DSC Study of Martensite Transformation in TiPt alloys

S. Chikosha, M.L. Mahlatji, H.K. Chikwanda

Council for Scientific and Industrial Research Material Science and Manufacturing Light Metals

12 September 2012

TiPt Martensite transformation

- Equiatomic composition: $M_s \approx 1030 \text{ °C}$, $A_s \approx 1050 \text{ °C}$
- Reversible displacive transformation makes TiPt candidate material for high temperature SMA

T. Biggs, M.B. Cortie, M.J. Witcomb, L.A. Cornish, Metall. & Mat. Trans. A , 2001, 32A:1881-86 K. Otsuka & X Ren, Intermet. 1999, 7:511-28

Page 2

Shape Memory Effect

Three forms of SMA depending on thermomechanical history: A, TM and DM

Invariant plane between austenite and martensite phase maintains coherency between the phases and result in shape memory

Patoor et. al., Mechanics of Matt., 2006, 38::391-429 K. Otsuka & X Ren, Intermet. 1999, 7:511-28

Composition dependence of transformation temperatures

Variation of A_s with composition

➢ Variation of M_s with composition

T. Biggs, M.B. Cortie, M.J. Witcomb, L.A. Cornish, Metall. & Mat. Trans. A , 2001, 32A:1881-86

Intermediate phases during martensite transformations

Page 5

www.csir.co.za

our future through science

Experimental Procedure

Spark Plasma Sintering

1200°C, 60 MPa

- Incomplete homogenisation of the bulk
- Pt-rich TiPt phase is formed, coexisting with other phases
- DSC shows two overlapping peaks instead of one, possible two-stage TiPt martensite transformation

Element Line	Element Wt.%	Wt.% Error	Atom %	Atom % Error
Ti K	17.82	+/-0.17	46.90	+/- 0.45
Ti L				
Pt L	82.18	+/-1.68	53.10	+/- 1.08
Pt M				
Total	100.00		100.00	

Spark Plasma Sintering

1400°C, 60 MPa

- Second endothermic peak on heating and first exothermic peak on cooling become less prominent with increasing sintering (T)
- Ti-rich and Pt-rich phases still present, alloy not fully martensitic

Element	Element	Wt%	Atom %	Atom %
Line	Wt%	Error		Error
TiK	18.36	+/-0.43	47.81	+/-1.13
Pt M	81.64	+/-0.92	52.19	+/- 0.59
Total	100.00		100.00	

www.csir.co.za

Hot Press Sintering

1300°C, 5hrs, 60MPa

Element	Element	Wt%	Atom %	Atom %
Line	Wt%	Error		Error
TiK	18.34	+/-0.20	47.77	+/- 0.53
Pt L	81.66	+/-1.92	52.23	+/-1.23
Total	100.00		100.00	

Isolation of overlapping peaks showing relation between first endothermic peak and second exothermic peak

www.csir.co.za

Conclusions

- Pt-rich TiPt phase was formed by HP and SP sintering, the press and sinter method was less successful. Presence of Ti-rich and Pt-rich phases coexisting with TiPt phase shows incomplete homogenisation.
- Volume fraction of TiPt phase formed by various solid-state diffusion methods ranges from 40-55%.
- ► DSC shows two-stage B2↔B19 transformation, an intermediate phase of unknown structure forms during the phase transition.

