IMPROVING THE RELIABILITY OF SEASONAL CLIMATE FORECASTS THROUGH EMPIRICAL DOWNSCALING AND MULTI-MODEL CONSIDERATIONS

Willem A. Landman Simon J. Mason

our future through science

The International Research Institute for Climate and Society

Prediction Strategy at CSIR

Atmospheric ICs

Model Output Statistics

Prediction Skill (Rainfall)

Statistical Correction of Tropical Pacific Sea Surface Temperature Forecasts

MICHAEL K. TIPPETT, ANTHONY G. BARNSTON, AND DAVID G. DEWITT

International Research Institute for Climate Prediction, Palisades, New York

Rong-Hua Zhang

Earth System Science Interdisciplinary Center, University of Maryland, College Park, College Park, Maryland

(Manuscript received 17 December 2004, in final form 20 June 2005)

2.8°

- MOS correction improves equatorial SST predictions
- MOS interpolates to common 1° x 1° Olv2 resolution
- MOS extrapolates outside CGCM domains

September 2010

DECEMBER-JANUARY-FEBRUARY 2010/11

La Niña events of 2010/11 and 2011/12

September 2011

DECEMBER-JANUARY-FEBRUARY 2011/12

Oceanic Niño Index: DJF 2010/11 **-1.4** DJF 2011/12 **-0.9**

More reasons to produce SST forecasts

- UCT-CSAG's HadAM₃P
- SAWS's ECHAM4.5
- CSIR's CCAM
- Contributing to IRI's NIÑO3.4 forecast plume:

- 1° x 1° resolution global SSTA available from 1982
 - Hindcast
 - Operational
- Available from CSIR's
 FTP site

ENSO forecasts are (also) probabilistic

El Niño 1997/98 Seasonal Predictions

Sea Surface Temperatures (deg C) for Week centered on 15 SEP 2010 Anomalies

Mid-Nov IRI/CPC Plume-Based Probabilistic ENSO Forecast

Are these ENSO forecasts really the best we can do (at the moment)?

Three models

- CCA-SST (M-J-J SST as predictor in statistical model)
- COLA-RSMAS-CCSM₃ (August initialization)
- ECHAM4.5-MOM3-DC2 (August initialization)

Three approaches

- Best model
- Average (two techniques)
- Weighted average

Discrimination (ROC)

(are the forecasts discernibly different given different outcomes?)

Fig. 10.1 Idealized reliability diagrams indicating cases of (a) under-forecasting, (b) over-forecasting, (c) over-confidence, (d) under-confidence. The vertical dotted line indicates the climatological probability of the event occurring, which in this case is set at 50%

Reliability

(is the confidence communicated in the forecast appropriate ?)

Challenge for coupled model developers

Conclusions

 One of the most predictable phenomena (ENSO) are not perfectly predictable, adding to the uncertainties in seasonal forecasts

- South African modellers are expending a significant amount of resources on model and system development
- Forecast verification essential
 - For users' confidence
 - To determine attributes of forecast systems
 - For the benefit of model developers