTIVITY in the PLAN we knew the start and end times, and for its location we 
randomly sampled a point inside the TAZ. For each LEG between activities we knew the 
observed mode. The 14 mode options in the travel survey were aggregated to 8, namely 
walking, cycling, driving (car driver), driving as passenger, minibus taxi, bus, train or 
unknown. 
 
Once the survey population was parsed, the next step was to assign an appropriate 
survey PLAN to each PERSON created during the IPU’s generation stage. For each PERSON 



we identified the 20 closest survey PERSONs that were similar, and with “similar” we mean 
being in the same age class, income class and household size class. Out of the equally 
probable 20 PERSONs, one was randomly sampled. The sampled survey person’s PLAN 
was then assigned to the PERSON in the synthetic population. 
 
The location for each ACTIVITY in the PLAN was then assigned to a physical FACILITY, and 
here we used three sources. Firstly, we used the Spot5 satellite imagery for which we had 
a data set of physical structures inferred through image processing. Secondly, we 
captured all of the shopping centres in OpenStreetMap that are members of the South 
African Council for Shopping Centres (SACSC). OpenStreetMap is a crowd-sourced map 
created by contributors under an open data license. The map data is free for download 
and use and provide rich attributes in XML format. Thirdly, we parsed a variety of 
amenities from OpenStreetMap including educational, shopping and leisure facilities. The 
facilities are distinguished based on the feature types specified1.  
 
For home (h) activities, the Spot5 building closest to the household’s sampled home 
location was assigned as FACILITY. For work (w) activities, the process is slightly more 
involved. First we check if the activity’s sampled location is within a given threshold of a 
SACSC shopping centre. We chose an arbitrary threshold of 500m. If it is within the 
threshold, the person is assumed to work at the shopping centre and the location is 
changed to that of the SACSC FACILITY. If not, we check if the work location is within a 
given threshold of any other amenity facility parsed from OpenStreetMap. Here we used 
an arbitrary threshold of 20m. If it is within the threshold, the person is assumed to work at 
that amenity facility and the location is changed to that FACILITY. If not, the Spot5 facility 
closest to the work location is assigned as the place of work. 
 
For educational activities the closest educational facility is chosen, irrespective of the level 
of education provided. The reason was that the level of education is not known with 
certainty. We acknowledge that there may indeed be exceptions, but that the majority of 
scholars attend the closest school, and that primary and secondary schools are in fairly 
close proximity to one another. 
 
OpenStreetMap amenities were parsed based on their feature type and those that were 
classified as providing either shopping (s) or leisure (l) activities were used. In the case of 
the SACSC facilities, these were considered to provide both shopping and leisure 
activities, as well as other (o) activity types that may include banking, post office or even 
medical activities as these shopping centres frequently provide a spread of activities. So, 
for shopping (s) activities in the PERSON’s PLAN, the closest facility offering shopping as an 
activity type was selected. Similarly, leisure activities were assigned facilities.  
 
For each LEG, the observed mode of the person was retained. In the end we have an 
entire POPULATION of PERSONs, each with a PLAN that consists of alternating ACTIVITYs and 
LEGs. 
 
2.2. Commercial Vehicles 
 
The activity chain structure of commercial vehicles differs quite distinctly from that of 
private vehicles. Commercial vehicles travel for different reasons, and perform many more 
activities, than private vehicles. For this reason, it is imperative to model commercial 

                                                 
1
 For a list of features, refer to http://wiki.openstreetmap.org/wiki/Map_Features 

http://wiki.openstreetmap.org/wiki/Map_Features


vehicles independently from private vehicles and not merely inflate the private vehicle 
models to account for freight movement, as is the case in many state-of-practice models. 
 
2.2.1 Data preparation 
In this paper, as in Joubert et al. (2010); Joubert and Axhausen (2011); Joubert (2012); 
Van Heerden and Joubert (2012), we used a large GPS dataset of 41 711 commercial 
vehicles that are subscribed to the cTrack tracking service. We followed the extraction 
process of Joubert and Axhausen (2012) to extract activity chains from the dataset. An 
activity chain consists of activities, where we typically distinguish between major and minor 
activities. Major activities are those activities in excess of 300min in duration, typically 
depot-stops; and minor activities are those activities shorter than 300min in duration, 
typically drop-off or collection activities. A complete chain constitutes a chain consisting of 
at least two major activities, one as the start activity and one as the end activity, with any 
number of minor activities in-between. 
 
Any activity chain with no activities inside NMBM was omitted. From the remaining chains, 
all chains with more than 60% of their activities inside the NMBM boundaries were 
considered to be intra-provincial chains and the rest classified as inter-provincial chains. 
Chains with activities outside the area were cleaned: the activities outside the NMBM 
boundaries were removed and replaced with an entry or exit type of activity where the 
vehicle crossed the boundary of NMBM, depending on the direction of travel. The inter-
provincial chains were further broken down into two types of chains: in-out, which are 
those chains starting with an entry activity, performing some activities inside NMBM and 
thereafter leaving the area again with an exit activity; and out-in chains, which are those 
starting inside the study area with a major activity, leaving the study area with an exit 
activity, returning to the study area with an entry activity after which they end with a major 
activity. Table 2 summarizes the number of observed chains by type. 
 

Table 2 – Commercial vehicle activity chains observed in the Nelson Mandela Bay 
Metropolitan from GPS analyses. 

 

Activity chain Number of observations % of total 

Intra-provincial 6756 69.6 
Inter In-out 1819 

30.4 
Inter Out-In 1128 

 
From the activity chains, we generated a complex network as in Joubert and Axhausen 
(2012), which describes the connectivity between pairs of locations where activities take 
place. When a vehicle travelled between two activity locations, the weight of the link 
connecting them was incremented. This process was repeated for all activity chains and 
two separate complex networks were created for intra- and inter-provincial vehicles. 
 
Artificial facilities were created at the locations where activities took place and at each 
facility, the duration of activities was noted and an activity duration deciles distribution was 
calculated. 
 
We then created a three-dimensional matrix, where the three dimensions are start hour, 
number of activities in chain, and chain duration. Separate matrices were created for intra- 
and inter-provincial vehicles.  
 
 
 



2.2.2 Generating the population 
In this section we again refer to MATSim objects by utilizing small capitals. Separate 
populations were generated for the intra- and inter-provincial activity chains since their 
chain structures differ slightly. For each commercial vehicle, we generated a PERSON. 
Similar to private vehicle commuters, each vehicle also has a PLAN. 
 
A plan contains both ACTIVITY and LEG elements, where an ACTIVITY can be of the type 
major, minor, entry or exit; and a LEG connects the activities by means of transportation 
with a commercial vehicle.  For a PLAN to be valid, it must start and end with an ACTIVITY, 
and the PLAN elements must be alternating between an ACTIVITY and LEG. 
 
An intra-provincial chain’s first and last ACTIVITY is of type major, and we sampled a 
random starting location from the intra-provincial complex network and allocated this 
location to the ACTIVITY. Next we sampled, from the three-dimensional matrix, a starting 
hour. Given the starting hour, we sampled the number of activities in the chain.  Given 
both the starting hour and number of activities in the chain, we sampled the duration of the 
chain. For each of the number of activities sampled, we generated an ACTIVITY of type 
minor and sampled a location from the complex network again, weighted by the out 
degree from the starting location. The duration of the minor activity was sampled from the 
activity duration deciles distribution for that facility where the activity took place. The last 
ACTIVITY in the chain was of type major again, and the end time of the chain was 
calculated from the start time and chain duration sampled, by adding the duration to the 
start time. The location of the last major ACTIVITY was again sampled from the complex 
network by considering the out degree from the last minor ACTIVITY, but only considering 
those locations with a major ACTIVITY type. The start times of minor activities were spread 
evenly between the start and end time of the chain. 
 
We followed the same procedure for inter-provincial in-out and out-in chains, but the chain 
structures differed. The first ACTIVITY in an in-out chain was of type entry and the last 
ACTIVITY of type exit. For out-in chains, we generated two “parts”. The first part was the 
part of the chain that started inside the area, thus starting with an activity of type major, 
and ending with an ACTIVITY of type exit. The second part of the chain is the part where the 
vehicle returns to the study area with an ACTIVITY of type entry and eventually ending with 
an ACTIVITY of type major again. 

 
3 NETWORK 
 
As with assigning facilities to activities in the population, we use OpenStreetMap data for 
the road network. OpenStreetMap allows for a variety of tags to be added to each road 
segment, and there are guidelines specifically for capturing the South African road 
network2. Among these tags may be the number of lanes, and the road classification. 
There is a standard interface in MATSim that converts the OpenStreetMap data into a 
MATSim NETWORK. Conversion defaults used in the NMBM are indicated in Table 2. 
 
The defaults are used only when an overriding tag is not available. For example, if a road 
segment with tag highway=secondary has a tag lanes=2, then the default of one lane 

will not be used. Also, the user can set the defaults used during conversion if local 
knowledge deems necessary. 
 

                                                 
2 See http://wiki.openstreetmap.org/wiki/South_African_Tagging_Guidelines  

http://wiki.openstreetmap.org/wiki/South_African_Tagging_Guidelines


During the conversion, bidirectional road segments are replaced with two segments, each 
accommodating flow in only a single direction. 
 
Table 2: Default conversion values to be used when converting OpenStreetMap data 

into a MATSim network. 
 

Highway type1 
Number 
of lanes 

Maximum speed 
(km/h) 

Capacity 
(vehicles per 

hour per lane2) 
One way 

Trunk 1 120 2000 No 
Motorway 2 120 2000 Yes 
Motorway link 1 80 1500 Yes 
Primary 1 80 1500 No 
Primary link 1 60 1500 No 
Secondary 1 80 1000 No 
Tertiary 1 60 1000 No 
Minor 1 45 600 No 
Residential 1 45 600 No 
Living street 1 15 300 No 
Unclassified 1 60 800 No 

1
 Based on the OpenStreetMap definitions. 

2
 Per direction, if applicable, based on the one-way attribute. 

 
4 CONCLUSION 
 
In this first paper of the two-part series we showed how available data could be used to 
create the necessary inputs for an agent-based transport model, specifically MATSim.  
 
We showed how one can successfully generate a synthetic population of private individual 
agents utilizing this available data. We generated a synthetic population by using an 
iterative proportional fitting (IPF) method that included activity chains of individuals 
spanning over 24 hours and included both primary activities and secondary activities. 
 
Next, we described how to generate a commercial vehicle synthetic population that 
includes both intra- and inter-provincial activity chains. The process involves the extraction 
of activity chains from GPS logs and the generation of a synthetic commercial vehicle 
population from the observed activity chain characteristics. We also showed how to extract 
an accurate road network for use in MATSim from open data on OpenStreetMap.  
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