
Pyradi: an open-source toolkit for infrared calculation and
data processing

Cornelius J. Willersa, Maria S. Willersb, Ricardo Augusto T. Santosc, Petrus J. van der
Merweb, Johannes J. Calitza, Alta de Waala, Azwitamisi E. Mudaua

a CSIR, P.O. Box 395, 0001 Pretoria, South Africa
b Denel Dynamics, P.O. Box 7412, 0046 Centurion, South Africa

c Instituto Tecnológico de Aeronáutica, Laboratório de Guerra Eletrônica, Pca. Mal. Eduardo
Gomes, 50 São José Dos Campos - SP - Brazil 12228-900

ABSTRACT

Electro-optical system design, data analysis and modelling involve a significant amount of calculation and pro-
cessing. Many of these calculations are of a repetitive and general nature, suitable for including in a generic
toolkit. The availability of such a toolkit facilitates and increases productivity during subsequent tool devel-
opment: “develop once and use many times”. The concept of an extendible toolkit lends itself naturally to the
open-source philosophy, where the toolkit user-base develops the capability cooperatively, for mutual benefit.
This paper covers the underlying philosophy to the toolkit development, brief descriptions and examples of the
various tools and an overview of the electro-optical toolkit.

The toolkit is an extendable, integrated collection of basic functions, code modules, documentation, example
templates, tests and resources, that can be applied towards diverse calculations in the electro-optics domain. The
toolkit covers (1) models of physical concepts (e.g. Planck’s Law), (2) mathematical operations (e.g. spectral
integrals, spatial integrals, convolution, 3-D noise calculation), (3) data manipulation (e.g. file input/output,
interpolation, normalisation), and (4) graphical visualisation (2-D and 3-D graphs).

Toolkits are often written in scriptable languages, such as Python and Matlab. This specific toolkit is imple-
mented in Python and its associated modules Numpy, SciPy, Matlplotlib, Mayavi, and PyQt/PySide. In recent
years these tools have stabilised and matured sufficiently to support mainstream tool development. Collectively,
these tools provide a very powerful capability, even beyond the confines of this toolkit alone. Furthermore, these
tools are freely available.

Rudimentary radiometric theory is given in the paper to support the examples given. Examples of the toolkit
use, as described in the paper, include (1) spectral radiometric calculations of arbitrary source-medium-sensor
configurations, (2) spectral convolution processing, (3) 3-D noise analysis, (4) loading of ASCII text files, binary
files, Modtran tape7 and FLIR Inc *.ptw files, (5) data visualisation in 2-D and 3-D graphs and plots, (6)
detector modelling from detail design parameters (bulk material detectors), (7) colour coordinate calculations,
and (8) various utility functions.

The toolkit is developed as a cooperative effort between the CSIR, Denel SOC and DCTA. The project, avail-
able on Google Code at http://code.google.com/p/pyradi, is managed in accordance with general practice
in the open source community.

Keywords: Pyradi, radiometry, infrared calculation, Modtran, visualisation

Further author information: (Send correspondence to C.J.W.)
C.J.W.: E-mail: nwillers@csir.co.za, Telephone: +27-12-841-4261
M.S.W.: E-mail: riana.willers@deneldynamics.co.za, Telephone: +27-12-671-1901
R.A.T.S.: E-mail: Ricardo.tavares@ita.br, Telephone: +551239476899

Invited Paper

Technologies for Optical Countermeasures IX, edited by David H. Titterton, Mark A. Richardson,
Proc. of SPIE Vol. 8543, 85430J · © 2012 SPIE · CCC code: 0277-786/12/$18 · doi: 10.1117/12.976043

Proc. of SPIE Vol. 8543 85430J-1

Downloaded From: http://proceedings.spiedigitallibrary.org/ on 12/19/2012 Terms of Use: http://spiedl.org/terms

1. INTRODUCTION

Electro-optical system design involves the integration of a diverse set of technologies and concepts, covering
areas such as real world object signatures, atmospheric effects, optics, optical detectors, electronics and signal
processing. The design process involves the optimisation of several (often interrelated) parameters in this electro-
optical system. Such optimisation requires modelling of the relevant components in the system and performing
trade-off calculations and data analysis with these models.

Many of these calculations are of a repetitive and general nature, suitable for adding to a generic toolkit. The
availability of a well-designed toolkit facilitates and increases productivity during subsequent tool development,
where new tools are added to an ever-increasing set of tools. The concept of an extendible toolkit lends itself
naturally to the open-source philosophy, where the toolkit user-base develops the capability cooperatively, for
mutual benefit.

The development of this toolkit is following the Unix philosophy for software development, summarised
in the words of Doug McIlroy: “Write programs that do one thing and do it well. Write programs to work
together.” In broader terms the philosophy was stated by Eric Raymond1 (only selected items shown here): (1)
Rule of Modularity: Write simple parts connected by clean interfaces. (2) Rule of Clarity: Clarity is better than
cleverness. (3) Rule of Composition: Design programs to be connected to other programs. (4) Rule of Simplicity:
Design for simplicity; add complexity only where you must. (5) Rule of Parsimony: Write a big program only
when it is clear by demonstration that nothing else will do. (6) Rule of Transparency: Design for visibility to
make inspection and debugging easier. (7) Rule of Robustness: Robustness is the child of transparency and
simplicity. (8) Rule of Representation: Fold knowledge into data so program logic can be stupid and robust.
(9) Rule of Economy: Programmer time is expensive; conserve it in preference to machine time. (10) Rule of
Generation: Avoid hand-hacking; write programs to write programs when you can. (11) Rule of Optimisation:
Prototype before polishing. Get it working before you optimise it. (12) Rule of Extensibility: Design for the
future, because it will be here sooner than you think.

The pyradi∗ toolkit is an extendable, integrated and coherent collection of basic functions, code modules,
documentation, example templates, tests and resources, that can be applied towards diverse calculations in the
electro-optics domain. The fundamental principle in constructing this toolkit is therefore to write a number
of cooperating specialised modules, where each module focusses on one task only, and perform this task with
minimal workload on the user.

While several toolkits for Matlab and Python exist in other scientific domains, there is no radiometry toolkit
readily available.

This paper covers the domain requirements for the toolkit, the language selection considerations, the toolkit
design considerations and the structure of the toolkit. Several worked examples of the toolkit are presented.
Finally, the instructions for downloading the toolkit are given.

2. REQUIREMENTS FOR TOOLKIT

2.1 Electro-Optical Domain Requirements
A typical radiometry toolkit requirement (very much simplified) is the calculation of the detector current of an
electro-optical sensor viewing a target object. The system can be conceptually modelled as shown in Figure 1,
comprising a radiating source with spectral radiance, an intervening medium (e.g. the atmosphere), a spectral
filter, optics, a detector and an amplifier. The amplifier output signal can be calculated2 by integrating Equation 1
over all wavelengths, over the full source area A0 and over the optical aperture area A1,

v = Zt

∫
A0

∫
A1

1

r201

∫ ∞

0

ελLλ(T,A0)τaλτsλ(A1)Rλ dλ d(cos θ0A0) d(cos θ1A1). (1)

∗The name pyradi is derived from the combination of the two words ‘Python’ and ‘Radiometry’. In accordance with
Python practice it is spelt with all lowercase letters. For grammatical purposes the name pyradi is capitalised according
to English grammar rules, where necessary.

Proc. of SPIE Vol. 8543 85430J-2

Downloaded From: http://proceedings.spiedigitallibrary.org/ on 12/19/2012 Terms of Use: http://spiedl.org/terms

In Equation 1 v is the output signal voltage, r01 is the distance between elemental areas d(cos θ0A0) and
d(cos θ1A1), ελ is the source spectral emissivity, Lλ(T,A0) is the Planck Law radiation at temperature T at
location A0, τaλ is the atmospheric spectral transmittance, τsλ(A1) is the sensor spectral transmittance at
locationA1, Rλ is the spectral detector responsivity in [A/W], Zt is the amplifier transimpedance gain in [V/A].
The spectral integral

∫∞
0

dλ accounts for the total flux for all wavelengths, the spatial integral
∫
A0

d(cos θ0A0)

accounts for flux over the total area of the source, and the spatial integral
∫
A1

d(cos θ1A1) accounts for the total
area of the receiving area.

Thermal radiator

Emissivity

Atmosphere

Sensor filter

Detector

�

�

�

�

�

d�
L(T)

�

�

�

a

s

source atmosphereemissivity detector amplifier

Z
t

opticsfilter

dA
0

A
0

dA
1

A
1

�
0

�
1

�
s�

�
a

r
01

Figure 1: Simple model of a sensor.

A spectral variable can be considered a func-
tion of wavelength. Consider two sets A and B.
The set A, called the domain, is a set of numbers
which represents the wavelengths, wavenumbers
or frequencies at which the spectral variable is
defined. The set B, called the codomain or spec-
tral quantity, is the set of values of the spectral
variable at the specific points defined in the do-
main A. We define the spectral variable (a func-
tion) f from A to B such that for each a ∈ A,
there is a unique f(a) = b ∈ B. Examples of B
are spectral emissivity, spectral transmittance or
spectral detector responsivity. The top graphic
in Figure 1 illustrates the reasoning behind the
spectral integral as a product, followed by an in-
tegral (summation),

∫ ∞

0

ελLλ(T)τaλτsλRλ dλ, (2)

where the spectral variability of the source,
medium and sensor parameters are multiplied as
spectral variables and afterwards integrated over
all wavelengths to yield the total in-band signal.
The domain of spectral quantities can be stated in terms of a wavelength, wavenumber, or less often, temporal
frequency. The toolkit must be able to support all three domain types, as well as the conversion between spectral
densities, such as [W/(m2·μm)] to [W/(m2·cm−1)].

Likewise, the source radiance is integrated over the two respective areas of the target A0, and the sensor
aperture A1. Note that if the sensor field of view footprint at the source is smaller than the physical source area,
only the flux emanating from the footprint area is integrated.

Fundamental to almost all electro-optics calculations are the use of Planck’s Law for thermal radiation. Ac-
cording to Planck’s Law the maximum spectral radiant emittance and the spectral radiant emittance temperature
derivative, for a given temperature T , are given by

Meλ(T) =
2πhc2

λ5
(
e

hc
λkT − 1

) , dMeλ(T)

dT
=

2πhc2xex

Tλ5
(
e

hc
λkT − 1

)2 , (3)

where x = hc
λkT , c is the speed of light, λ is wavelength, h is Planck’s constant, k is the Boltzman constant,

yielding emittance in units of [W/m3] and the derivative in units of [W/(m3·K)]. The tookit must support the
calculation of Planck’s Law in any of the three spectral domain variables: wavelength [μm], wavenumber [cm−1]
and frequency [Hz].

Spectral convolution is required when working with spectral data filtered to different spectral widths. Under
condition that a narrow-band optics filter is used in the system in Figure 1, the spectral integral, Equation 2,
can be written, by change of variable λ = λc − x, as follows

Proc. of SPIE Vol. 8543 85430J-3

Downloaded From: http://proceedings.spiedigitallibrary.org/ on 12/19/2012 Terms of Use: http://spiedl.org/terms

∫ λc+
Δλ
2

λc−Δλ
2

ελLλ(T)τaλτsλRλ dλ =

∫ +Δλ
2

−Δλ
2

εxLx(T)τaxτs(λc−x)Rx dx. (4)

These equations illustrate very clearly that the irradiance measured with the filter centered around wavelength
λc includes source energy from λc− Δλ

2 to λc+
Δλ
2 . Apart from the spectral selection, the filter has an additional

effect of smoothing the spectrum being observed, since the filter has a non-zero spectral width. Equation 4
is called a convolution integral since it describes the convolution between the product ελLλτaλRλ and τsλ.
Supporting the convolution integral is an important requirement for the toolkit.

There is an abundance of colour coordinate definitions, each optimised for different applications. Essentially,
the calculation of colour coordinates is a radiometric calculation involving normalisation with given spectral
weights. Commonly used colour spaces include the CIE 1931 tristimulus values XYZ, or the xyY chromaticity
colour space.3,4 The toolbox must provide at least rudimentary capabilities for colour space calculation.

D

W

Reference point

r

dw
dd

�H

Figure 2: Solid angle of a centred flat plate.

Non-trivial real-world problems require integration over
spatial surfaces, i.e. over the surface of extended objects
and large solid angles. One common example is the solid
angle of simple Euclidian shapes, such as a large rectangular
plate, shown in Figure 2. The geometric solid angle, ωs, and
projected solid angle, Ωs, of the rectangular flat surface, as
seen from a reference point centred above the plate, are given
by the following two equations:

ωs =

∫
W

∫
D

dw dd

H2

(
H√

w2 + d2 +H2

)3

(5)

Ωs =

∫
W

∫
D

dw dd

H2

(
H√

w2 + d2 +H2

)4

(6)

where W and D are the dimensions of the rectangle and H
is the reference point height above the plate. The integral is
performed along the W and D dimensions with increments of dw and dd. The slant range between the reference
point and the elemental area dd × dw is r = H/ cos θ. Even though each problem formulation is different, the
toolkit must be able to support the calculation of such spatial integrals.

2.2 General Software Requirements
In addition to the domain-specific requirements, there are also requirements to read data files, interpolate data
and visualise results. Data visualisation is a very important element in the understanding and validation of the
calculated results—errors are more readily recognised in graphical visualisation than in tabular data. There is
also a need for mathematical tools for interpolation, normalisation and so forth. Scipy provides a substantial
number of general purpose functions, including the values of physical constants, interpolation and integration.

Data visualisation is required in the form of two-dimensional (x, y) and three-dimensional (x, y, z) data graph
plots. Two-dimensional data graphs must include combinations of linear and log scale plots, as well as polar
plots. Three dimensional data graphs must include line plots and three-dimensional iso-surface plots.

One popular normalisation method, calculating the spectrally weighted effective value of a spectral variable,
is given by

Feff =

∫∞
0

FλGλdλ∫∞
0

Gλdλ
, (7)

where Fλ is the spectral variable in question and Gλ is some common spectral variable. Note that the effective
value of F depends on the spectral shapes of both F and G; the effective value of F thus calculated therefore
applies only to the specific G used in the calculation.

Proc. of SPIE Vol. 8543 85430J-4

Downloaded From: http://proceedings.spiedigitallibrary.org/ on 12/19/2012 Terms of Use: http://spiedl.org/terms

A common need is for the reading of instrument data files, such as from imaging radiometers. Unfortunately
each instrument has its own, often proprietary data format, but it would be convenient to be able to read such
files in the toolkit. The toolkit currently provides the capability to read FLIR Inc.5 *.ptw files.

Modern software users seem to require Graphical User Interfaces (GUI) before accepting new software. Sadly
so, since sometimes the GUI often comes in the way, or limits the software useability. In particular, the GUI
can limit the automation of repetitive tasks. However, some tasks do lend themselves better to GUI interaction,
such as a structured walk through a decision tree, where future decisions depend on the outcome of the current
decision. For example, writing a Modtran tape5 data file is indeed an arduous task in a text editor and easier
done in a GUI! The construction of selected GUI applications in pyradi may be addressed in future, but not in
the short term.

3. DESIGN CONSIDERATIONS

3.1 Language Considerations
The requirements for an electro-optical calculation environment can be met by most modern computer languages,
such as FORTRAN, Java, C/C++ or similar. However these languages often do not provide a native graphics
toolkit and fail on the ease of implementing operations such as spectral multiplication and integration.

There are a number of languages that provide built-in operations on scalars, vectors and arrays/matrices with
single operators. Examples of such languages are Matlab6 (or its open source equivalents SciLab7 and Octave8)
and Python9 together with Scipy and Numpy.10 These languages offer the following benefits: (1) A spectral
variable is easily modelled as a vector or column in an array or matrix. All spectral vectors are easily converted
and interpolated to the same spectral values or converted between wavelength, wavenumber and frequency. (2)
Spatial (area) integrals are readily computed by expressing the shape as a two-dimensional array. (3) Vector
or array variables can be loaded from ASCII files with simple commands. (4) Graphical visualisation tools are
available and easy to use. (5) An interactive environment supports very fast development time, as well as the
capability to write script files for more complex problems. (6) The capability to write your own often-used
functions or subroutines into re-usable toolboxes or modules.

The two primary candidates for the toolkit are Matlab and Python. For spectral calculations and plotting,
such as shown here, the two products are practically equal in ease of use and capability. Both languages require
equal effort in becoming a fluent and effective user. Python is a better (and constantly re-) engineered language,
while Matlab grew out of a linear algebra background with some flawed design decisions and work-arounds for
general programming applications. Python has a large number of modules providing a considerable capability as a
general purpose language, while Matlab has a large number of specialised and powerful scientific and engineering
toolboxes. The associated Python data visualisation tools, Matplotlib11 and Mayavi,12 provide considerably
stronger capability than their Matlab equivalent. Python is also well supported for scientific processing with
Numpy and SciPy. Python applications can employ high quality GUI interfaces with PyQt13 or PySide.14 Matlab
is proprietary source and carries a hefty price tag (especially for the toolboxes), while Python and friends are
free and open source.

After extensive use in industrial and academic environments, of both Matlab and Python, specifically for
modelling radiometry systems, we decided to continue only with Python. This decision was not taken on
emotional or ideological grounds, but is based purely on our perception of Python as a better all-round scripting
language with better data visualisation tools. In recent years Python and friends have been well tested, and
have stabilised and matured sufficiently to support mainstream tool development. PyQt carries some licence
restrictions, but all the other packages are not encumbered by restrictive licence constraints.

3.2 Toolkit structure
The toolkit is a loose collection of files, containing classes and functions of similar nature. Within the toolkit,
the tools are somewhat interdependent, borrowing shared functionality. The current set of module files are:

Proc. of SPIE Vol. 8543 85430J-5

Downloaded From: http://proceedings.spiedigitallibrary.org/ on 12/19/2012 Terms of Use: http://spiedl.org/terms

ryplanck.py This module provides functions for Planck Law emittance calculations, as well as Planck Law tem-
perature derivative calculations. The functions provide spectral emittance in [W/(m2·∗)] or [q/(s·m2·∗)],
given the temperature and a spectral domain vector; with wavelength, wavenumbers and frequency sup-
ported. The total emittance can also be calculated by using the Stefan-Boltzman equation, in [W/m2] or
[q/(s·m2)].

ryfiles.py This module provides functions for file input/output. These are mostly wrapper functions, based on
existing functions in other Python classes. Functions are provided to save a two-dimensional array to a
text file, load selected columns of data from a text file, load a column header line, read & write raw binary
files, process strings to include only legal filename characters, and a function from the Python Cookbook15

to recursively match filename patterns in a directory tree.

ryplot.py This module provides functions for cartesian plots, polar plots and three-dimensional plots. This class
provides a basic plotting capability with a minimum number of lines. These are all wrapper functions, based
on existing functions in other Python classes. Provision is made for combinations of linear and log scales,
as well as polar plots for two-dimensional graphs, and image plotting. The module can also plot three-
dimensional line data (e.g. (x, y, z) trajectories) and iso-surface data in three-dimensional graphics. The
Plotter class can save files to disk in a number of formats for subsequent use in reports.

ryutils.py This module provides various utility functions for radiometry calculations. Functions are provided
for modelling a maximally flat spectral filter, a simple photon detector spectral response, effective value
calculation, spectral convolution, and conversion of spectral domain variables between [μm], [cm−1] and
[Hz], conversion of spectral density quantities between [/μm], [/cm−1] and [/Hz].

rychroma.py This module provides rudimentary colour coordinate processing. A function is provided to cal-
culate the CIE 1931 red-green-blue chromaticity coordinates for an arbitrary illuminance spectrum.

ryptw.py This module provides the capability to read FLIR Inc *.ptw files. All information in the file header
is read and made available with the image frames.

ry3dnoise.py This module provides utilities to calculate three-dimensional noise parameters16 of an image
sequence.

rydetector.py This module provides a bulk material detector model (e.g. Si, Ge, InSb), based on academic
and well known parameters and models found in the classical literature. The model is built to be able
to calculate and predict the main figures of merit for infrared detectors such as its I×V characteristics,
detectivity, responsivity and noise equivalent power (NEP).

rymodtran.py This module provides the functionality to read in Modtran tape7 files, given the column
header names. More functionality will be added later.

The toolkit does not employ software exceptions for error handling, but rather signal errors by return value.

3.3 Toolkit file structure
The Python files all have a common structure, in keeping with standard Python module practice. The same file
that is imported by the user, also contains the summary documentation and test/demonstration code. Each file
has three sections: a header, the module classes and functions and the test/demonstration code.

The header is relatively short and contains the licence statement, the copyright notice and module version.

The second section of the file contains the code that will be executed when the user imports the module. The
import process makes the code part of the user’s library for the current session. Hence this is the code that the
user will use in everyday application of the toolkit. The code in this section are normally collections of classes
and functions. It should not contain demonstration or testing code.

The last section of the file is enclosed in an “if __name__ == '__main__':” block. The __name__ variable
is only equal to __main__ if the file is executed as a script (i.e. not imported). The code in this if-block is not

Proc. of SPIE Vol. 8543 85430J-6

Downloaded From: http://proceedings.spiedigitallibrary.org/ on 12/19/2012 Terms of Use: http://spiedl.org/terms

imported/executed or visible when the file it normally imported as a module. This section should contain the
test and demonstration code: both the developer and user may on occasion read this code for guidance on how
to use the modules.

3.4 Numerical Approximations
The spectral integral in Equation 2 and spatial integrals can be calculated very simply by virtue of the theory
of the Riemann integral as sums over ever decreasing intervals:

∫ ∞

0

ελLλ(T)τaλτsλRλ dλ ≈
∞∑
i=0

ελiLλi(T)τaλiτsλiRλi Δλ. (8)

Likewise can spatial integrals be done as the sum of small elements over the surface of the object.

In the pyradi toolkit integrals are calculated by using narrow spectral intervals or spatial sizes and using
Numpy’s trapezium summation function numpy.trapz. Provided that the intervals are made small enough, the
summation yields reasonable results.

4. EXAMPLE APPLICATIONS

The examples of the toolkit application shown here are for illustration purposes only, the code itself is available
in the module files on the pyradi web site (see Section 5).

4.1 Sensor irradiance calculation
The first example is a relatively complete worked example. The objective is to calculate the signal of a simple
sensor, detecting the presence or absence of a flame in the sensor field of view. The sensor is pointed to an area
just outside a furnace smokestack, against a clear sky background. The sensor must detect a change in signal,
to indicate the presence or absence of a flame.

The sensor has an aperture area of 7.8× 10−3 m2 and a field of view of 1× 10−4 sr. The sensor filter spectral
transmittance is shown in Figure 3. The InSb detector has a peak responsivity of 2.5 A/W and normalised
spectral response shown in Figure 3. The preamplifier transimpedance is 10000 V/A.

The flame area is 1 m2, the flame temperature is 1000 ◦C, and the emissivity is shown in Figure 3. The
emissivity is 0.1 over most of the spectral band, due to carbon particles in the flame. At 4.3 μm there is a strong
emissivity rise due to the hot carbon dioxide (CO2) in the flame.

The distance between the flame and the sensor is 1000 m. The atmospheric properties are calculated with
the Modtran Tropical climatic model. The path is oriented such that the sensor stares out to space, at a zenith
angle of 88◦. The spectral transmittance and path radiance along this path is shown in Figure 3.

The peak in the flame emissivity and the dip in atmospheric transmittance are both centered around the
4.3 μm CO2 band. The calculation of flux radiative transfer through the atmosphere must account for the strong
spectral variation, by using a spectral integral.

The signal caused by the flame is given by Equation 1, where the integrals over the surfaces of the flame and
sensor are just their respective areas. The signal caused by the atmospheric path radiance is given by

v = ZtωopticsAoptics

∫ ∞

0

LpathλτsλRλ dλ, (9)

where ωoptics is the sensor field of view, Aoptics is the optical aperture area, Lpathλ is the spectral path radiance
and the rest of the symbols are as defined for Equation 1.

An extract of the code to perform this calculation, and the resultant output, are as follows (the complete and
well commented file is available on the web site):

Proc. of SPIE Vol. 8543 85430J-7

Downloaded From: http://proceedings.spiedigitallibrary.org/ on 12/19/2012 Terms of Use: http://spiedl.org/terms

Figure 3: Flame sensor example spectral data.

the transmittance is specified in the wavenumber domain with
5 cm -1 intervals , but we want to work in wavelength with 2.5 cm -1
waven = numpy.arange (2000.0 , 3300.0 , 2.5).reshape(-1, 1)
wavel= ryutils.convertSpectralDomain(waven , type='nw')

#remove comment lines , and scale path radiance from W/cm2.sr.cm -1 to W/m2.sr.cm -1
tauA = ryfiles.loadColumnTextFile('data/path1kmflamesensor.txt', [1],\

abscissaOut=waven , comment='%')
lpathwn = ryfiles.loadColumnTextFile('data/pathspaceflamesensor.txt', [9],\

abscissaOut=waven , ordinateScale =1.0e4, comment='%')
#convert path radiance spectral density from 1/cm^-1 to 1/um
(dum , lpathwl) = ryutils.convertSpectralDensity(waven , lpathwn , type='nw')

#load the detector file in wavelengths , and interpolate on required values
detR = ryfiles.loadColumnTextFile('data/detectorflamesensor.txt', [1],\

abscissaOut=wavel , comment='%')

#construct the flame emissivity from parameters
emis = ryutils.sfilter(wavel ,center =4.33, width =0.45, exponent=6, taupass =0.8, \

taustop =0.1)

#plot the data
plot1= ryplot.Plotter(1, 2, 2,'Flame sensor',figsize =(12 ,8))
#it seems that all attempts to plot in same subplot space must use same ptitle.
plot1.plot(1, "Spectral","Wavelength [μm]", "Relative magnitude", wavel , detR ,\

plotCol =['b'], label=['Detector '])

define sensor scalar parameters
opticsArea =7.8e-3 # optical aperture area [m2]
opticsFOV =1.0e-4 # sensor field of view [sr]
transZ =1.0e4 # amplifier transimpedance gain [V/A]
responsivity =2.5 # detector peak responsivity =A/W]

define the flame properties
flameTemperature = 1000+273.16 # temperature in [K]
flameArea = 1 # in [m2]
distance = 1000 # [m]
fill = (flameArea /distance **2) / opticsFOV # how much of FOV is filled
fill = 1 if fill > 1 else fill # limit target solid angle to sensor FOV

first do for flame
get spectral radiance in W/m^2.sr.cm -1
radianceFlame=ryplanck.planck(waven ,flameTemperature ,type='en').reshape (-1,1)/numpy.pi

Proc. of SPIE Vol. 8543 85430J-8

Downloaded From: http://proceedings.spiedigitallibrary.org/ on 12/19/2012 Terms of Use: http://spiedl.org/terms

inbandirradianceFlame = radianceFlame * detR * tauA * emis * filter * fill * opticsFOV
totalirradianceFlame=numpy.trapz(inbandirradianceFlame.reshape(-1,1),waven ,axis =0)[0]
signalFlame = totalirradianceFlame *transZ*responsivity *opticsArea

plot1.saveFig('flamesensor01.eps')

Optics : area =0.0078 m^2 FOV =0.0001 [sr]
Amplifier: gain =10000.0 [V/A]
Detector : peak responsivity =2.5 [A/W]
Flame : temperature =1273.16 [K] area=1 [m^2] distance =1000 [m] fill =0.01 [-]
Flame : irradiance= 3.29e-04 [W/m^2] signal= 0.0641 [V]
Path : irradiance= 5.45e-05 [W/m^2] signal= 0.0106 [V]

It is clear that the flame signal is six times larger than the path radiance signal, even though the flame fills
only 1% of the sensor field of view.

4.2 Solid angle calculation
Array processing in Python and Matlab condenses and simplifies most two-dimensional calculations significantly.
The code to solve the integral in Equation 5, for W=104, D=90, H=60 is as follows:

Matlab code:
delta = 0.5;
x = [-45: delta :45];
y = [-52: delta :52];
a = ones(size(y))' * x ;
b = (ones(size(x))' * y)' ;
gv=(1 ./ ((a/60) .^2 + (b/60) .^2 +1)).^(3/2);
solidAngle = delta .^2* trapz(trapz(gv))/(60*60)

Python code:
import numpy as np
x,y = np.mgrid [-45:45:181j, -52:52:209j]
gv = (1 / ((x/60) **2 + (y/60) **2 +1)) **(3./2)
a = np.trapz(gv, dx=0.5)
solidAngle = np.trapz(a, dx=0.5) /(60*60)

4.3 Spectral convolution
Spectral resolution matching is required when different data sources provide spectral data with different spectral
resolution. One such example is shown where the signal from a Bunsen burner is analysed at 4 cm−1, while the
atmospheric transmittance data are calculated at 1 cm−1. The left-hand side of Figure 4 shows the inappropriate
combination of spectra at different spectral resolutions. On the right-hand side the same operation is performed
but with resolution matched data. Note that this ‘correction’ is not accurate, since the atmospheric CO2

concentration during the measurement was not measured.

Figure 4: Example of spectral convolution calculations.

Proc. of SPIE Vol. 8543 85430J-9

Downloaded From: http://proceedings.spiedigitallibrary.org/ on 12/19/2012 Terms of Use: http://spiedl.org/terms

Measured MWIR noise

4.4 Reading FLIR Inc PTW files
Certain infrared FLIR Inc.5 imagers store data in a propriety format tagged with a *.ptw extension. This
format is graphically summarised in Figure 5. The main header section describes the database itself, as well as
all acquisition parameters. A stream of image frames follows the main header. These frames each starts with a
frame header, containing the parameters specific to the frame, e.g. frame time, subwindowing and integration
time.

The aim of the python code ryptw.py is to read all the header parameters and the image data. The code
has no graphical user interface, as it is not a stand-alone analysis tool, but merely a way to read the acquisition
parameters and the data frame(s). The current version of the code reads the file as digital levels, but it is planned
to include camera calibration later, such as to yield radiance or temperature values.

The call to the code is a two step process, where the header information is read first, and using that header
information, a specific frame can be extracted. A complete example of reading the *.ptw file is given on the web
site. The typical code required to read a few frames is as follows:
header = ryptw.readPTWHeader('data/PyradiSampleMWIR.ptw')
ryptw.showHeader(header)
rows = header.h_Rows
cols = header.h_Cols

#loading sequence of frames
framesToLoad = [3,4,10]
data = getPTWFrames (header , framesToLoad)
print(data.shape)

Figure 5: FLIR Inc. *.ptw file format outline.

4.5 3-D noise analysis
D’Agostino and Webb16 defined directional averaging operators that allow the mathematical derivation of eight
noise components from a sensor noise data set. The model defines a temporal dimension (t) representing the
framing sequence, and vertical (v) and horizontal (h) dimensions which provide the spatial information. The
operators average the data in a specified direction, aiding in the calculation of the noise components. The noise
descriptors describe temporal and spatial noise with respect to pixel, row, column and frame variations.

A three-dimensional numpy array with shape (frames,rows,columns) facilitates the 3-D noise calculation,
using numpy array manipulation and statistics routines. Sample output from a *.ptw file from the worked
example (web site) in this module is given in Figure 6.

100 Frames read from data/PyradiSampleMWIR.ptw

Image average S : 6269.154
Total system noise : 49.338

Fixed/spatial noise	Temporal noise	Variation effect
Nh : 5.396 | Nth : 0.430 | Column
Nv : 45.784 | Ntv : 1.994 | Row
Nvh : 17.126 | Ntvh : 3.381 | Pixel

| Nt : 0.243 | Frame

Figure 6: 3-D noise calculation on measured MWIR noise images.

Proc. of SPIE Vol. 8543 85430J-10

Downloaded From: http://proceedings.spiedigitallibrary.org/ on 12/19/2012 Terms of Use: http://spiedl.org/terms

C
g.

Figure 7: Cartesian, polar, image and 3-D plots.

4.6 Data plotting
Figure 7 shows a variety of cartesian, polar, 3-D and image plots. Note the polar plot rotational direction and
zero offset variations. All 2-D plotting routines support the plotting of an arbitrary number of multiple lines, for
array data. Image data can be calculated in code or read in from data files. 3-D plots are done with Matplotlib
(line graphs) and Mayavi (iso-curves).

4.7 Detector Modelling
The detector modelling module provides a comprehensive detector model, based on physical design parameters,
giving the user accurate control over key model behaviour elements. Infrared detectors can be designed to
be photodetectors or thermal detectors. In this case, the work focuses on bulk material photovoltaic infrared
photodetectors. This kind of detector is often called photodiode because it is a semiconductor diode (p-n junction)
which is light sensitive.17 In this model, a single element infrared detector is simulated using classical parameters
as inputs for the calculation, such as detector area, bandgap energy, doping, and detector temperature among
others. In the source code, all the equations and resulting functions are described and referenced in order to allow
the user to understand the procedure step by step. It is important to note that all the equations and parameters
used are from classical models found in the literature, giving generality and reliability to the procedure. The
model provides a spectral response and several figures of merit, such as the detectivity and I×V characteristics.

Figure 8 presents the detectivity and responsivity calculated by the model for a Ge detector with a detector
area of 100×100 μm2, a detector temperature equal to 80 K, background temperature equals to 280 K and
a positive doping of 1 × 1022 cm−3. The model is in good agreement with Ge detector measurements done
at LabGE/ITA. The estimated error is around 10% when compared with the peak values for responsivity and
detectivity.

Proc. of SPIE Vol. 8543 85430J-11

Downloaded From: http://proceedings.spiedigitallibrary.org/ on 12/19/2012 Terms of Use: http://spiedl.org/terms

ó

2.5 1e9

2.0

0.5

Spectral Detectivity

0'0.6 0.8 1.0 1.2 1.4 1.6
Wavelength (microns)

1.8 2.0

0.8

0.7

0.6

as

0.4

I 0.3

0.2

4.5

Spectral Responsivity

0.8 1.0 1.2 1.4 1.6
Wavelength (microns)

1.8 2.0

(a) Ge detector detectivity. (b) Ge detector responsivity.

Figure 8: Physics-based detector parameter calculations.

4.8 Colour coordinate calculations

0

0.5

1

Wavelength [m]�

N
o

rm
al

iz
ed

 R
ad

ia
n

ce

Source Normalized Radiance

0.35 0.4 0.45 0.5 0.55 0.6 0.65 0.7 0.75

Fluorescent

Sodium

Sun light (5900 K)

Incandescent (2850 K)

0.35 0.4 0.45 0.5 0.55 0.6 0.65 0.7 0.75
0

0.2

0.4

0.6

0.8

1

Wavelength [m]�

S
am

p
le

 R
ef

le
ct

an
ce

Sample Reflectance

Tomato

Lettuce

Yellow Prune

Blue
Nitrile

Green Leaf

White
Paper

Figure 9: Normalised source radiance and sample reflection.

Figure 10: Example of colour coordinate calcula-
tions.

The example code in the rychroma.py file calculates
colour coordinates as an application of radiometric normal-
ising, rather than the human perception of colour. Four
sources are considered, with normalised spectra shown in
Figure 9. The first light source is a ‘daylight’ fluorescent
phosphor, the second source is the sun, modelled as a ther-
mal radiator at 5900 K, the third source is an incandescent
light globe at a temperature of 2850 K and the fourth source
is a low pressure sodium lamp. The samples illuminated by
the sources are a red tomato, lettuce, a yellow prune, a
dark green leaf, a blue Nitrile (latex-like) surgical glove and
standard white printing paper. Figure 9 shows the spectral
reflectance of the samples. These diffuse reflection spectra
were measured with an ASD spectroradiometer, illuminat-
ing the sample with a bright light at short distance. The
fruit samples all demonstrated considerable light propaga-
tion deeper into the fruit. The blue glove was located on
top of a Spectralon white reference (note the considerable
‘white’ reflectance beyond 0.55 μm). The colour coordinates of the samples, in the different source spectra are
shown in Figure 10. Note how, under the near-monochromatic sodium illumination, all sample colour coordinates
converge to the same colour, that of the source.

Proc. of SPIE Vol. 8543 85430J-12

Downloaded From: http://proceedings.spiedigitallibrary.org/ on 12/19/2012 Terms of Use: http://spiedl.org/terms

4.9 Utility Functions

(a) Photon detector spectral response curves. (b) Filter spectral transmittance curves.

Figure 11: Example of spectral filter and detector spectral shapes.

A number of utility functions are provided. The utility functions include a simple mathematical model for
the spectral responsivity of photon detectors and spectral transmittance of optical filters. A function is also
provided to calculate the effective value according to Equation 7. Functions are provided for conversion between
spectral density values (i.e. between [W/(m2·μm)], [W/(m2·cm−1)], and [W/(m2·Hz)]. Similar functions are also
provided for the conversion between spectral values (i.e. between [μm], [cm−1], and [Hz)].

Generic detector spectral responsivity curves are calculated with Equation 10:

Rλ = k

[(
λ

λc

)a

−
(

λ

λc

)n]
for Rλ > 0, 0 otherwise, (10)

where 0 ≤ a ≤ 5, 0 ≤ λ ≤ λc and 5 ≤ n ≤ 50, and where k is a scaling constant. Figure 11a shows a few typical
curves. Clearly, these are only approximations, measured detector spectral responsivity curves should be used if
available.

Generic filter spectral transmittance can typically be fit to curves of the following form

τλ = τs + τp exp

[
−
(
2(λ− λc)

Δλ

)s]
(11)

where τs is the filter transmittance in the suppression spectral range, τp is the peak transmittance, s is a factor
defining the sharpness of the filter cutoff (if s = 2 the curve has a gaussian shape and if s = ∞ the curve is
square), Δλ defines the width of the pass-band and λc is the center wavelength of the pass-band. Figure 11b
illustrates a number of filter curves.

5. AVAILABILITY, DOCUMENTATION, AND CONTRIBUTING
Pyradi is managed in accordance with general practice in the open source community. Pyradi is made available
under the terms of the Mozilla Public License 1.1.18 Authors retain ownership of their respective contributions,
but make it available for use by other users. User can benefit freely from the original authors’ work, but any
modifications such users make must be released under compatible terms.

Pyradi is stored in a subversion repository on Google Code, at http://code.google.com/p/pyradi. The
toolkit files can be downloaded one-by-one using a web browser, or by using a download tool.19 It is recommended

Proc. of SPIE Vol. 8543 85430J-13

Downloaded From: http://proceedings.spiedigitallibrary.org/ on 12/19/2012 Terms of Use: http://spiedl.org/terms

JoJJ
PJ`+G1{}Ó

ts... .1:ipyradi-P,ffireto-adtmdosr..1

pyrm adm

, %mm dol optical radiometry laties

Project Home Issues Some Administer

Summary People

Project Inforrnalion

VraorireVever-

Code license

Labels
F. Optical.

Python oóitn

neliswillers@grnail.com I M, favorites . I P.e I s

11p: Discuss and then document ea. teammate's ormect duties

Objective

The %Ham_ menta is a Python Wendt to perform optical and infrared radiomen,. (flux Pow) calculations.

The tool. is an extendable, integrated and coherent collection of baAc
and resources, that can towards (Durum calculamos o me om ooptics domain. rde moist covers

I sor paysaai concepts (e.g. Planck's Law)
2. Mathematical operations (e.g.

m

spatial ,convoco on)

S. Data manipulation e.y.elc input/output ntemommn)
a. Graphical depiction (2 -o and so graphs)

The individuai scripts m me mounts supported by exarepms, rest cases and documeululan.

J

googlecoaem

-, Welcome morad,aoane x .,
pyraal documentation .

Table Of Contents
Welcome to pymdï s

Contents:
Examples of us
mates and tables

Next topic
Planck and thermal radiation

This Page

Show

Quicksearch

JoJJPJ4 x G1 C7Ó

next modules index

Welcome to pyradi's documentation!
¡. The pyratli toolkit is a Python toolkit to perform optical and infrared ratliomeby

LL`s Ix. (flic flow) calculations.

The toolkil is available at htp_//cotle gaogle coMp/pyratli

See ducs at http ://pyratli goaglecatle coMsvn/flmnk/tlocl_buiMlhlrnVintlex hhnl

Visit the google group at http ://gmups.google coMgroup/pyratlidev

Contents:

Planck and thermal radiation

Enter search terms sae mod. Overview
de. functam name Module functions

File reading/writing utility
Overview

however, that a subversion client20 be used to ‘check out’ and ‘commit’ the code (instructions are given on the
web site).

Potential users are encouraged to join in, and commit changes, updates and new contributions.

Pyradi documentation is available at http://pyradi.googlecode.com/svn//trunk/doc/_build/html/index.
html. Documentation is extracted from the comments in the Python code files, using the Sphinx documentation
generator. At the moment there is no User Guide, but complete commented example code is included at the end
of each module file.

Figure 12: Pyradi repository and documentation web sites.

Pyradi has only moderate hardware requirements and was tested under the Windows and Linux operating
systems. It should run in any environment where the Python tools are supported. At the time of writing the
following software versions were used: Python 2.7.3, Numpy 1.6.1, Scipy 0.10.1, Matplotlib 1.1, Mayavi 4.1.
Some users may find it a challenge to obtain and install some of these modules. The web site provides more
information on preparing the Python environment for pyradi.

6. FUTURE WORK

The current focus in the toolkit is on providing a strong set of functions suitable for application in user’s scripts.
Graphical user interfaces, using PyQt, are used extensively in our work, but these are mostly project specific.
GUI tools may be added to pyradi later. Such tools may include a GUI for editing Modtran tape5 files, or
viewing/processing *.ptw files.

The analysis of measured radiometric data constitutes a significant portion of the pyradi team’s work. The
intent is to rewrite current Matlab code into pyradi modules, some of which, will be added to the repository.

At current pyradi is not yet available as an installable Python package. Users are recommended to checkout
pyradi from the subversion repository at Google Code. This approach ensures that users can easily update to
the latest version. If there is sufficient interest, pyradi may be released in the form of an installation package.

Pyradi is an ongoing project, supporting activities in the original development teams’ respective laboratories.
Pyradi is also used to support the worked examples in an upcoming book.2

7. CONCLUSION

The pyradi toolkit is intended to provide researchers with a set of tools to simplify complex radiometry calcu-
lations and data visualisation. It is planned that the toolkit will grow, from its current modest beginning, with
the addition of new functionality in future.

The application value of the toolkit is already evident in our respective laboratories, inviting and accelerating
new tool development. Pyradi is offered as an open source product with the hope that others will also benefit
from our work.

Proc. of SPIE Vol. 8543 85430J-14

Downloaded From: http://proceedings.spiedigitallibrary.org/ on 12/19/2012 Terms of Use: http://spiedl.org/terms

ACKNOWLEDGMENTS

The authors wish to thank FLIR Advanced Thermal Solutions for the permission to publicly release our Python
version of the *.ptw file reader. Please note that the copyright to the proprietary *.ptw file format remains the
property of FLIR Inc. Thanks also to Derek Griffith who performed the sample colour measurements with the
ASD.

REFERENCES
[1] “Unix Philosophy.” http://en.wikipedia.org/wiki/Unix_philosophy (August 2012).
[2] Willers, C. J., [Advanced Radiometry: Techniques for Real-World Applications], SPIE Press (2013).
[3] Planckian locus. http://en.wikipedia.org/wiki/Planckian_locus (2012).
[4] CIE 1931 color space.

http://en.wikipedia.org/wiki/CIE_1931_color_space (2012).
[5] FLIR Inc. http://www.flir.com/cs/emea/en/view/?id=41702 (2012).
[6] Matlab. The MathWorks Inc, http://www.mathworks.com (2011).
[7] SciLab. http://www.scilab.org (2011).
[8] Octave (2011). http://www.gnu.org/software/octave.
[9] The Python computer language. http://www.python.org/ (2011).

[10] Numpy. http://numpy.scipy.org/ (2011).
[11] Matplotlib. http://matplotlib.sourceforge.net/ (2011).
[12] Mayavi, “The MayaVi data visualizer.” http://mayavi.sourceforge.net/ (2012).
[13] PyQt. http://www.riverbankcomputing.com/software/pyqt/intro (2012).
[14] PySide. http://www.pyside.org/ (2012).
[15] Martelli, A. and Ascher, D., [Python Cookbook], O’Reilly (2002).
[16] D’Agostino, J. A. and Webb, C. M., “Three-dimensional analysis framework and measurement methodology for

imaging system noise,” in [Infrared Imaging Systems: Design, Analysis, Modeling, and Testing II], Holst, G. C., ed.,
1488, SPIE (1991).

[17] Dereniak, E. L. and Boreman, G. D., [Infrared Detectors and Systems], John Wiley & Sons (1996).
[18] Mozilla Public License. http://www.mozilla.org/MPL/ (2012).
[19] Downloadsvn. http://downloadsvn.codeplex.com/ (2012).
[20] Tortoise subversion client. http://tortoisesvn.net/ (2012).

Proc. of SPIE Vol. 8543 85430J-15

Downloaded From: http://proceedings.spiedigitallibrary.org/ on 12/19/2012 Terms of Use: http://spiedl.org/terms

