PHASE CHARACTERISATION IN SPARK PLASMA SINTERED TIPE ALLOY

M.L. Mahlatji, S. Chikosha, H.K. Chikwanda

CSIR/MSM/MMP

MSSA 2011

Shape Memory Alloys (SMAs)

- SMAs are capable of "remembering" their original shape after deformation and subsequent input of thermal energy
- Shape memory depends on a <u>displacive phase transformation</u>
- Used for couplings, seals, actuators, fire safety valves

Calkins, 2010

Page 2 © CSIR 2006 www.csir.co.za

TiPt High Temperature SMAs

- Equiatomic TiPt exists as:
 - high temperature BCC austenite β-phase
 - low temperature orthorhombic martensite αphase
- T_M ≈ 1050 ° C at equiatomic composition
- Possible use in actuation for jet engines and other high temperature process control applications

Biggs et al., 2004

Page 3 © CSIR 2006 www.csir.co.za

Spark Plasma Sintering

- Low voltage, pulsed high DC current to activate consolidation
- High uniaxial pressure for compaction
- Spark plasma between particles and Joule heating (up to 10 000° C)
- Fast heating rates and minimum grain growth, better than PLS, HP or HIP.
- SPS is easy to operate, requires no binders, high capital cost is offset by low running cost

Page 4 © CSIR 2006 www.csir.co.za

Spark Plasma Sintering

- Spark plasma and Joule heating results in vaporisation of particle surface and surface melting of particle just behind the vaporised layer
- Liquid surfaces are drawn together to form "necks"
- Radiant Joule heat and pressure drives "neck" growth and material transfer

Page 5 © CSIR 2006 www.csir.co.za

Objective

- Produce TiPt alloy compacts by Spark plasma sintering (SPS) of equiatomic blended elemental (BE) Ti and Pt powders
- Produce homogenous TiPt alloy phase

Page 6 © CSIR 2006 www.csir.co.za

Starting Powder

- Ti₅₀Pt₅₀ (atomic %)
- •≥ 99.5 % purity powders

■Ti₅₀Pt₅₀ (atomic %) as pressed

Sintering Conditions

- Place powder in graphite die setting
- Program temperature-pressure ramp up and hold settings according to the values below:

	Temperature (° C)	Time (minutes)	Pressure (MPa)
Sample 1	1200	25	60 MPa
Sample 2	1300	15	60 MPa
Sample 3	1300	25	60 MPa
Sample 4	1300	30	60 MPa
Sample 5	1400	10	60 MPa

•Full density was achieved in all samples

Page 8 © CSIR 2006 www.csir.co.za

Solid State Sintering

- During solid state sintering of Ti and Pt, sintering is controlled by interdiffusion of the components
- All equilibrium and non-equilibrium phases at the sintering temperature are expected to form
- With time, the alloy will homogenise to the bulk starting composition

Page 9 © CSIR 2006 www.csir.co.za

SPS: 1200 ° C_25mins_60MPa

- Fully sintered
- Solid state reaction controlled

Page 10 © CSIR 2006 www.csir.co.za

SPS: 1300 ° C_25mins_60MPa

- Fully sintered
- Solid state reaction controlled

Page 11 © CSIR 2006 www.csir.co.za

SPS: 1400 ° C_10mins_60MPa

Fully sintered

Homogenising: 1300° C_10hrs_FC

Sintering condition: 1200 ° C_25mins_60MPa

Page 13 © CSIR 2006 www.csir.co.za

Homogenising: 1300° C_10hrs_FC

Sintering condition: 1400 ° C_10mins_60MPa

Page 14 © CSIR 2006 www.csir.co.za

Conclusions

- SPS of BE TiPt powder produces fully sintered specimens, with incomplete homogenisation
- TiPt phase is formed from the BE powder
- Post sintering heat treatment is required to homogenise the microstructure
- There is a need for improved furnace atmosphere control so that contamination can be eliminated as a possible reason for deviation of the final microstructure from the expected equiatomic TiPt composition.

Page 15 © CSIR 2006 www.csir.co.za