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ABSTRACT

We present a novel technique to measure the orbital angular momentum (OAM) density of light. The tech-
nique is based on modal decomposition, enabling the complete reconstruction of optical fields, including the
reconstruction of the beam’s Poynting vector and the OAM density distribution. The modal decomposition is
performed using a computer-generated hologram (CGH), which allows fast and accurate measurement of the
mode spectrum. The CGH encodes the modes of interest, whose powers and relative phase differences are mea-
sured from the far-field diffraction pattern of the incident optical field with the hologram transmission function.
In combination with a classical measurement of Stokes parameters, including a polarizer and a quarter-wave
plate in front of the hologram, the polarization state of each mode is measured. As a consequence, any arbitrary
vector field can be reconstructed, including amplitude, phase, and polarization. Having all information on the
optical field, the Poynting vector and the OAM density can be calculated directly. We applied our method
to beams emerging from optical fibers and free space beams, which allows us to investigate arbitrary coherent
mode superpositions with complexly shaped intensity and polarization distributions. As a reference distinct
beams of known OAM density were created using a spatial light modulator (SLM). Comparisons of measured
and expected results reveal very good agreement.
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1. INTRODUCTION

Laser beams carrying orbital angular momentum (OAM) have attained a lot of interest in the recent times.
Such beams exhibit a rotating phase structure and consequently rotate in space during propagation. By trans-
fering their momentum, they are able to spin microscopic particles and have hence received attention in the field
of optical trapping and particle manupulation.'# 7 Moreover, their unique properties have opened new oppor-
tunities in nonlinear optics and quantum optics, enabling the entanglement of single photons in a multistate
system and hence picturing future applications of performing logical operations and free space communication
with OAM states.'? 1819 The fast development of science focusing on beams carrying OAM was sped up by
the ease of generating such beams using spiral phase plates or appropriate holograms that easily transform a
simple Gaussian beam into a beam with helical phase structure of tunable OAM.!?20 Even fibers have been
studied to generate OAM carrying beams in a controlled manner.?! Despite the lot of work that has been spend
to generate these beams and to investigate their nature to search for new physical effects and applications, only
a few approaches concentrate on the detection of the OAM.?? 28 Regarding the measurement of the spatially
resolved OAM density, only a single approach based on azimuthal decomposition is currently known.2? 3% Even
though this technique has the advantage of being independent of the scale of the beam, it necessitates to scan
the beam in radial direction, which makes this approach time-consuming.

1-13

In this work we focus on a different approach to measure the OAM density of light, which stands out due its
simplicity of the experimental setup and the ability to perform real-time experiments. The presented technique
is based on the modal decomposition with correlation filters®! from which the optical field is reconstructed,
hence providing all necessary information to infer Poynting vector and OAM density.
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2. MODAL DECOMPOSITION

Modal decomposition is a powerful tool for detailed investigation of laser fields. In laser sources the optical field
that is generated is quantized into modes, e.g., considering a laser resonator or optical fibers. The principle of
the modal decomposition is to determine the power content and relative phase of the modes that compose the
beam. Mathematically, any optical field can be expressed in terms of orthogonal basis functions:

U(r)=> aW(r), (1)
=1

with » = (z,y) the spatial coordinates, ¢; = g;e*#* the complex expansion coefficient, ¥;(r) the I** vector mode
with amplitude g; and phase ¢; (with respect to a reference phase) and N the number of modes. The beam
intensity is easily reconstructed from the modal amplitudes and phases via

I(r) = U(r)". (2)

The modal decomposition of a laser field as described by Eq. (1) can be performed all-optically using correlation
filters.31:32 Such a filter performs a correlation of the incident field with the modes that are encoded into the
filter, which allows to measure the power and relative phase of each individual mode. This ability is based on
the specific design of the transmission function of the holographic device that constitutes the correlation filter.
This transmission function depends on the quantity to be measured. For measuring the power of a distinct
mode, the conjugate complex of that very mode is chosen to be the transmission function:3!

Ti(r) = Vi (r), 3)

where ”*” denotes the complex conjugation. Using this transmission function, the intensity on the optical axis
in the Fourier plane of the correlation filter is o 7.

To measure the phase difference of a mode to a chosen reference mode, two transmission functions, each
representing an interferometric superposition of two modes, are necessary:3!

T (r) = [W5(r) + 7 (r)]/V2 and  TP"(r) = [T5(r) +i¥7 (r)]/V2 (4)
Again, from the intensities [ fi“ (corresponding to Tfi“) and I (corresponding to T°%) on the optical axis in
the Fourier plane of the correlation filter, the phase angle can be calculated unambiguously according to®!
sin 2 2
— 0] — 0o
Ayp; = — arctan [l] . 5
215 =g of “
To measure modal amplitudes and phases simultaneously with one filter only, we use angular multiplexing,
which means the final transmission function T'(7) of the hologram is a superposition of all single transmissions
functions T, (r) (for each modal amplitude and sine and cosine of the phase), each multiplied with a certain

carrier frequency K, to achieve a spatial seperation of the information in the Fourier plane:3!

3N-2

T(r)= Y Tu(r)e™r. (6)
n=1

Since by this approach all amplitudes and phases can be measured simultaneously, a high measurement rate is
possible, which is immense advantage for many applications3. We demonstrated real-time measurements with
up to 30 Hz. This number is primarily limited by the frame rate of the used CCD cameras.

However, the correlation filter can only correlate scalar, i.e., linearly polarized, fields. In the general case of
arbitrarily polarized beams, a complete description of the optical field U is provided by the subsequent analysis
of the cartesian field components U, and U,, including the proper phase difference J between them.

This can be done by determination of the Stokes parameters Sj...S3 of the beam, which necessitates six
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(assuming completely polarized light) modal decomposition measurements with a quarter-wave plate and a

polarizer in appropriate orientations in front of the hologram:33 34
So Us|? + U,y | 1(0°) + 1(90°)
S = S _ |Uac|2 - |Uy|2 — (OO) 1(900) (7)
S| = 200010, | cos 1(45°) — 1(135°) |
Sy|  2AULIIU, sind| | Ina(45%) — I,,4(135°)

where I(«) is the measured (respectively reconstructed) intensity behind the polarizer at angular orientations
a=0°,45° 90° 135° and I, /4(a) denotes two additional measurements with the polarizer placed at a = 45°,
135° and a preceding quarter-wave plate. By this means, the last equality relates theoretical and experimental
definition of the Stokes parameters, which enables the calculation of the phase difference d:

§ = arctan (g‘;’) (8)

Performing the depicted six modal decompositions both transverse cartesian components of the optical field are
determined. Hence, the information on the optical field is complete, since amplitude, phase, and polarization
are measured. This abundance of information can be used for many applications, e.g., to determine physical
quantities that are not easily accessible with other techniques, such as the OAM density.

3. ORBITAL ANGULAR MOMENTUM DENSITY

As shown in the previous section, the modal decomposition using a correlation filter yields the complete infor-
mation about the optical field. Hence, the Poynting vector P can be calculated by3?

1 .
P(r) = SR |~ {(r)[V x U(r)] x U*(r)], 9)
2 | weg
for vector fields U and by?6
P(r) = % [(UVD" ~ U*VD) + 2h{U e (10)

for scalar fields U, where w is the angular frequency, € is the permittivity, €y is the permittivity of vacuum,
k = 27/\ is the wave number, and e, is the unit vector in z-direction. From the Poynting vector the OAM is
easily accessible from?3”

. P

Jg=rx g (11)
Hence, the OAM density is measurable for both, scalar and vector fields, using the modal decomposition principle
as outlined in section 2. In the following the z-component j,, which is of most relevance for application, is
considered only and termed ”OAM density”.

4. RESULTS
4.1 Laguerre-Gaussian beams

To verify the procedure as described by section 2 and 3, Laguerre-Gaussian beams of known OAM density
(calculable using Eq. (10) and (11)) were generated, which served as a reference to the modal decomposition
results. To generate different test beams a phase-only pixelated Spatial Light Modulator (SLM) was used, which
was programmed using the coding technique of Arrizon et al.® to convert complex transmission functions to
phase-only phase functions. The SLM was embedded in an experimental setup as schematically depicted in Fig. 1
(SLMj). A linearly polarized helium neon laser (A = 633 nm) was expanded by a telescope and illuminated the
SLM to approximate a plane wave. The field generated with the SLM was filtered in its Fourier plane to enhance
the quality of the beam and was relay imaged onto a second SLM (SLMs), which was used as correlation filter.3!
Together with a single lens and a CCD camera (CCD;) SLM; performed the modal decomposition, which yields
the OAM density. The modal decomposition was done by displaying the transmission functions of Eq. (3) and
(4) on SLM; subseqquently, and recording the correlation signal in the Fourier plane at CCD;, which yields the
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Figure 1. Experimental setup for the generation and characterization of Lagurre-Gaussian beams of different order. HeNe
helium neon laser, L lens, M mirror, SLM; » Spatial Light Modulators, A aperture, CCD; > CCD cameras, BS beam
splitter

modal powers o7 and phases Ag;, and hence, the optical field (Eq. (1)), the Poynting vector (Eq. (9), (10)),
and the OAM density (Eq. (11)). To record the beam under test, a second CCD camera (CCDz) and a beam
splitter were used. As a first example a pure Laguerre-Gaussian mode LGp=o,;=1 was generated with the radial
index p and the azimuthal index [, whereas last mentioned index indicates the order of the helical phase and
the topological charge, respectively.* 2 Fig. 2 depicts the results of the characterization of this beam. Fig. 2(a)
shows the measured near field intensity, which reveals the typical donut shape with a hole in its center indicating
the phase singularity. The results of the modal decomposition are pictured in Fig. 2(b) and (d). As expected,
the modal power spectrum reveals a correlation signal for the LGg,; mode only, whereas all other mode powers
in the range p = 0...2 and [ = 0...2 are zero. Additionally, all phases are measured to be zero. From the
measurement of modal powers and phases the beam intensity is reconstructed according to Eq. (1) and (2), as
shown in Fig. 2(c). The comparison of reconstructed (Fig. 2(c)) and measured beam intensity (Fig. 2(a)) reveals
very good agreement. Applying the procedure of section 3 to the beam under investigation, the OAM density
is inferred (Fig. 2(e)) and compared to the theoretical one (Fig. 2(f)). Both densities compare very well and
resemble the intensity of the beam, which can be viewed as a characteristic of Laguerre-Gaussian beams and
is a logical consequence of Eq. (10) and (11). Remarkably, the OAM density is exclusively positive. However,
this fact can be easily understood, considering that the z-component of the OAM density is proportional to the
p-component of the Poynting vector, and hence, to the azimuthal index [ (here [ = +1), provided the beam
carries a helical phase.?6 Moreover, it becomes clear that presented technique is capable of measuring the OAM
density quantitatively. Here, the maximum is found with 2.5 x 10722 Ns/m?.
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Figure 2. Characterization of a Laguerre-Gaussian LGo,; mode beam. (a) Measured near field intensity. (b) Modal power
spectrum. (c) Reconstructed intensity. (d) Modal phase spectrum. (e) Measured OAM density. (f) Calculated OAM
density. OAM densities in Ns/m?.

N X
($)]

—
o o
L)
o
o

N

—
=]

IS
N
N

[y

5

-

Proc. of SPIE Vol. 8637 863719-4

Downloaded From: http://proceedings.spiedigitallibrary.org/ on 03/14/2013 Terms of Use: http://spiedl.or g/terms



(c) I (d)
0.8 2
06 =
. ==
0.2 5 . 2 -1 -1

Figure 3. Characterization of a Laguerre-Gaussian LG1,0 mode beam. (a) Measured near field intensity. (b) Modal power
spectrum. (c) Reconstructed intensity. (d) Modal phase spectrum. (e) Measured OAM density. (f) Calculated OAM
density. OAM densities in Ns/m?.

The results of Fig. 2 showed that a beam having a helical phase structure has a non-zero OAM density distri-
bution, which mainly follows the intensity distribution. However, Laguerre-Gaussian beams with an azimuthal
index [ = 0 will have a vanishing p-component of the Poynting vector P</,,:)’6 and consequently a vanishing
OAM density. To proove this relation, a Laguerre-Gaussian mode LG; o was generated and characterized. The
corresponding results are depicted in Fig. 3. The modal power spectrum in Fig. 3 reveals a single correlation
signal at p = 1 and | = 0. Again, reconstructed and measured beam intensity correlate very well. Fig. 3(e) and
(f) picture the measured and calculated OAM deunsity, which is zero. Small deviations result from the intensity
background of camera CCD; used for the correlation measurement, which leads to a lower detection limit for
the modal powers. Hence, the marginal content of other modes yields a slightly non-zero OAM density in the
measurement. However, regarding the absolute scale it is obvious that peak value of the measured OAM density
of a LGy o beam is more than one order of magnitude smaller than the one of the LGy ; mode beam. Until
now the investigated beams were single Laguerre-Gaussian modes. To provide a more complex example, we
examined an in-phase superposition of two Laguerre-Gaussian beams LGs 1 +LGg,_3, whose results are depicted
in Fig. 4. Clearly, the modal power spectrum (Fig. 4(b)) reflects the existence of the two involved modes. From
the phase spectrum it can be seen that both modes are in-phase. Again, reconstructed and measured intensity
are in good agreement. Fig. 4(e) and (f) depict the measured and calculated OAM density, which correlate very
well. Since the azimuthal indices of the involved modes are of positive and negative sign (I = 1 and | = —3), the
resulting OAM density exhibits positive and negative values as well. Regarding the scale of the OAM density,
the pure LG ;1 mode and the superposition LG 1 + LGy, 3 are of the same order of magnitude of 1072? Ns/m?.
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Figure 4. Characterization of a Laguerre-Gaussian LG2,1 + LGo,—3 beam. (a) Measured near field intensity. (b) Modal
power spectrum. (c) Reconstructed intensity. (d) Modal phase spectrum. (e) Measured OAM density. (f) Calculated
OAM density. OAM densities in Ns/m?.
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Figure 5. Experimental setup for measuring the OAM density of a fiber beam. Nd:YAG Nd:YAG laser, L lens, M mirror,
QWP quarter-wave plate, P polarizer, BS beam splitter, CGH computer-generated hologram, CCD;,2 CCD cameras

4.2 Fiber beams

The comparison of the measured OAM densities with the ones expected for the artifically generated reference
beams proved the presented technique to yield accurate results regarding shape and absolute scale. Hence, the
method can be applied to unknown laser beams, for which no reference can be provided. A suitable example
is a beam emerging from an optical multimode fiber. Instead of programming modes and mode superpositions
on a seperate SLM for beam generation, the optical field is here created naturally by multimode interference
inside the fiber. Correspondingly, the experimental setup was changed according to Fig. 5. As beam source
a multimode fiber (core diameter 25 pm, numerical aperture NA = 0.064), which guides six transverse modes,
was seeded with the fundamental Gaussian beam of a Nd:YAG laser (A = 1064nm). The fiber output was
relay imaged (4f-imaged) to the correlation filter, which was in this experiment a static binary amplitude-only
computer-generated hologram (CGH), as used by Kaiser et al.3! Since such a filter is amplitude-only a different
coding technique was used.®® To perform the polarization measurement, as described by Eq. (7), a quarter-
wave plate and a polarizer preceded the CGH. As in the previous experiment, a 2f-setup behind the CGH
(previously SLM) enabled the correlation measurement with a CCD camera (CCD;). Again, a beam splitter in
front of the hologram and a second CCD camera (CCDs) provided the recording of the beam intensity. Fig. 6
illustrates an example of a fiber beam consisting of 27% LPg1, 0% LPg2, 41% LP11e, 30% LP11,, 2% LPo1.,
0% LP21,. The comparison of measured (Fig. 6(a)) and reconstructed (Fig. 6(b)) beam intensity reveals very
good agreement. Note that both intensities represent the sum of intensities recorded in x- and y-direction of
the polarizer. Fig. 6(c) illustrates the inferred OAM density of this beam. Apparantly, the OAM density is
much larger than in the previous cases, with a maximum of 5 x 10712 Ns/m?2. This is a logical consequence of
the much smaller dimension of the beam, which is roughly extended within 30 pm of diameter.
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Figure 6. Characterization of a fiber beam consisting of a superposition of six modes (27% LPo1, 0% LPo2, 41% LP11e,
30% LP11o, 2% LP21e, 0% LP21,). (a) Measured near field intensity. (b) Reconstructed intensity. (c) Measured OAM
density. OAM densities in Ns/m?.
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5. SUMMARY

In summary, we demonstrated a novel measurement system to quantify the orbital angular momentum density
of light. The technique bases on the well known correlation filters to perform a modal decomposition with
subsequent reconstruction of the optical field, which allows to infer Poynting vector and the OAM density using
a simple relationship. The method stands out due its easy setup, necessitating only an appropriate hologram, a
lens and a camera, and its capability of real-time measurements. Linearly polarized Laguerre-Gaussian beams
of different order were generated with a spatial light modulator and served as reference beams of known OAM
density to prove the achieved results. Both, measured and theoretically expected OAM densities are in very
good agreement, hence proving the accuracy of the technique. As an application case, the method was used
to characterize a vector beam emerging from a multimode optical fiber. In consequence the correlation filter
method is easily applicable to scalar and vector fields and allows the characterization of the OAM density in an
easy and fast manner.
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