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Abstract—Mining-induced seismic events pose a serious risk to
workers in deep mines. Accurate numerical simulations are useful
in analyzing the problem and developing mitigation strategies.
Here we tackle the problem of guided interfacial elastic wave
propagation in a periodically joined interface of two half spaces.
The problem is viewed as a mixed boundary-condition plane
strain problem and a displacement discontinuity model is used
to model the boundary condition. The coupled set of first order
linear differential equations for stress and velocity for an elastic
continuum are replaced by an explicit finite difference scheme
that is implemented on a regular rectangular staggered grid.
Phase velocity dispersion curves for the guided interfacial wave
modes are obtained via a phase spectra analysis method. The
analysis reveals that longer wavelengths travel faster than shorter
ones and that the phase velocity dispersion curve is a function
of many model parameters including: source type (shear or
dilatation), source time function, inherent periodicity at the
model interface and size of periodic strips joining the interface.
Lastly, we observe that the medium acts like some sort of “soft”
frequency filter.
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I. INTRODUCTION

Rockbursts and rockfalls are serious hazards in deep hard-
rock mines in South Africa and worldwide, posing significant
risks to life, equipment and production [1]. An understanding
of the types and nature of interfacial guided wave modes
propagated in mine stopes can be of great benefit to the design
of support structures in order to mitigate the effects of mining-
induced seismic events. Motivated by the rockburst problem,
we address here the problem of guided elastic waves at a
periodically joined interface of two half spaces which can be
viewed as an idealized stope environment.

Guided elastic waves at a periodically joined interface
of two half spaces and other related problems have been
addressed analytically by several authors in the continuum
mechanics community including Every [2], Angel and Achen-
bach [3], Zhang [4] and Mikata [5]. Analytic solutions of
these types of problems are considered to be very challenging,
especially when modeled as a mixed boundary condition
problem [1]. In particular, an analytic solution to the above
problem framed as a 2D plane strain mixed boundary condition
type problem (where two half spaces sharing a planar interface
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are joined together within infinitely long regularly-spaced
strips and unattached in between) has already been solved
in the past via an elegant and efficient method of smoothing
over discontinuities in the boundary conditions and invoking
a Fourier series expansion of the scattered wave field; which
results in a rich system of interfacial and pseudo-interfacial
guided waves and supersonic interfacial waves [2].

The aforementioned problem is addressed here via a finite
difference code called WAVE [1] [6], which solves a system
of first order linear equations of stress and velocity via
finite differencing on a regularly spaced orthogonal staggered
rectangular grid; a method used frequently in seismological
applications due to its computational efficiency. A displace-
ment discontinuity is used in WAVE to model the mixed
boundary condition at the interface. Phase velocity dispersion
curves for the guided modes, resulting from the scattering
of the fundamental bulk modes by the interface are obtained
via a phase spectra analysis of time wave forms measured at
different locations in the model [7].

We used two 2D plane strain linear elastic models for our
investigations:

A A homogeneous solid rock mass without an interface,
serving as a control; and

B Two half spaces having identical elastic properties sep-
arated by a periodically joined interface, the discon-
tinuities and the joins representing stopes and pillars,
respectively.

In general there is a modest visible difference in the
dispersion for both models within the frequency range of
4 to 180 Hz, with little or no dispersion observed for the
control model. Also, the general trend of the velocity disper-
sion curves reveals that lower frequencies travel faster than
higher frequencies. It is also shown that the shapes of the
dispersion curves are complexly dependent on the following
model parameters including: periodicity of the structure, the
ratio of the length of the periodic strips joining the interface
to the periodicity of the structure, the type of seismic source
(dilatational or shear), and the source time function introduced
into the model. Also, a closer look at the amplitude spectrum
of the spatial wave functions for the second model indicate
that some frequencies undergo significant attenuation. This
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could be due to destructive interference of such frequencies
at the given positions, enabling the interface to act as some
kind of “soft” frequency filter. It is worth mentioning that the
dispersive behavior studied here is geometric dispersion which
is a consequence of boundaries in the specimen [7].

The results obtained from the above 2D simplified model
will serve as a basis for future 3D models with added com-
plexities such as non-periodic discontinuities at the interface
in order to be more representative of actual mining scenarios.

II. DESCRIPTION OF MODEL GEOMETRY

In this paper a plane strain assumption is made as in
Every [2]. The physical models analyzed are depicted in Fig
1; which shows both a homogeneous linear elastic isotropic
medium with a source (shear or dilatational) located at position
(225, 550-551) and two identical homogeneous linear elastic
isotropic half spaces which are periodically joined at their
interface by infinitely long strips parallel to the z-axis and
unattached in between. The strips and the unattached free por-
tions of the interface each have widths of b and S respectively
along the x-axis. The inherent periodicity at the interface in
the x direction is D, as indicated in the figure (Where D = b
+ S).

III. THEORETICAL AND NUMERICAL BASIS FOR THE
MODEL

Linear elasticity and isotropy is assumed. The governing
equations of motions for the above mentioned system (ne-
glecting the effect of body forces) are [1]:
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where p is the density, and « is the velocity. Since the system is

elastic and linear, the stress and strains components are related
by the following constitutive equations:

i

2
oij = (51']‘ (K — 3G) erk + 2Geij 2)

where K and G are the shear and bulk muduli respectively, J;;
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of the strain tensor, and o;;are components of the stress tensor.

Differentiating 2 we obtain the following equation; relating
stress and velocity:

2

Equations 1 and 3 form a set of coupled equation of stress
and velocity.

The above first order coupled differential equations of
stress and velocity are solved using a code called WAVE
[6] which solves the coupled system via an explicit time
marching finite difference scheme implemented on a regular
orthogonal staggered grid, whereby the grid variables of stress
and velocity are updated at different points in time and space.
This approach is generally efficient with respect to the use
of computer resources such as memory and run time and is
frequently used in seismological applications for example [8]
and [9]. The grid equations used in WAVE can be found in
[1].

A displacement discontinuity is used in WAVE to model the
mixed boundary condition at the interface [1]. Dynamic mo-
tion in this paper is introduced via active sources (dilatation or
shear), which are prescribed space-time distributions of stress
in the model, thus representing approximately an explosion or
a slip on a fault.

Phase velocity dispersion curves for guided modes, resulting
from the scattering of the fundamental bulk modes by the
interface, are obtained via an analysis of phase spectra time
wave forms measured at two different locations in the model
[7]. The equation for the above procedure is given as follows:
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IV. SPECIFICATION OF PARAMETERS USED IN THE MODEL

A 2D grid of 1800 x 1800 elements of size 2mx2m (i.e.
dx=2m=dy) is generated. A rha and an r full (adaptations of
the Ricker wavelet)[Mark Hildyard personal communication]
source time functions (pulses) are applied to the stresses
o011 and o9e (for the dilatational source), which generates
symmetric particle displacement modes with respect to the
interface and applied to o015 (for the shear source), which
results in the propagation of anti-symmetric modes [2].

The pulse duration was chosen to be T=2.14 s, 2.19 s, 2.8
s; so that pulse components with largest amplitudes are those
for which their & vector is in an e=0.5 neighborhood of the
Brillouin-zone boundary in the k, space (i.e k, D ~ 1) [2]. T
also satisfies the criterion necessary for stability of the finite
difference scheme and to minimize numerical dispersion, a
common feature of finite difference methods [9] and [10].
Stope sizes used are S = 13, 27, 54 grid spacings; solid strip
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Fig. 2. Excited pulse in model A

Fig. 5. Received pulse in model B

V. RESULTS AND DISCUSSIONS
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Figures 2 and 3 shows the y-component of the velocity
resulting from the excited shear pulse at grid points (225,
549-551) (x=450 m from boundary and length of source in

ent) /)

the y direction is 3 m) for both the models A and B. The

velocity(y compons
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pulse duration used is T=2.19 s; containing mostly frequency
| components in the interval 4 to 180 Hz. Here S=27 and b=5; so
that the ratio of b/D=0.16 as in Every [2]. Figs. 4 and 5 show

the received pulse at grid location (810, 550) after propagation

through the mediums in models A and B. The P-wave part of
the received pulse in model B was removed because it was very

Fig. 3. Excited pulse in model B

“small in magnitude compared to the S-wave portion shown
and was somewhat indistinguishable from numerical noise.
The received pulses have a negative first motion polarity with
respect to the pulse at the source. This happens so that linear
momentum can be conserved since points on the left of the
source (not shown in the figure) have a positive first motion

polarity. It is clear from these figures that there is little or
no observable distortion (except for the first motion polarity
reversal as described above) in the received pulse in model A,

[ ﬁ

ocityty compenant(m/s)

while there is significant distortion for the received pulse in
4model B.

Using the above data and equation 4, we calculate the phase
velocity for model A and B and the results are displayed in

Fig. 6. There is clearly a visible difference in the dispersion
Jcurves displayed in Fig. 6, showing that different modes are
| being propagated in the mediums. Also, there is no significant
difference in the value of the magnitude of the phase velocity

Fig. 4. Received pulse in model A

sizes b =5, 10, 19 grid spacings. The corresponding inherent
periodicity sizes for appropriate combinations of S and b is
easily obtained from D =S + b.

~for both modes (with one being about 5 percent more than the
other) which is similar to observations made in [2] for anti-
symmetric modes. The overall pattern in the dispersion curves
corresponds to what is expected in the literature with respect to
geometric dispersion [11] where lower frequencies on average,
travel faster than higher frequencies. Also, we observe that
the phase velocities asymtotically approach infinity for small
frequencies corresponding to the mode cutoff frequency.

The phase velocity frequency variation of the mode in model
A is very gradual beyond the cutoff frequency, which should be
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Fig. 7.  Amplitude spectrum at the source (in red) and receiver (in green)
position in model B

expected since it is the bulk shear wave mode which is being
propagated. Its value is not exactly 3000 m/s but about 3150
m/s which is 5 percent more than 3000 m/s. This difference is
due to numerical errors associated with the coarse grid used. In
the case of model B, the phase velocity of the propagated mode
follows a much less gradual frequency variation compared to
the mode in A and seems to asymptotically approach the phase
velocity value of the shear wave mode in A.

Fig. 7 shows the amplitude spectrum of the pulse at the
source position in red and receiver position in green. There is
a significant attenuation of the amplitudes at the receiver po-
sition, which is largely due to geometric spreading. Moreover,
the relative frequency amplitudes in the signal at the receiver
position is very different from that at the source position
indicating that certain frequencies undergo more attenuation
than others. This phenomenon may be due to destructive
interference of certain frequencies at given positions in the
medium, and possibly a slight constructive interference of
other frequencies thus enabling the interface to act as a “soft”
frequency filter.

Figs. 8, 9, 10 and 11 displays the phase velocity dispersion
curves for model B in which the following model parameters

3000 -

Fig. 8. Effect of change in pulse duration; T=2.8 s (red) and for T=2.19 s
(green)in model B
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Fig. 9. Effect of change in pulse type; 7 full (red) and rha (green) source
time functions in model B
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Fig. 10. Effect of change in structure at interface; b=19 and S=13 (red) and
b=5 and S=27 in (green)in model B

where altered. For the shear source used in model B above
the following alterations were done: the pulse duration change
to T=2.8 s, the source time function rfull was used, the
size of the strip, b=19 and free space S=13 and finally, the
periodicity of the structure D=64 grid spacings (S=54 and
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Fig. 11.  Effect of change in structure periodicity; D=64 (red) and D=32
(greed) in model B
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Fig. 12.  Effect of change in source type; dilational source (red) and a shear
source (green) in model B

b=10). A dilatational source was then used in model B above
with T=2.14 s. The resulting phase velocity for P-wave phase
of the disturbance is depicted in Fig. 12. The phase velocity
at low frequencies (10-100 Hz) varies some what erratically
within the velocity interval [5750, 6200]m/s. This is to be
expected as the P-wave velocity for the solid model is 6250
m/s.

The above investigations were done in other to determine
how sensitive the phase velocity dispersion curve is to the
aforementioned model parameters. The Figures above show
that the dispersion curves for the phase velocity are dependent
on the above mentioned model parameters. Thus, indicating
that these model parameters play a crucial role in the nature
and type of interfacial modes propagated at the interface of
the system.

VI. CONCLUSION

A finite difference method coupled with a phase spectra
analysis method have been used to obtain phase velocity dis-
persion curves for a mixed boundary conditioned-type problem
involving two linear elastic half spaces which are periodically
joined at their interfaces. We have also demonstrated that

the nature and type of the interfacial waves propagated is
influenced by the following model parameters including type
of seismic source (shear or dilatation), the source time function
introduced into the model, the pulse width, the periodicity
of the structure, the ratio of the length of the periodic strip
joining the interface to the periodicity of the structure. The
amplitude spectrum of the transmitted pulse also reveals

- that certain frequencies are significantly attenuated relative to

R b

others enabling the interface to behave like a “soft” frequency
filter. The results obtained in this work will serve as a basis
for future 3D models with added complexities such as non-
-.periodic discontinuities at the interface in other to be more-
representative of real life mining scenarios. Also, a further
study of the amplitude spectrum with respect to the attenuation
or enhancement of certain frequencies in the signal could
reveal useful information about possible resonances in a mine
stope [12].
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